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Abstract 

The sparse identification of nonlinear dynamics (SINDy), which is based on the sparse regression techniques to identify the nonlinear 

systems, is one of the recent data-driven model identification methods. The model equations of the system are extracted from the data. 

Although sufficient data is available from most of the engineering, healthcare, and economic sciences, there are few well-defined 

models to represent the system behaviour that can also be estimated from data-driven methods. With this motivation in mind, this 

study presents offline data-driven identification techniques to build the mathematical model of nonlinear systems. The data-based 

sparse identification of nonlinear systems is elaborated with a number of examples. The performance of the identification procedure is 

discussed in terms of quantitative metrics in the presence of noisy measurements.  
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Seyrek Tanılama Yöntemi ile Doğrusal Olmayan Dinamik Sistemlerin 

Model İncelenmesi 

Öz 

Doğrusal olmayan sistemleri tanımlamak için seyrek regresyon tekniklerine dayanan doğrusal olmayan dinamiklerin seyrek 

tanımlanması (SINDy) son yıllarda ortaya konan veriye dayalı model tanımlama yöntemlerinden biridir. Sistem tanılamada sistemin 

model denklemleri verilerden çıkarılır. Mühendislik, sağlık hizmetleri ve ekonomi bilimlerinin çoğundan yeterli veri mevcut olmasına 

rağmen, sistem davranışını temsil eden çok az sayıda iyi tanımlanmış model vardır. Sistemin davranışı, veriye dayalı yöntemlerden de 

tahmin edilebilir. Bu motivasyon göz önünde bulundurularak, bu çalışma doğrusal olmayan sistemlerin matematiksel modelini 

oluşturmak için çevrimdışı veri odaklı tanımlama tekniklerini ele alır. Doğrusal olmayan sistemlerin veriye dayalı seyrek 

tanımlanması bir dizi örnekle detaylandırılır. Tanımlama işleminin performansı, gürültülü ölçümlerin varlığında bir takım nicel 

ölçümler üzerinden tartışılır. 

Anahtar Kelimeler: Doğrusal Olmayan Sistemler, Seyrek Tanılama, Seyrek Regresyon, Model Keşfi, Sistem Tanılama.

                                                           
* Corresponding Author: Adana Alparslan Türkeş Science and Technology University, Faculty of Engineering, Departments of Electrical-Electronics 

Engineering, Adana, Turkey, ORCID: 0000-0001-9320-1140, nkadah@atu.edu.tr  

http://dergipark.gov.tr/ejosat


European Journal of Science and Technology 

 

e-ISSN: 2148-2683  255 

1. Introduction 

The mathematical modelling of the real systems, which comprise complex nonlinear dynamics, is a tedious task due to uncertain 

parameters, nonlinear components, as well as the time-varying nature of the system. Additionally, unlike linear systems, nonlinear 

equations do not have a specific definition, besides, there is no specific approach or universal methodology in mathematical solutions. 

Furthermore, closed-form expressions for the solutions of the linear systems are not possible to solve nonlinear systems. Therefore, 

system identification as well as model discovery are extremely important tasks in the control systems engineering framework.  

The advances in hardware and software have made it possible to make data-based predictions and modelling for highly complex 

real-systems. The investigation of system dynamics and model discovery using measured data has been very attractive research in 

mathematical physics and engineering. System identification enables modelling and design of high-performance systems. Thus, 

system identification and data-driven modelling have been developing rapidly in the last decades (Ljung, 2010), (Brunton & Kutz, 

2019), (Kaheman et al., 2020). Great research efforts have been devoted to developing the most efficient method.  

The identification strategies are defined as parametric or nonparametric with respect to control criteria and architecture 

limitations (Ayyad et al., 2020). Physical rules are paired with so-called white-box formulas in a conventional approach to achieving a 

system model. Alternatively, grey box models that have a fixed model structure may be used, but the selected model parameters are 

tuned by using measurement data (Fey et al., 2020).  

