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NEAR APPROXIMATIONS IN VECTOR SPACES

H. TASBOZAN

Abstract. Near set theory is a concept that emerged from the comparison of
similarities between digital images. Another set theory, soft set, was obtained

by Molodstov[3]. The space where we obtain the near sets is the nearness

approximation space. Tasbozan [25] introduce the soft sets based on a near
approximation space. The group and ring structure of algebraic structures on

near sets are defined. In this article, the structure of vector spaces will be dis-

cussed with close approximations. First I defined a pair of near approximation
operators with respect to congruence based on a subspace, investigated near

subsets in the vector space and its basic properties. Then considered a near

soft set over a vector space has a properties of vector space defined lower and
upper near soft approximation operators in vector spaces.

1. Introduction

The rough set was created by pawlak with an equivalence relation on the univer-
sal set.[14, 15]. The remaining part of the equivalence classes in this equivalence re-
lation is defined as the upper approximation of the rough set and the part that does
not intersect with the lower approximation equivalence class is empty. The rough set
is expressed by a pair of these approximations. The concept of near set, which is a
more general form of the rough set, was built by pawlak[18, 17, 20, 21, 22, 23, 24, 19].
Accordingly, each rough set is a near set. In near sets, equivalence classes are given
directly using real-valued functions instead of tables from which equivalence classes
in rough sets are obtained. That’s less complicated than that. By trying to make
transitions between these theories, different sets have been obtained by studying the
theories together. Many studies have been done in the field of algebraic structure
as well as the studies in engineering field with these theories.

The concept of soft set, which is another different set theory, was found by
Molodstov[3] and studied by many authors[2, 4, 5]. This set theory has been highly
recognized in both theoretical and engineering. Feng and li[1] have obtained the
rough soft set by associating the concepts of rough set and soft set, and similarly,
Tasbozan[25] has obtained the near soft set builts up a connection between soft
set and near set. The algebraic side of the rough set has been studied by many
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scientists[7, 6, 26, 27, 10, 11, 13, 12, 8, 9] . Biswas and Nanda made the definition
of subgroup with the approximation and Kuroki[12] made the definition of sub-ring
with the approximation. Wang [8] studied some properties of the approximations for
normal subgroups. Among the algebraic studies in near sets, firstly, Bağırmaz[11]
gave near approximations on groups and davvas[6] gave near approximations on
rings which is another one. My goal in this article is to create some properties
of vector space on near approximation spaces. The notions of near subsets in the
vector space and near soft approximation operators in vector spaces are defined and
their basic properties are investigated.

2. Preliminary

2.1. Congruences and vector subspaces. A congruence relation δ defined on
the vector space V and the properties provided for a subspace W of this vector
space are known by [26, 27].

Proposition 1. Let W,W1,W2 be subspaces of V. Then for all α, β ∈ V,

(1) δW (α) + δW (β) = (α+W ) + (β +W ) = δW (α+ β)
(2) δW (kα) = (kα+W ) = kδW , 0 6= k ∈ K.
(3) δW1+W2

(α+ β) = δW1
(α) + δW2(β).

(4) δW1∩W2(α) = δW1(α) ∩ δW2(α).[27]

2.2. Near Sets.

Definition 2.1. Let (O, F,∼Br , Nr, vNr ) = NAS be an nearness approximation
space where O is a nonempty set of perceptual objects, F is a countable set of
probe functions and B ⊆ F. The sets

(1): Nr(B)∗X =
⋃

x:[x]Br⊆X

[x]Br
= {x ∈ O : [x]Br

⊆ X},

(2): Nr(B)∗X =
⋃

x:[x]Br∩X 6=∅

[x]Br. = {x ∈ O : [x]Br ∩X 6= ∅}

(3): BndNr(B)(X) = Nr(B)∗X�Nr(B)∗X = {x ∈ Nr(B)∗X : x /∈ Nr(B)∗X},
are called Nr(B)−lowerapproximationNr(B)∗X, Nr(B)−upperapproximation

Nr(B)∗X and boundary region of X in (O, F,∼Br
, Nr, vNr

), respectively. A set
X with an approximation boundary

∣∣BndNr(B)(X)
∣∣ ≥ 0 is a near set[25].

2.3. Soft Sets.

Definition 2.2. Let O be an objects set and F be a properties of objects in O and
P(O) is the set of all subsets of O . A pair (K,B) is called soft set over O if B ⊆ F
and K : B → P(O) [4].

