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Abstract
The discrete Pareto distribution can be considered as a lifetime distribution and then
is widely used in practice. It follows the power law tails property which makes it as a
candidate model for natural phenomena. This paper deals with comparison of discrete
Pareto populations by proposing a non-linear fixed effects model. Estimators for the
factor effects are derived in explicit expressions. Stochastic properties of the estimators
are studied in details. A test for assessing the homogeneity of populations is proposed.
Illustrative examples are also given. The proposed model is an alternative model for
analyzing data sets in which the linear models have poor performance.
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1. Introduction
Analyzing the effect of a factor on a response variable is a traditional purpose in statis-

tics, and also known as one-way classification. If the response variable follows the normal
distribution, then one-way analysis of variance (ANOVA) is usually implemented; See, e.g.,
[7,14,16] and references therein. Alternative models for non-normal distributed responses
have been proposed in the literature. For example, Kruskal and Wallis [11] suggested
a rank based method for one-way ANOVA. This method, known as Kruskal-Wallis test,
does not estimate the factor effects. So, it is not applicable for cases in which researchers
need to estimate factor effects. Nelder and Wedderburn [15] proposed theory of general-
ized linear models (GLMs). The GLMs assume that the response distribution belongs to
the exponential family of distributions. Also, they investigate the factor effects only on a
function of response mean, known as link function. But in practice, researchers may face
with some cases in which the response distribution does not belong to the exponential
family of distributions or one may wish to model another characteristic of the response
distribution, such as minimum bound parameter or reversed hazard function. Therefore,
the GLMs are also restrictive; See, e.g., [1] and [2].
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Let X be a discrete random variable with support SX = {α, α + 1, · · · } and the prob-
ability mass function (PMF)

fX(t) = αθ
( 1

tθ
− 1

(t + 1)θ

)
, t ∈ SX , α ∈ N, θ > 0, (1.1)

where (α, θ) are parameters and N stands for the set of the natural numbers. The random
variable X is called discrete Pareto (DP) variable. One may construct this random variable
from the continuous Pareto distribution. More precisely, if Y is a continuous random
variable with the probability density function

fY (t) = θαθ

tθ+1 , t ≥ α, α ∈ N, θ > 0,

then X = ⌊Y ⌋ has the DP distribution with the PMF (1.1), where ⌊b⌋ indicates the largest
integer less than or equal to b; See, e.g., [3]. The DP distribution (1.1) has a power-law
tail as

P (X ≥ t) ≃ t−θ, t → ∞. (1.2)
On the other hand, many random phenomena in practice, such as biology, chemistry,
computer science, economics, finance and etc, have empirical distributions with power-law
tails as in (1.2). Therefore, various stochastic phenomena may follow the DP distribution;
See, e.g., [3, 9, 10].

When α in (1.1) is unknown, the DP distribution does not belong to the exponential
family of distributions. Then, GLMs cannot be used for data sets with DP responses.
Moreover, there is no parametric method in the literature for classification of DP random
variables. Therefore, in this paper, we focus on comparison of multiple DP populations,
that is when the response variable follows the DP distribution (1.1). For motivation,
suppose that a manager of a publishing company wants to compare m different types of
cartridges. To do this, she may compare the number of sheets printed by each of the car-
tridges. If the number of printed sheets follows the DP distribution, then she can compare
these cartridges using the proposed approach in this paper.

In order to provide the new model for data analyses of classified discrete observations,
consider the following notation throughout the paper:

1. m (≥ 2) is the number of varying levels (or classes) of the factor variable;
2. For 1 ≤ i ≤ m, ni (≥ 1) stands for the number of observations in the i-th class

and N :=
∑m

i=1 ni is the total number of observations;
3. For 1 ≤ i ≤ m and 1 ≤ j ≤ ni, Yij is the response variable for the j-th individual

in the i-th class. Also, Yi,(1) := min1≤j≤ni {Yij} and Y := [Y1, · · · , Ym]T , where
Yi := [Yi1, · · · , Yini ]T for 1 ≤ i ≤ m;

4. “IID" stands for independent and identically distributed;
5. DP (α, θ) indicates the DP distribution with the PMF (1.1);
6. JB(t) = 1 if t ∈ B and 0 otherwise;
7. The lowercase letters of random variables denote the corresponding realizations;
8. For any integers u ≥ 0 and v ≥ 1, Bu := {u, u + 1, · · · } and B̄v := {1, 2, · · · , v}.
9. ⊥ stands for the statistical independence.

Now, let us assume that

Yi1, · · · , Yini

IID∼ DP (αi, θ) , 1 ≤ i ≤ m, (1.3)(
Yi1, · · · , Yini

)
⊥
(
Yj1, · · · , Yjnj

)
, 1 ≤ i ̸= j ≤ m, (1.4)



Discrete Pareto populations under a fixed effects model 531

where αi ∈ N is the fixed effect of the i-th class, for 1 ≤ i ≤ m, and θ is a common
parameter. From Equation (1.3), the likelihood function (LF) of the available data for the
i-th class is

Li (αi, θ; yi) =
ni∏

j=1
fi (yij)

= αθni
i JB̄yi,(1)

(αi)
ni∏

j=1

(
1

yθ
ij

− 1
(yij + 1)θ

)
, 1 ≤ i ≤ m, (1.5)

where fi is the PMF of the observations in the i-th class, for 1 ≤ i ≤ m. The independence
assumption (1.4) and Equation (1.5) yield the LF of the available data as

L (α1, · · · , αm, θ; y) =
m∏

i=1
Li (αi, θ; yi)

=
m∏

i=1

αθni
i JB̄yi,(1)

(αi)
ni∏

j=1

(
1

yθ
ij

− 1
(yij + 1)θ

) . (1.6)

Then, the log-likelihood function (log-LF) is

l (α1, · · · , αm, θ; y) = log L (α1, · · · , αm, θ; y)

=
m∑

i=1

θni log αi + log JB̄yi,(1)
(αi) +

ni∑
j=1

log
(

1
yθ

ij

− 1
(yij + 1)θ

) . (1.7)

In this paper, we analyze the available data y on the basis of the respective log-LF (1.7).
Thus, the rest of the paper is organized as follows: In Section 2, it is assumed that the
parameter θ in (1.7) is known. Explicit expressions for the maximum likelihood estimators
(MLEs) of the model parameters α1, · · · , αm are derived. Stochastic properties of the de-
rived MLEs are studied in details. A procedure for testing the homogeneity of populations
is also proposed. In Section 3 and by assuming that θ is unknown, inferences about the
model parameters are studied. Finally, in Section 4, findings of the previous sections are
assessed numerically. Section 5 is dedicated to conclusion.