System identification is challenging for complex nonlinear systems (Brunton et al., 2016), (Ranković et al., 2012). There is no 

specific mathematical approach for the solution of nonlinear systems, which may exhibit chaotic behaviour (Lusch et al., 2018), 

(Kadah, 2019). However, a breakthrough was made in data analysis with the advancements in artificial intelligence and machine 

learning (Ayyad et al., 2020), (Brunton et al., 2016), (Zucatti et al., 2020). It is to be noted that data-based model discovery was first 

tried in the studies of Kepler and Newton. Both scientists explored the dynamic relationship between variables using data (Brunton et 

al., 2016), (Niall M. Mangan, Steven L. Brunton, Member, Joshua L. Proctor, 2016), (Cortiella et al., 2020). Recently, much faster and 

more effective methods are used for data-driven modelling by using methods such as machine learning, artificial neural networks, and 

deep learning. However, these methods require large datasets and time to characterize dynamics (Quade et al., 2018), (Callaham et al., 

2019).  

It should be pointed out that complex dynamics affect the systems, which may behave uniquely at different times (Champion et 

al., 2019). Therefore, it is crucial to model the system mathematically for controlling the nonlinear system dynamics. Towards this 

goal, data-based learning online and offline methods have been developed to model dynamical systems (Quade et al., 2018), 

(Maheshwari et al., 2018). Moreover, generating models and estimating system parameters from observed data can effectively be used 

for systems comprising complex and chaotic behaviour. It is the sparse identification method, which is widely used in the literature 

and one of the most effective methods to generate models from data (Cortiella et al., 2020), (Maheshwari et al., 2018), (Wen et al., 

2020). A few approaches exploit sparse approximations for system identification. However, all these methods are mainly based on 

sparse regression. 

In this work, an offline identification method is proposed to obtain the mathematical model of the system by making use of the 

data of the system dynamics. To do this, SINDy (Sparse Identification of Nonlinear Dynamics) algorithm, which is a recent invention 

for system identification, is used through the sparse regression method (Chu & Hayashibe, 2020), (Horrocks & Bauch, 2020). Also, 

the equations of dynamical systems can be identified via SINDy from measurement data. SINDy technique essentially is based on the 

notion of the Koopman operator and of sparsity (Fey et al., 2020). In this algorithm, a library containing the variation of linear or 

nonlinear candidate basis functions is created first. Secondly, the active terms of the coefficients vector are computed via sparse 

regression. Finally, the model is updated with active terms and the remaining terms are ignored depending on the regularization 

parameter using the sparse regression. This method has been used successfully by many researchers to diagnose different systems 

(Brunton & Kutz, 2019), (Bhadriraju et al., 2019), (Goharoodi et al., 2018). The scheme of data-driven modelling is depicted in Fig. 1. 

 

Fig. 1. The scheme of  SINDy 
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In this study, the dynamics of different systems are measured, and the models are estimated with the SINDy method. One of the 

major challenges in data-driven modelling via the SINDy method is undoubtedly noisy measurements. A number of problems can 

occur in the presence of noise. To mention a few, noise may cause erroneous parameter estimates (Cortiella et al., 2020). Further, the 

computing of the derivatives of the states will be big trouble, especially in data measurements. Thus, pre-processing methods such as 

noise filtering methods are suggested to reduce the effect of noise (Brunton & Kutz, 2019), (Chartrand, 2011), (H. Li et al., 2020).  

The contributions of this study are given as follows: Models of nonlinear systems are discovered by using SINDy method in the 

presence of noisy measurement data. The robustness of sparse regression is investigated through some applications on several 

benchmark systems. 

This paper is organized as follows: The theoretical background of the elaborated strategies is given in the second section. The 

sparse identification of nonlinear systems is also addressed in the second section. Different applications are highlighted in the third 

section. Finally, concluding remarks are given in the last section. 

2. Material and Method 

2.1. Theoritical Background 

In this section, the central notion of the algorithm is investigated theoretically. A commonly used model for the dynamical system 

is  

  
 

  
x

x x
d t

t f t
dt

                                                                                                                                            (1) 

f  is dynamic,  1 2   n

nx x x x   is state vector and the components of f  are sparse in a given function space. The discrete-

time dynamical system of eq. (1) is 

  1k k k kx F x x x                                                      (2) 

where kx  can be got by sampling the trajectory.  

 Discretization is the process of separating continuous functions and equations into discrete components in mathematic. This is 

referring to the discretization of features and variables in machine learning as well as statistics. 