2. Likelihood inference without nuisance parameter
In this section, suppose that θ > 0 in (1.7) is known. So, we use the symbol l (α1, · · · , αm; y)

instead of l (α1, · · · , αm, θ; y) for the log-LF (1.7).

2.1. Estimation
To derive the maximum likelihood estimates, we first assume that the parameters

α1, · · · , αm take real values. The partial derivative of the log-LF (1.7) with respect to
the parameter αi is

∂l (α1, · · · , αm; y)
∂αi

= θni

αi
> 0, 1 ≤ i ≤ m.

This means that l (α1, · · · , αm; y) is increasing in αi, for 1 ≤ i ≤ m. Therefore, the unique
MLE of αi, denoted by α̂i, exists and is given by

α̂i = Yi,(1), 1 ≤ i ≤ m. (2.1)

Theorem 2.1. For 1 ≤ i ≤ m, the MLE of αi in Equation (2.1) has the following
properties:

[i] α̂i ∼ DP (αi, θni). Moreover, α̂1, · · · , α̂m are independent;
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[ii] For k ≤ θni − 1, E
(
α̂k

i

)
exists and

E
(
α̂k

i

)
= αk

i +
∞∑

t=αi

αθni
i

(t + 1)θni−k

(
1 −

(
t

t + 1

)k
)

.

Proof. From [3, Proposition 3.1] and the independence assumption (1.4), part [i] is con-
cluded. For 1 ≤ i ≤ m and k ≤ θni − 1, one can see that

E
(
α̂k

i

)
=

∞∑
t=αi

tkfα̂i(t)

=
∞∑

t=αi

αθni
i

(
1

tθni−k
− tk

(t + 1)θni
± 1

(t + 1)θni−k

)

= αk
i

∞∑
t=αi

αθni−k
i

( 1
tθni−k

− 1
(t + 1)θni−k

)
+

∞∑
t=αi

αθni
i

(t + 1)θni−k

(
1 −

(
t

t + 1

)k
)

(2.2)

= αk
i +

∞∑
t=αi

αθni
i

(t + 1)θni−k

(
1 −

(
t

t + 1

)k
)

,

which proves [ii]. Notice that, for k < θni − 1
∞∑

t=αi

αθn
i

(t + 1)θn−k

(
1 −

(
t

t + 1

)k
)

≤
∞∑

t=αi

αθn
i

(t + 1)θn−k
< ∞, 1 ≤ i ≤ m,

Also, for k = θni − 1
∞∑

t=αi

αθni
i

(t + 1)θni−k

(
1 −

(
t

t + 1

)k
)

=
∞∑

t=αi

αθni
i

(
(t + 1)θni−1 − tθni−1

)
(t + 1)θni

. (2.3)

Since
∑∞

t=αi
t−2 < ∞ and

lim
t→∞

αθni
i

(
(t + 1)θni−1 − tθni−1

)
(t + 1)θni

× t2 = αθni
i > 0,

by the well known limit comparison test [8, Theorem 5.2.5. page 147], the series (2.3) is
convergent. Therefore, Equation (2.2) holds and E

(
α̂k

i

)
exists for k ≤ θni − 1. �

For 1 ≤ i ≤ m, let

bi(ni) :=
∞∑

t=αi

(
αi

t + 1

)θni

, di(ni) :=
∞∑

t=αi

αθni
i (2t + 1)
(t + 1)θni

.

Therefore,
lim

ni→∞
bi(ni) = 0, lim

ni→∞
di(ni) = 0, 1 ≤ i ≤ m.

From Theorem 2.1 ([ii]), we have for ni ≥ 2θ−1

E(α̂i) = αi + bi(ni),
Also, for ni ≥ 3θ−1, we obtained variance and mean squared error (MSE) of α̂i as

V ar(α̂i) = di(ni) − bi(ni) (bi(ni) + 2αi) ,

MSE(α̂i) = di(ni) − 2bi(ni)αi.

Then, α̂i is asymptotically unbiased. Moreover, MSE(α̂i) → 0 as ni → ∞, i.e., α̂i

converges to αi in L2, and hence α̂i is consistent for αi; See, e.g., [6, page 208]. In the
next lemma, and for 1 ≤ i ≤ m, it is proved that a general form of α̂i − αi degenerates at
zero.
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Lemma 2.2. Let (Θ,F, P ) be a common probability space for the responses, and Z0 de-
notes the set of all measurable functions, say h(t), such that h(t) = 0 almost surely has
the unique solution t = 0. Then, for any h ∈ Z0 and 1 ≤ i ≤ m, the random variable
h (α̂i − αi) tends to 0 as ni goes to infinity.

Proof. For any h ∈ Z0 and 1 ≤ i ≤ m, we have

lim
ni→∞

P (h(α̂i − αi) = 0) = lim
ni→∞

P (α̂i − αi = 0) = lim
ni→∞

1 −
(

αi

αi + 1

)θni

= 1.

Then h(α̂i − αi) is asymptotically degenerated. �

Theorem 2.3. For 1 ≤ i ≤ m, α̂i is a sufficient statistic for αi. Also, if ni > θ−1, then
α̂i is boundedly complete.

Proof. One can rewrite the LF (1.5) as follows:

Li (αi, θ; yi) = Ai

(
yi,(1), αi

)
Hi (yi) , 1 ≤ i ≤ m,

where Ai

(
yi,(1), αi

)
:= αθni

i JB̄yi,(1)
(αi) and Hi (yi) :=

∏ni
j=1

(
y−θ

ij − (yij + 1)−θ
)

are non-
negative functions. Therefore, the LF (1.5) can be written as product of two factors. The
factor Hi does not depend on αi and the other factor Ai depends on αi as well yi only
through yi,(1). Hence, from the well known factorization theorem [12, page 35], α̂i = Yi,(1)
is sufficient for αi. In addition, for an arbitrary bounded function, say g(.), let us assume
that

0 = E (g (α̂i)) =
∞∑

t=αi

g(t)αθni
i

( 1
tθni

− 1
(t + 1)θni

)
, αi ∈ N. (2.4)

Multiplying α−θni
i ̸= 0 on the both sides of (2.4) concludes

0 =
∞∑

t=αi

(
g(t)
tθni

− g(t)
(t + 1)θni

)
. (2.5)

Since g(.) is bounded, there is M > 0 such that |g(t)| < M for all t. Also, since
∑∞

t=1 t−p <
∞ for p > 1, we have for ni > θ−1 (or equivalently θni > 1)

∞∑
t=αi

g(t)
tθni

<
∞∑

t=αi

M

tθni
< M

∞∑
t=1

t−θni < ∞,

∞∑
t=αi

g(t)
(t + 1)θni

<
∞∑

t=αi

M

(t + 1)θni
< M

∞∑
t=1

t−θni < ∞.

Then,
∞∑

t=αi

(
g(t)
tθni

− g(t)
(t + 1)θni

)
=

∞∑
t=αi

g(t)
tθni

−
∞∑

t=αi

g(t)
(t + 1)θni

,

and therefore Equation (2.5) yields

0 =
∞∑

t=αi

g(t)
tθni

−
∞∑

t=αi

g(t)
(t + 1)θni

= g(αi)
αθni

i

+
∞∑

t=αi+1

g(t)
tθni

−
∞∑

t=αi+1

g(t − 1)
tθni

,

or equivalently
g(αi)
αθni

i

+
∞∑

t=αi+1

g(t) − g(t − 1)
tθni

= 0, αi ∈ N. (2.6)
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Equation (2.6) implies
∞∑

t=αi+k+1

g(t) − g(t − 1)
tθni

=g(αi)
( 1

(αi + 1)θni
− 1

(αi)θni

)

+g(αi + 1)
( 1

(αi + 2)θni
− 1

(αi + 1)θni

)
+ · · ·

+g(αi + k − 1)
( 1

(αi + k)θni
− 1

(αi + k − 1)θni

)
− g(αi + k)

(αi + k)θni
, αi, k ∈ N. (2.7)

Since Equation (2.6) is established for any αi ∈ N, we have
g(αi + 1)

(αi + 1)θni
+

∞∑
t=αi+2

g(t) − g(t − 1)
tθni

= 0. (2.8)

Then, Equation (2.7) for k = 1 and Equation (2.8) conclude
g(αi + 1)

(αi + 1)θni
+ g(αi)

( 1
(αi + 1)θni

− 1
(αi)θni

)
− g(αi + 1)

(αi + 1)θni
= 0,

which results g(αi) = 0. Similarly, from Equation (2.6)
g(αi + 2)

(αi + 2)θni
+

∞∑
t=αi+3

g(t) − g(t − 1)
tθni

= 0. (2.9)

Therefore, Equation (2.7) for k = 2 and Equation (2.9) imply
g(αi + 2)

(αi + 2)θni
+ g(αi)

(
1

(αi + 1)θni
−

1
(αi)θni

)
+ g(αi + 1)

(
1

(αi + 2)θni
−

1
(αi + 1)θni

)
−

g(αi + 2)
(αi + 2)θni

= 0,

which concludes g(αi + 1) = 0, since g(αi) = 0. By proceeding in this way and by
induction, one can see that g(αi+k) = 0 for any k ∈ N. This means that P (g (α̂i) = 0) = 1,
i.e., α̂i is boundedly complete for αi. �

In sequel, we provide a 100(1 − γ)% confidence interval (CI) for αi, 1 ≤ i ≤ m. To do
this, the following lemma is essential.

Lemma 2.4. [4, page 434] Let X be a discrete statistic with support SX and the cumulative
distribution function FX(x; µ) = P (X ≤ x | µ). Also, let 0 < γ1, γ2, γ < 1 are fixed values
where γ = γ1 + γ2. Suppose that for any x ∈ SX , µL(x) and µU (x) can be defined as
follows:

i. If FX(x; µ) is a decreasing function of µ for each x, define µL(x) and µU (x) by
P (X ≤ x | µU (x)) = γ1, P (X ≥ x | µL(x)) = γ2.

ii. If FX(x; µ) is an increasing function of µ for each x, define µL(x) and µU (x) by
P (X ≥ x | µU (x)) = γ1, P (X ≤ x | µL(x)) = γ2.

Then, the random interval (µL(X), µU (X)) is a 100(1 − γ)% CI for µ.

In Theorem 2.1, it is proved that α̂i ∼ DP (αi, θni), for 1 ≤ i ≤ m. Therefore

Fα̂i(t; αi) = 1 − αθni
i

(1 + t)θni
, t ∈ Bαi , 1 ≤ i ≤ m. (2.10)

Obviously, Fα̂i(t; αi) in (2.10) is a decreasing function of αi for any t ∈ Bαi . Hence,
according to Lemma 2.4, an equi-tail 100(1 − γ)% CI for αi is

Iθ (αi; γ) :=
(

α̂i

(
γ

2

)1/θni

, (1 + α̂i)
(

1 − γ

2

)1/θni
)

, 1 ≤ i ≤ m. (2.11)
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Remark 2.5. For 1 ≤ i ≤ m, we have αi ∈ N in Equation (1.3). Therefore, one should
modify the proposed CI in Equation (2.11) as follows:

Iθ (αi; γ) :=
[⌈

α̂i

(
γ

2

)1/θni
⌉

,

⌊
(1 + α̂i)

(
1 − γ

2

)1/θni
⌋]

, 1 ≤ i ≤ m, (2.12)

where ⌈.⌉ denotes the ceiling function; See, e.g., [8].