 In this paper, Euler Step Method is used for discretization. Since the Euler step gives time step of t T . Hence, this structure 

gives a time map of the data. Numerically discretization would be used for a time map in the future. 

 Input is the state of the system at time t   

 Output is the state of the system at time t T  

The discrete-time F  is given by the flow map (Champion et al., 2019): 

     
 1k t

k k

k t

F x x f x d 

 



                                (3) 

m  step of time-series data is collected from eq. (1) and given as a data matrix X : 
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 donates transpose of the matrix and m  is the count of measurements. Similarly, the derivative of (4) yields by shifting the 

data 
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(5) 

 The central derivative method (6) can be used to compute the numerical derivative of a function f . In this paper, X will be 

generated by using the first-order central derivative method from the measured data. The first-order central derivative can be given as 

follows: 

  
   

2

f x x f x x
f x

x

  
 


(6)

2.1.1. Time-Delay Embedding 

It is significant to make measurements accurately, in data-driven modelling, control, and prediction. However, the measurement 

data may not contain all the dynamics of a system. Time-delay embedding method can be implemented to reconstruct the system from 

a sequence of observations of the state and an idea about the dynamics of the system can be obtained with this method (Brunton & 

Kutz, 2019), (Champion et al., 2019), (Brunton et al., 2017), (De Silva, Callaham, et al., 2020).  

The time-delay embedding method allows reconstructing data of dynamic systems. With this method, a one-dimensional data set 

is configured to be multi-dimensional. Thus, it is possible to enrich 𝑥(𝑡) measurement by using 𝑥(𝑡 − 𝜏), which are delay coordinates 

(Brunton et al., 2017), (Brunton & Nathan Kutz, 2019). This method does not reconstruct the properties or behaviour of the dynamic 

system, but only changes its structure in phase space. 

2.1.2. Hankel Matrix and Singular Value Decomposition 

Hankel matrix is the time-shift “ T ” of the previous rows. It is a time-delay embedding. So, the Hankel matrix H  can be 

generated from a time-series of measurement (Brunton & Kutz, 2019),  (Brunton et al., 2017), (Jain & Pachori, 2014), (Jain & 

Pachori, 2015). 
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(7)

Then dominant time-delay coordinates are found by taking SVD of Hankel Matrix. Moreover, the order of the system can be 

defined by the Hankel matrix rank and this order can be computed with the left-singular vector of SVD (Champion et al., 2019), 

(Brunton et al., 2017), (Lim et al., 1998). 


*H U V   (8)

where “*” denotes the conjugate transpose of the matrix. SVD, which is one of the most useful matrix decompositions, can be applied 

to any matrix in linear algebra (Ford, 2014). SVD allows us to decompose the matrix as the product of three matrices. U  and V   are 

the unitary or orthogonal matrices and   is a diagonal matrix. SVD is also a coordinate transformation or mapping strategy, thus it is 

not unique (Brunton & Kutz, 2019). 

2.2. Sparse Identification of Nonlinear Dynamics (SINDy) 

The performance of data-driven identification can reduce for strongly nonlinear and high dimensional systems. However, SINDy 

is a perfect method in the low-data limit (Quade et al., 2018), (Kaiser et al., 2018). SINDy method can discover mathematical 

equations of a system with the comparatively little data-set provided that calculates the derivative (Champion et al., 2019). 

This algorithm is mainly concerned with the dominant terms of the function and ignores the terms that low effect (Brunton et al., 

2017). Because the function f , which contains the dynamics of the system, is dominantly affected by only a few terms (De Silva, 

Higdon, et al., 2020).  
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SINDy that uses sparse regression to find coefficients from measured data.  Each of the constants is the coefficients of terms that 

affect system dynamics. Then, the mathematical model of the system is created by using dominant terms from the library that contains 

all candidate terms of a dynamic system. This library contains all possible combinations of terms (Niall M. Mangan, Steven L. 

Brunton, Member, Joshua L. Proctor, 2016), (Quade et al., 2018), (Champion et al., 2019), (Kaiser et al., 2018). 

Consider a library of possible nonlinear functions  X that may consist of polynomial terms, trigonometric functions or etc., 

(Corbetta, 2020), see Eq. (9). 

    2

|    |     |      |        |           |    

1         cos     

|    |     |      |        |           |   

a XX X X X X e

 
 

   
 
 

                                                                     (9)

Equation (9), the matrix  X  contains many columns and each of these columns represents one of the candidate nonlinear 

functions. The matrix of coefficient   has only a few active or dominant terms. The remaining terms are almost zero (Quade et al., 

2018), (Brunton & Kutz, 2019), (Brunton et al., 2017), (Rudy et al., 2017). 

 1 1

 |     |     |  

     

 |     |     |

m  

 
 

 
 
  

(10) 

2.3. Sparse Regression Method 

Most of the nonlinear systems may contain polynomial terms. However, only a few of these terms affect or represent system 

dynamics, while many are insignificant, therefore they can be removed. To calculate the subset of candidate terms of the system, 

sparse regression method like “least absolute shrinkage and selection operator (LASSO)”, ElasticNet, “least-square method (LSM)” 

and “sequential thresholded least-squares (STLSQ)” can be used. Unlike other methods, LASSO and STLSQ have noise elimination 

and improved robustness performance (Brunton & Kutz, 2019), (Brunton et al., 2017), (Rudy et al., 2017), (Kukreja et al., 2006), 

(Calafiore et al., 2015).  

"Minimum norm least-square", “Moore-Penrose Pseudoinverse methods” and “backslash” are also regression methods, which can 

be used for linear systems represented by Ax b . However, none of these methods has penalty parameters. Therefore they do not 

provide performance like LASSO or ElasticNet (Brunton & Kutz, 2019).  

LASSO, which is a widely used regression method for data-driven modelling, learns the linear relationship between a dependent 

variable and explanatory variables (Misra et al., 2020), (J. Li & Li, 2020). Besides, LASSO is used extensively for the model or 

feature selection and system identification in statistics, machine learning, and control theory (Brunton & Kutz, 2019), (Kukreja et al., 

2006), (Calafiore et al., 2015), (J. Li & Li, 2020). LASSO implements an 1  regularization term that can produce sparse coefficients. 

LASSO algorithm is expressed as 

 
2

2 1

1
min

2w
Xw Y w

n
                                                                                                                                       (11) 

where X  and Y represent the input and target vector; w  is sparse or coefficients vector and n  is the number of sample data. It is to 

be noted that LASSO requires the determination of a regularization term that penalizes the 1  norm, which is   for the penalty 

parameter. 1  norm forces particular elements to be exactly zero. As the value of   parameter decreases, the degree of sparsity 

decreases and consequently the error in the model decreases. Because, when the value of   rises more terms are ignored (Corbetta, 

2020), (Calafiore et al., 2015), (Misra et al., 2020), (Tibshirani, 1996). 

 Finally, the mathematical model of the dynamical system can be generated from (12) for continuous and discrete-time systems. 
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 1k k

X X t

X X

   

  
                                                                                                                                              (12) 

3. Results and Discussion  

The application of SINDy for nonlinear systems is discussed in this section. Two nonlinear systems namely, Rössler and Lotka-

Volterra equations are chosen for system identification applications. Suppose that in the first example, initially only one state is 

measured to calculate the number of states. However, suppose in the second step, all states are measured for both applications. All 

results and simulations are generated using MATLAB 2020a. 

3.1. Rössler Attractor System 

 In the first case study, predictions will be made about the behaviour of a system with limited measurements of the trajectory data. 

Also, in the case of full-state measurements, the equations of the model are identified correctly by SINDy. 

Rössler attractor equation is a very popular example of a nonlinear system. Consider Rössler system represented by three 

differential equations as follow: 



x y z

y x y

z z xz



 

   

  

   

(13) 

with the numerical parameters 0.4  , 2   and 4  .  

Firstly, Data will be collected from (13) only for one dimension  x  or variable for random initial conditions. Then using the 

time-delay embedding method, Hankel Matrix will be generated.  

Secondly, the SVD of the Hankel matrix can be calculated. The rank of this system can be obtained with SVD of the Hankel 

Matrix. The first three modes of the Hankel matrix are dominants as can be seen in Fig. 2. Thus, it can be truncated at three  , ,x y z .  

 

Fig. 2. Selection of dominant states of system 
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The type of functions, which can be used to represent the system, is obtained when the left-singular value matrix  U  created by 

SVD is examined. The system has nearly polynomial degrees for Rossler attractor. So, the time-delay embedding of Hankel Matrix 

produces the basis set of candidate functions. 