Remark 2.6. By the well known Bonferroni inequality, a joint 100(1 − γ)% confidence
set for α1, · · · , αm is given by Iθ (α1; γ/m) ⊗ · · · ⊗ Iθ (αm; γ/m) where “A ⊗ B stands for
the Cartesian product of two sets A and B.

2.2. Homogeneity testing
In this subsection, we propose a procedure for testing the homogeneity hypothesis of

populations, that is H0 : α1 = · · · = αm against the alternative hypothesis
H1 : ∃i ̸= j, i, j ∈ {1, · · · , m} , such that αi ≠ αj .

Therefore, if the null hypothesis is rejected, then effects of the factor variable are mean-
ingful. Suppose that α is the common value of αis under the null hypothesis H0. Under
H0, the LF (1.6) simplifies to

L (α; y) = αθN JB̄y(1),(1)
(α)

m∏
i=1

ni∏
j=1

(
1

yθ
ij

− 1
(yij + 1)θ

)
, (2.13)

where Y(1),(1) := min1≤i≤m{Yi,(1)}. Similar to Subsection 2.1, the LF (2.13) is increasing
in α, and hence α̂ := Y(1),(1) is the MLE of α. Also, under the homogeneity hypothesis,
we have

P (α̂ > t) = P
(
Y(1),(1) > t

)
=

m∏
i=1

ni∏
j=1

P (Yij > t) =
m∏

i=1

ni∏
j=1

αθ

(t + 1)θ
= αθN

(t + 1)θN
,

which means that α̂ ∼ DP (α, θN). Moreover
α̂ = Y(1),(1) = min

1≤i≤m
{Yi,(1)} = min

1≤i≤m
{α̂i}.

For testing the null hypothesis H0 against the alternative H1, we use generalized likelihood
ratio test (GLRT). The GLRT statistic is

Λ =
supΩ0 L(α1, · · · , αm; y)
supΩ L(α1, · · · , αm; y)

=
m∏

i=1

(
α̂

α̂i

)θni

,

where Ω = {(α1, · · · , αm) | αi ∈ N, 1 ≤ i ≤ m} is the whole parameter space and Ω0 =
{(α1, · · · , αm) | α1 = · · · = αm ∈ N} is the parameter space under H0. The null hypothesis
H0 is rejected if Λ is too small. Therefore, the GLRT function is as follows:

φ (y) =


1, Λ < c,

η, Λ = c,

0, Λ > c,

where 0 < c ≤ 1 and 0 ≤ η ≤ 1 are constants and determined at the significance level γ
by

sup
α∈N

EH0 (φ (Y)) = γ.

Notice that, Λ tends to 1 as α̂ goes to infinity. Therefore, supα∈N EH0 (φ (Y)) = 1 and
hence the GLRT does not exist.

In order to overcome this limitation, we suggest to consider a subclass of the homogeneity
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Table 1. Values of c∗ in (2.14) at the significant level γ = 0.05.

θ 0.5 1 2

α∗
n

m 2 3 4 5 2 3 4 5 2 3 4 5

1 0.0093 0.0020 0.0005 0.0001 0.0100 0.0027 0.0008 0.0002 0.0156 0.0069 0.0017 0.0008
2 0.0100 0.0028 0.0007 0.0002 0.0156 0.0059 0.0021 0.0008 0.0625 0.0625 0.0123 0.0039

1 3 0.0131 0.0037 0.0011 0.0004 0.0370 0.0156 0.0046 0.0029 1.0000 1.0000 0.0156 0.0156
4 0.0156 0.0069 0.0017 0.0008 0.0625 0.0625 0.0123 0.0123 1.0000 1.0000 1.0000 1.0000
5 0.0312 0.0077 0.0032 0.0014 0.0312 0.0312 0.0312 0.0312 1.0000 1.0000 1.0000 1.0000
6 0.0370 0.0156 0.0046 0.0029 1.0000 1.0000 0.0156 0.0156 1.0000 1.0000 1.0000 1.0000
1 0.0090 0.0018 0.0004 0.0001 0.0093 0.0023 0.0006 0.0002 0.0131 0.0035 0.0010 0.0003
2 0.0096 0.0020 0.0006 0.0001 0.0123 0.0035 0.0009 0.0003 0.0256 0.0123 0.0039 0.0016

2 3 0.0102 0.0029 0.0007 0.0002 0.0156 0.0060 0.0020 0.0007 0.0878 0.0156 0.0077 0.0077
4 0.0123 0.0037 0.0011 0.0003 0.0256 0.0123 0.0039 0.0024 0.0390 0.0390 0.0390 0.0390
5 0.0141 0.0041 0.0015 0.0005 0.0312 0.0173 0.0041 0.0041 1.0000 0.0173 0.0173 0.0173
6 0.0190 0.0046 0.0020 0.0007 0.0878 0.0156 0.0077 0.0077 1.0000 1.0000 1.0000 1.0000
1 0.0087 0.0018 0.0004 0.0001 0.0099 0.0019 0.0006 0.0001 0.0105 0.0026 0.0008 0.0003
2 0.0094 0.0020 0.0005 0.0001 0.0123 0.0028 0.0007 0.0002 0.0198 0.0055 0.0021 0.0008

3 3 0.0093 0.0024 0.0006 0.0002 0.0156 0.0042 0.0014 0.0004 0.0317 0.0083 0.0056 0.0022
4 0.0100 0.0030 0.0009 0.0002 0.0198 0.0063 0.0021 0.0008 0.1001 0.0168 0.0100 0.0100
5 0.0137 0.0033 0.0010 0.0003 0.0185 0.0074 0.0024 0.0014 0.0563 0.0563 0.0563 0.006
6 0.0156 0.0034 0.0011 0.0004 0.0317 0.0083 0.0056 0.0015 0.0317 0.0317 0.0317 0.0317
1 0.0082 0.0019 0.0004 0.0001 0.0093 0.0020 0.0005 0.0001 0.0108 0.0026 0.0007 0.0002
2 0.0086 0.0019 0.0005 0.0001 0.0100 0.0026 0.0006 0.0002 0.0123 0.0043 0.0016 0.0004