Time-delay embedding theorem reconstructed manifold produced from lags of a single variable. Each point in the three-

dimensional reconstruction can be thought of as a time segment with different points capturing a different segment of the history of 

variable x  and the reconstructed manifold is then the library or collection of the historical behaviour of lags. This method represents 

a one-to-one mapping between the original manifold and reconstruction, see Fig. 3. 

 

Fig. 3. Phase space mapping 

Vectors of all possible polynomial nonlinearities can be structured from data as in (14). Then regression is applied to find which 

linear combination of these nonlinearity terms represent x , y , and z . These three variables will actually be the state equations of 

the system. Because the arithmetic sequence of the term and coefficient of each state variable will be generated. 

 

 

 2

1 2 3

|   |    |   |    |    |   |    ....

    1            ....   

|   |    |   |    |    |   |    ....X

X

x y z x y z x xy xz   







 
 

     
 
 

                                                                                                        (14) 

 Finally, the coefficients of the dominant term are obtained with the SINDy algorithm. Basically, the equation of the nonlinear 

system is represented by (12).  

 The data of the library containing the system dynamics are calculated, but the dominant ones of these variables are used. To do 

this, three type regression model is used. In Fig. 4, the values of the polynomial terms, which are obtained by the regression method, 

are given. In addition, clearly active terms and coefficients can be seen from this figure.  

   

Fig. 4. Determined active terms of the library for Rössler system 
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Using SINDy with Minimum norm least-square, backslash and Moore-Penrose Pseudoinverse methods, it is determined that Eq. 

(15) of the system consists of three state variables.  



0.99

0.4

2 3.98

x y z

y x y

z z xz

   

  

   

(15) 

3.2. Lotka-Volterra System 

In this application, the system is identified by using SINDy when the system dynamics are measured full-state and noisy.  

Consider the Lotka-Volterre system in (16) with numerical parameters 2.5  , 0.1      and 1   .  1x t  and  2x t  are 

predator and prey population respectively. 

 

2 1 2 2

1 1 1 2x x x

x x x x

x 

 

  

  
                                                                                                                                              (16) 

Data matrices will be generated from (16) for both states with initial conditions  1 0 8x   and  2 0 3x  , and noisy 

measurement. Then, derivative matrices are created for both states by first-order central derivative method with the collected data. 

Then, candidate library of possible nonlinear terms can be structured from data as in (17).  

     1 2 1 2 1 2 1 1 2

 |    |      |     ....      |       ....

      .... sin  ....  

 |    |      |     ....      |       ....

x x x x x x x  

 
 

    
 
 

                                                                                                                    (17) 

 Finally, the LASSO regression is applited to find the linear combination of these nonlinearity terms represented by 1x  and 2x . 

These two variables will be the state equations of the system. Since, the arithmetic sequence of the term and coefficient of each state 

variable will be generated. Towards this goal, LASSO regression model is used and as a result, non-dominant terms are eliminated.   

 In Fig. 5, the coefficients of possible terms that represent the system are given. In addition, active terms can be easily recognized 

from this figure.  

 

Fig. 5. Determined terms of the library for Lotka-Volterra system 

As a result, using SINDy, it was determined that the equation (18) of the system consists of two state variables, and this is 

achieved despite being noisy data. 
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2 2 1 2

1 1 1 22.48 0.01

0.1 0.01

x x x x

x x x x

 

  






4. Conclusions and Recommendations 

This paper investigates the modelling of dynamical systems using SINDy method, with an emphasis on different regression 

methods. The modelling of nonlinear dynamical systems from data that is collected or measured from the system is a key insight for 

“System Identification”. SINDy method, which is based on sparse regression, performs quite satisfactory results for full-state 

measurements. However, the time-delay embedding method allows the designer to construct dynamic models in the presence of 

partial measurements. Also, this study has been verified in which Lasso regression can find the best coefficient vector. This makes the 

equation of the system simpler and easier to understand. 

This manuscript contributes to the behaviour of system variables, the system model, and methods to predict the system's future 

plots. It was also emphasized that the model of an unknown system can be easily obtained with measurements. Moreover, SINDy 

method can be easily integrated with areas such as controller design and model prediction. 
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