4 3 0.0104 0.0024 0.0005 0.0002 0.0119 0.0035 0.0009 0.0003 0.0230 0.0077 0.0031 0.0014
4 0.0107 0.0024 0.0006 0.0002 0.0123 0.0051 0.0013 0.0004 0.0390 0.0114 0.0065 0.0019
5 0.0113 0.0028 0.0008 0.0002 0.0173 0.0057 0.0021 0.0007 0.1074 0.0173 0.0115 0.0115
6 0.0130 0.0035 0.0011 0.0003 0.0230 0.0077 0.0024 0.0012 0.0687 0.0687 0.0077 0.0077

hypothesis, that is H∗
0 : α1 = · · · = αm = α∗ where α∗ ∈ N is a given value. In this case,

the GLRT function simplifies to

φ∗ (y) =


1, Λ∗ < c∗,

η∗, Λ∗ = c∗,

0, Λ > c∗,

(2.14)

where 0 < c∗ ≤ 1 and 0 ≤ η∗ ≤ 1 are constants and

Λ∗ =
m∏

i=1

(
α∗

α̂i

)θni

. (2.15)

Also, at the significance level γ, the quantities c∗ and η∗ in (2.14) are determined by

EH0 (φ∗ (Y)) = γ. (2.16)

For balanced data (ni = n for 1 ≤ i ≤ m) and for some selected values of α∗, m, n, θ, the
quantities c∗ and η∗ are obtained from Equation (2.16) at the significance level γ = 0.05
by conducting a Monte Carlo simulation. The derived results are shown in Tables 1 and
2.

Remark 2.7. Under the homogeneity hypothesis, α̂ is the MLE of the factor effects.
So, if H0 : α1 = · · · = αm is correct, then we greatly expect that α1 = · · · = αm ≃ α̂.
Therefore, we propose to consider α∗ in (2.15) as the observed value of α̂ and then test
H∗

0 : α1 = · · · = αm = α∗ instead of H0 : α1 = · · · = αm.

3. Likelihood inference with nuisance parameter
In this section, the parameter θ > 0 in (1.7) is considered as an unknown nuisance

parameter.
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Table 2. Values of η∗ in (2.14) at the significant level γ = 0.05.

θ 0.5 1 2

α∗
n

m 2 3 4 5 2 3 4 5 2 3 4 5

1 0.0020 0.0020 0.0020 0.0020 0.0060 0.0020 0.0040 0.0020 0.1270 0.0080 0.1445 0.0356
2 0.0060 0.0020 0.0020 0.0020 0.1629 0.0059 0.0039 0.0120 0.1866 0.0410 0.2617 0.5650

1 3 0.0688 0.0155 0.0020 0.03170 0.1029 0.0997 0.2936 0.0114 0.0210 0.0046 0.6790 0.5450
4 0.1421 0.0236 0.1319 0.0335 0.1998 0.0456 0.2172 0.0048 0.0425 0.0358 0.0338 0.0308
5 0.0448 0.0319 0.1327 0.0019 0.6352 0.4118 0.2474 0.1454 0.0487 0.0486 0.0460 0.0452
6 0.0747 0.1408 0.2754 0.0039 0.0205 0.0058 0.6651 0.5887 0.0496 0.0489 0.0490 0.0489
1 0.0020 0.0020 0.0020 0.0020 0.0040 0.0020 0.0040 0.0020 0.01760 0.0040 0.0118 0.0020
2 0.0060 0.0020 0.0020 0.0020 0.0645 0.0020 0.0217 0.0060 0.2234 0.0425 0.1150 0.0525

2 3 0.0020 0.0040 0.0159 0.0040 0.1613 0.0256 0.0212 0.0812 0.0731 0.2979 0.4735 0.1565
4 0.1081 0.0259 0.0374 0.0040 0.0815 0.0644 0.1230 0.0081 0.5098 0.2741 0.1909 0.1074
5 0.0411 0.1069 0.0230 0.0496 0.2092 0.0996 0.4325 0.0627 0.0109 0.8908 0.7366 0.4848
6 0.0523 0.1743 0.0114 0.0553 0.0844 0.2435 0.3974 0.1255 0.0347 0.0275 0.0159 0.0148
1 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0279 0.0100 0.0060 0.0040
2 0.0040 0.0020 0.0020 0.0020 0.0240 0.0020 0.0059 0.002 0.0466 0.0078 0.0431 0.0816

3 3 0.0040 0.0020 0.0020 0.0040 0.0050 0.0699 0.0311 0.0330 0.2040 0.2785 0.1209 0.0149
4 0.0350 0.0020 0.0020 0.0040 0.0301 0.0524 0.0408 0.0203 0.0398 0.1772 0.3245 0.0909
5 0.0078 0.0039 0.0417 0.0020 0.2434 0.1362 0.1434 0.0930 0.3154 0.1632 0.0586 0.3198
6 0.0016 0.1317 0.0200 0.0519 0.1294 0.3000 0.1199 0.2426 0.7205 0.4499 0.3004 0.2073
1 0.0020 0.0020 0.0020 0.0020 0.0040 0.0040 0.0020 0.0020 0.0118 0.0179 0.0020 0.0080
2 0.0020 0.0020 0.0020 0.0020 0.0298 0.0040 0.0040 0.0020 0.0758 0.0259 0.0233 0.0060

4 3 0.0059 0.0020 0.0020 0.0020 0.0169 0.0115 0.0059 0.0020 0.0807 0.1257 0.1195 0.0521
4 0.0040 0.0020 0.0060 0.0020 0.2052 0.0052 0.0337 0.0060 0.0097 0.1404 0.0598 0.1807
5 0.0134 0.0339 0.008 0.0040 0.2414 0.1490 0.0060 0.0039 0.0526 0.1218 0.2244 0.0197
6 0.0158 0.0436 0.0040 0.0080 0.1061 0.1506 0.0915 0.0239 0.2124 0.0938 0.3716 0.0768

3.1. Estimation
To obtain the MLEs of the parameters α1, · · · , αm and θ, we use the well-known profile

likelihood method; See, e.g., [5]. As in the previous section, the log-LF (1.7) is increasing
in αi, for 1 ≤ i ≤ m. Similar to Subsection 2.1, it is concluded that the unique MLEs of
α1, · · · , αm exist and given by

α̂i = Yi,(1), 1 ≤ i ≤ m. (3.1)

Upon substituting αi = Yi,(1), 1 ≤ i ≤ m, into Equation (1.7), the profile log-LF reads

lp (θ; y) :=
m∑

i=1

θni log yi,(1) +
ni∑

j=1
log

(
1

yθ
ij

− 1
(yij + 1)θ

)
=

m∑
i=1

θ

ni log yi,(1) −
ni∑

j=1
log yij

+
ni∑

j=1
log

1 −
(

yij

yij + 1

)θ
 . (3.2)

Now, we proceed with two cases.

Case I: All equal observations within classes. Suppose that

Yij = Yi,(1), 1 ≤ j ≤ ni, 1 ≤ i ≤ m. (3.3)

Therefore, the profile log-LF (3.2) simplifies to

lp (θ; y) =
m∑

i=1
ni log

1 −
(

yi,(1)
yi,(1) + 1

)θ
 .
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Obviously, lp (θ; y) is continuous for θ ∈ (0, ∞) and

l′p (θ; y) := ∂

∂θ
lp (θ; y) = −

m∑
i=1

ni ×

(
yi,(1)

yi,(1) + 1

)θ

log
(

yi,(1)
yi,(1) + 1

)

1 −
(

yi,(1)
yi,(1) + 1

)θ
> 0.

Therefore, lp (θ; y) is strictly increasing in θ. Hence, given Equation (3.3), the MLE of θ
does not exist.

Case II: Unequal observations within classes. In this case, we find the following
theorem.

Theorem 3.1. Assume that Equation (3.3) does not hold for at least one i, 1 ≤ i ≤ m.
Then, the unique MLE of θ, denoted by θ̂, exists and satisfies the following equation:

m∑
i=1

ni∑
j=1

log
(

yi,(1)
yij

)
=

m∑
i=1

ni∑
j=1

yθ̂
ij log

(
yij

yij + 1

)
(yij + 1)θ̂ − yθ̂

ij

. (3.4)

Proof. The profile log-LF (3.2) is continuous for θ ∈ (0, ∞). Also, for 1 ≤ i ≤ m, one can
see that ni log yi,(1) ≤

∑ni
j=1 log yij . Hence

lim
θ→0+

lp (θ; y) = −∞, lim
θ→∞

lp (θ; y) = −∞.

Therefore, lp (θ; y) has at least one global maximum point, i.e. θ̂ exists. Moreover, the
profile log-LF (3.2) concludes the following profile likelihood equation:

l′p (θ; y) =
m∑

i=1

ni log yi,(1) −
ni∑

j=1
log yij −

ni∑
j=1

(
yij

yij + 1

)θ

log
(

yij

yij + 1

)

1 −
(

yij

yij + 1

)θ

 = 0. (3.5)

Clearly, θ̂ is a solution for Equation (3.5). Equation (3.4) is derived from Equation
(3.5). Now, we prove that Equation (3.5) has a unique solution. To do this, note that

∂2

∂θ2 lp (θ; y) = −
m∑

i=1

ni∑
j=1

(
yij

yij + 1

)θ (
log

(
yij

yij + 1

))2

1 −
(

yij

yij + 1

)θ
2 < 0.

Therefore, the function l′p (θ; y) is strictly decreasing in θ. Since

lim
θ→0+

l′p (θ; y) = ∞, lim
θ→∞

l′p (θ; y) =
m∑

i=1

ni∑
j=1

log
(

yi,(1)
yij

)
< 0,

Equation (3.5) has exactly one solution which means that θ̂ is unique. �

Remark 3.2. If θ̂ exists, then an equi-tail 100(1 − γ)% CI for αi is given by Iθ̂ (αi; γ),
1 ≤ i ≤ m.
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3.2. Homogeneity testing
If α be the common value of αis under the null hypothesis H0 : α1 = · · · = αm, we saw

that the LF (1.6) simplifies to Equation (2.13). But, here θ > 0 is unknown. Similarly,
under the homogeneity hypothesis, one can see that α̂ = Y(1),(1). Also, as in Subsection
3.1 (Case I), if

Yij = Y(1),(1), 1 ≤ j ≤ ni, 1 ≤ i ≤ m, (3.6)
then the MLE of θ does not exist. Notice that, if Equation (3.6) holds, then there is no
reason to reject H0. Otherwise, the unique MLE of θ will be derived from the following
equation:

m∑
i=1

ni∑
j=1

log
(

y(1),(1)
yij

)
=

m∑
i=1

ni∑
j=1

yθ̂
ij log

(
yij

yij + 1

)
(yij + 1)θ̂ − (yij)θ̂

. (3.7)

So, we propose to test H0 : α1 = · · · = αm by following steps:
Step 1. Derive θ̂H0 from Equation (3.7);
Step 2. Given θ = θ̂H0 , use the procedure described in Subsection 2.2.

4. Numerical evaluation
In this section, three examples are given to illustrate the obtained results. In practice,
researchers can consider the following steps in dealing with a real problem.
Step 1. By procedures described in Subsection 3.1, estimate the parameters θ and αi,

1 ≤ i ≤ m.
Step 2. If θ̂ exists, then check the basic assumptions (1.3) and (1.4). For checking the

assumption (1.3), one my use a goodness of fit measure such as P-P plots, Pearson’s
chi-squared test and etc.
When θ̂ does not exist, if Equation (3.6) holds, then do not reject the homogeneity
hypothesis. Otherwise, the proposed method has no response.

Step 3. If the basic assumptions are approved, then by procedure described in Subsection
3.2 test the homogeneity hypothesis H0 : α1 = · · · αm.
When the basic assumptions are not approved, the proposed method has no re-
sponse.

First, we give two simulated example in which θ is known.

Example 4.1. By the statistical software R version 3.4.2, we generated 104 IID experi-
ments according to the following cases for three populations.

Population 1 Population 2 Population 3

Case-Design n1 Distribution n2 Distribution n3 Distribution
1-Balanced 5 DP (3, 1) 5 DP (1, 1) 5 DP (3, 1)
2-Balanced 5 DP (1, 1) 5 DP (1, 1) 5 DP (1, 1)
3-Unbalanced 3 DP (3, 1) 5 DP (1, 1) 8 DP (3, 1)
4-Unbalanced 3 DP (1, 1) 5 DP (1, 1) 8 DP (1, 1)

Descriptive statistics for α̂1, α̂2 and α̂3 have been reported in Table 3. Given θ = 1 and
according to the procedure described in Subsection 2.2, we tested H∗

0 : α1 = α2 = α3 = α∗

instead of H0 : α1 = α2 = α3, where α∗ is the observed value of α̂; See, Remark 2.7.
Therefore, at the significance level γ = 0.05, we derived the following test functions:
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Table 3. Descriptive statistics in Example 4.1.

Case Estimator Min. Median Mean Max. Bias Var.
α̂1 3 3 3.3897 24 0.3897 0.8981

1 α̂2 1 1 1.0359 6 0.0359 0.0478
α̂3 3 3 3.3832 20 0.3832 0.9202
α̂1 1 1 1.0395 8 0.0395 0.0557

2 α̂2 1 1 1.0376 6 0.0376 0.0490
α̂3 1 1 1.0368 8 0.0368 0.0519
α̂1 3 3 4.0713 51 1.0713 5.1097

3 α̂2 1 1 1.0388 6 0.0388 0.0513
α̂3 3 3 3.1324 12 0.1324 0.1925
α̂1 1 1 1.1892 16 0.1892 0.4114

4 α̂2 1 1 1.0390 5 0.0390 0.0521
α̂3 1 1 1.0055 4 0.0055 0.0063

Table 4. Estimated overall power and type I error for the proposed approach for
homogeneity testing in Example 4.1.

Case 1 2 3 4
Percentage 98.17 1.39 99.60 2.58

For balanced design:

If α̂ = 1 → φ∗ (y) =


1, Λ∗ < 0.0312
0.4118, Λ∗ = 0.0312
0, Λ∗ > 0.0312

If α̂ = 2 → φ∗ (y) =


1, Λ∗ < 0.0173
0.0996, Λ∗ = 0.0173
0, Λ∗ > 0.0173

If α̂ = 3 → φ∗ (y) =


1, Λ∗ < 0.0074
0.1362, Λ∗ = 0.0074
0, Λ∗ > 0.0074

If α̂ = 4 → φ∗ (y) =


1, Λ∗ < 0.0057
0.1490, Λ∗ = 0.0057
0, Λ∗ > 0.0057

For unbalanced design:

If α̂ = 1 → φ∗ (y) =


1, Λ∗ < 0.0312
0.4207, Λ∗ = 0.0312
0, Λ∗ > 0.0312

If α̂ = 2 → φ∗ (y) =


1, Λ∗ < 0.0116
0.0992, Λ∗ = 0.0116
0, Λ∗ > 0.0116

If α̂ = 3 → φ∗ (y) =


1, Λ∗ < 0.0080
0.0139, Λ∗ = 0.0080
0, Λ∗ > 0.0080

If α̂ = 4 → φ∗ (y) =


1, Λ∗ < 0.0058
0.0099, Λ∗ = 0.0058
0, Λ∗ > 0.0058

The overall power and type I error of the proposed approach for homogeneity testing
are reported in Table 4. According to the obtained results, the MLEs have positive bias
and the overall type I errors are less than the nominal level 0.05. Also, in view of power, the
proposed approach for homogeneity testing is powerful in both balanced and unbalanced
considered designs. These findings confirm the accuracy and precision of the proposed
method in Subsection 2.2. �

Example 4.2. In this example, we used statistical software R version 3.4.2 to study the
empirical coverage of the CI for the parameter α1 in Equation (2.12), as an illustration.
To do this, we let θ = 1 and investigated two different cases. In the first, n is fixed and m
varies while in the later n varies and m is fixed. Precisely, we consider the following cases:

Case A. In this case, we assumed that n is fixed, α ∈ {1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100} and
m ∈ {2, 3, 4, 5, 10, 20}. Then, we generated IID samples with size n = 10 for m
DP populations DP (α1, 1) , · · · , DP (αm, 1) where α1 = · · · = αm = α. Finally,



Discrete Pareto populations under a fixed effects model 541

Table 5. The empirical coverage of the proposed CI in Example 4.2 - Case A.

m
α 1 2 3 4 5 10 20 30 40 50 100

2 99.89 98.05 99.45 98.34 99.19 98.25 97.69 97.82 97.43 97.52 97.58
3 99.94 98.35 99.37 98.13 99.14 98.14 97.55 97.86 97.62 97.77 97.51
4 99.87 98.33 99.30 98.13 99.27 98.21 97.64 97.70 97.61 97.67 97.33
5 99.91 98.07 99.37 98.10 98.99 98.39 97.51 98.00 97.66 97.57 97.58
10 99.82 98.03 99.41 98.22 99.19 98.11 97.48 97.94 97.54 97.63 97.47
20 99.85 98.37 99.41 98.35 99.00 98.11 97.24 97.66 97.75 97.57 97.47
50 99.87 98.26 99.32 98.32 99.12 98.13 97.57 97.94 97.70 97.77 97.54

we calculated 95% CI for the parameter α1 from Equation (2.12). We iterated this
procedure 104 times. The empirical coverages of the CIs are given in Table 5.

Case B. In this case, we assumed that m is fixed and α ∈ {1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100}.
Then, we generated IID samples with size n ∈ {1, 2, 3, 4, 5, 10, 20, 50} for m = 5 DP
populations DP (α1, 1) , · · · , DP (αm, 1) where α1 = · · · = αm = α. Eventually,
we calculated 95% CI for the parameter α1 from Equation (2.12). We iterated this
procedure 104 times. The empirical coverages of the CIs are given in Table 6.

From Tables 5 and 6, the empirical coverage of the proposed CI is greater than the nominal
coverage 95% in both cases A and B. Therefore, the proposed CI in Equation (2.12) is
conservative. Also, for given m, the empirical coverages are usually increasing in n (sample
size) and decreasing in the underlying parameter α. �

Table 6. The empirical coverage of the proposed CI in Example 4.2 - Case B.

n
α 1 2 3 4 5 10 20 30 40 50 100

1 97.46 97.42 97.49 97.64 97.69 97.54 97.36 97.41 94.47 95.52 95.77
2 97.78 97.89 97.51 97.93 97.57 97.29 97.56 97.53 97.41 97.37 95.75
3 98.67 97.68 97.97 97.50 97.86 97.56 97.67 97.53 97.24 96.98 97.68
4 98.87 98.84 97.75 98.32 97.86 97.67 97.38 97.57 97.45 97.76 97.45
5 99.55 98.94 98.65 98.43 98.24 97.13 97.55 97.62 97.32 97.45 97.54
10 99.87 98.09 99.38 98.55 98.98 98.12 97.58 97.74 97.49 97.59 97.86
20 100.00 99.98 99.68 98.80 99.91 99.38 98.74 98.24 98.53 98.14 97.78
50 100.00 100.00 100.00 99.99 99.99 99.07 99.07 98.95 99.12 97.70 97.92

Example 4.3. Suppose that, the number of defective tires produced by three production
lines of a factory in the past seven days are as in Table 7. We want to answer the following
qustion: “Is there a significant difference among the minimum number of defective tires
produced by the production lines?" To do this, we applied the proposed model in Sections
2 and 3. Accordingly, Equation (3.1) concluded that

α̂1 = 5, α̂2 = 7, α̂3 = 5.

Therefore, the unique MLE of θ exists and derived from Equation (3.4) as θ̂ = 1.6068.
For checking the basic assumption (1.3), we used the P-P plots. Then, for the i-the
class, 1 ≤ i ≤ m, we drew the sample cumulative probabilities against the cumulative
probabilities of DP

(
α̂i, θ̂

)
. The obtained results are given in Figure 1. From Figure 1,

there is no reason to reject the basic assumption (1.3). So, we considered the procedure
described in Subsection 3.2. From Equation (3.7), we derived θ̂H0 = 1.3609. Therefore,
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Table 7. The number of defective tires produced by three production lines of a
factory.

Line
Day 1 2 3 4 5 6 7

Line 1 5 6 12 5 26 7 10
Line 2 14 9 9 32 11 7 21
Line 3 7 13 6 10 5 5 30

Figure 1. The P-P plots in Example 4.3.

Table 8. Findings of the Kruskal-Wallis test in Example 4.3.

Test statistic Degrees of freedom p-value
2.7315 2 0.2552

at the significance level γ = 0.05, we obtained the following test function for testing
H∗

0 : α1 = α2 = α3 = 5.

φ∗ (y) =


1, Λ∗ < 0.0114,

0.0877, Λ∗ = 0.0114,

0, Λ∗ > 0.0114.

Using this test function, the homogeneity hypothesis H∗
0 is accepted, since Λ∗ = 0.0405.

Hence, there is no significant difference among the minimum number of defective tires
produced by the production lines. For comparison, findings of the Kruskal-Wallis test are
also reported in Table 8. So, the final result of the proposed method is in accordance with
the result of the Kruskal-Wallis test. �

Example 4.4. McClave and Dietrich [13]: Studies conducted at the University of Mel-
bourne indicate that there may be a difference between the pain thresholds of blonds and
brunettes. Men and women of various ages were divided into four categories according to
hair color: light blond, dark blond, light brunette, and dark brunette. Each person in the
experiment was given a pain threshold score based on his or her performance in a pain
sensitivity test. Results of the experiment are as in Table 9. Here, we want to determine
whether the minimum of the pain threshold is equal among the four groups? To do this,
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Figure 2. The P-P plots in Example 4.4.

we employed the proposed method in the paper. So, we derived from Equation (3.1)

α̂1 = 48, α̂2 = 41, α̂3 = 37, α̂4 = 30.

Then, we concluded from Equation (3.4) that θ̂ = 5.0043. Similar to Example 4.3, we
used the P-P plots to examine the basic assumption (1.3). The obtained results are given
in Figure 2. From Figure 2 and without rigor, the basic assumption (1.3) is not violated.
Therefore, we considered the procedure described in Subsection 3.2. From Equation (3.7),
we derived θ̂H0 = 2.2223. Hence, for testing H∗

0 : α1 = α2 = α3 = α4 = 30 at the
significance level γ = 0.05, the proposed test function is derived as

φ∗ (y) =


1, Λ∗ < 0.0008,

0.0020, Λ∗ = 0.0008,

0, Λ∗ > 0.0008.

Finally, the homogeneity hypothesis H∗
0 is rejected, since Λ∗ = 2.5994 × 10−5. This means

that, the minimum of the pain threshold is different among the four groups. Moreover,
findings of the Kruskal-Wallis test are given in Table 10. Then, the obtained inference
from the proposed method is similar to the result of the Kruskal-Wallis test. �

Table 9. Pain thresholds of blonds and brunettes in Example 4.4.

Hair color The amount of pain
Light blond 62 60 71 55 48
Dark blond 63 57 52 41 43
Light brunette 42 50 41 37
Dark brunette 32 39 51 30 35

Table 10. Findings of the Kruskal-Wallis test in Example 4.4.

Test statistic Degrees of freedom p-value
10.5890 3 0.0142
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5. Conclusion
This paper dealt with the one-way classification analysis when the response variable fol-
lows the DP distribution. It is an alternative method for some cases in which the classical
models can not be used. The classical models such as one-way ANOVA and GLMs inves-
tigate the factor effects on a function of the response mean, while the proposed model in
this paper investigates the factor effects on the minimum bound parameter of the response
distribution. In the proposed model, one can also estimate the factor effects. However,
the well known Kruskal-Wallis test does not estimate the factor effects.
The derived results may be extended in some directions. For example, other discrete dis-
tributions such as discrete uniform and telescopic family of distributions are worth for
consideration. The general case

Yi1, · · · , Yini

IID∼ DP (αi, θi) , 1 ≤ i ≤ m.

and multivariate discrete responses are interesting. Extensions with random sample sizes
are also feasible. Moreover, a challenging problem in practice is to determine how to check
the basic assumptions of the model when the sample sizes are small.
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