2.4. Near Soft Sets.

Definition 2.3. Let NAS be a nearness approximation space and σ = (F,B) be a
soft set over O where O is a nonempty set of perceptual objects, F is a countable
set of probe functions and B ⊆ F. The sets N∗r (σ) = (F ∗, B), Nr∗(σ) = (F∗, B)
are called the upper and lower near approximation of σ = (F,B) in NAS.

(1): F∗(φ) = Nr∗(F (φ))=∪{x ∈ O : [x]Br ⊆ F (φ)} ,
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(2): F ∗(φ) = N∗r (F (φ))=∪{x ∈ O : [x]Br ∩ F (φ) 6= ∅} where all φ ∈ B.
: Then the soft set σ = (F,B) is called a near soft set and denotes NSS [25].

2.5. Near subsets of vector spaces. LetV be a vector space over K ,Z be a
subspace of V, and A a nonempty subset of V. δ is a congruence on V , δ = δZ
where Z = [0]δ. δZ is denote a congruence determined by a subspace Z .

The sets Nrδ∗(A) = {α ∈ V : δ(α) ⊆ A} and Nrδ
∗(A) = {α ∈ V : δ(α) ∩A 6= ∅}

are called δ − lower and δ − upper near approximations of a set A with respect to
congruence relation δ, respectively. If BndNrδ(A) = N∗r δ(A)�Nr∗δ(A) ≥ 0, A is
called a near set in vector space.

Definition 2.4. Let Z be a subspace of vector space V, and A ⊆ V. δ = δZ where
Z = [0]δ and δ(α) = δZ(α) = α + Z for any α ∈ V. Then δr = δZr = α + Zr
= [α]Zr

The sets

Nr∗(Z)(A) = {α ∈ V : α+ Z = [α]Zr ⊆ A}
Nr
∗(Z)(A) = {α ∈ V : [α]Zr ∩A 6= ∅}

are called the lower and upper near approximations of a set A with respect to
subspace Z respectively. (V,Z) is called a near approximation space.

Example 2.5. Let V = Z12 be a vector space on K. Where K = {0, 1} is two
elements field. Z1 = {0, 6}, Z2 = {0, 4, 8} is a subspace of V. A = {0, 2, 3, 6, 8, 9, 10}.
Then

For r = 1 , δr = δZr = α+ Zr = [α]Zr
, δ1 = {[α]Z1

, [α]Z2
},

δZ1
= α+ Z1 = [α]Z1

, [0]Z1
= {0, 6}, [1]Z1

= {1, 7},
[2]Z1

= {2, 8}, [3]Z1
= {3, 9}, [4]Z1

= {4, 10}, [5]Z1
= {5, 11}

δZ2 = α+ Z2 = [α]Z2 , [0]Z2 = {0, 4, 8}, [1]Z2 = {1, 5, 9},
[2]Z2 = {2, 6, 10}, [3]Z2 = {3, 7, 11}

N1∗(Z)(A) = {α ∈ V : α+ Z = [α]Zr
⊆ A} = {0, 3, 6, 8, 9}, N1

∗(Z)(A) = {α ∈
V : [α]Zr

∩A 6= ∅} = Z12, BndN1(Z)(A) = Z12�{0, 3, 6, 9} ≥ 0.
for r = 2 , δr = δZr = α + Zr = [α]Zr , δ2 = {[α]{Z1,Z2}}, {Z1, Z2} =

{0, 4, 6, 8}

δ{Z1,Z2} = α+ ({Z1, Z2}) = [α]{Z1,Z2} , [0]Z1
= {0, 4, 6, 8},

[1]{Z1,Z2} = {1, 5, 7, 9}, [2]{Z1,Z2} = {2, 6, 8, 10}, [3]{Z1,Z2} = {3, 7, 9, 11},

N2∗(Z)(A) = {α ∈ V : α + Z = [α]Zr ⊆ A} = {2, 6, 8, 10}, N1
∗(Z)(A) =

{α ∈ V : [α]Zr ∩ A 6= ∅} = Z12, BndN1(Z)(A) = Z12�{2, 6, 8, 10} ≥ 0. Then A
becomes a near set in vector space.

Theorem 2.6. Let Z be a subspace of V, A and B nonempty subsets of V. Then

(1) Nr∗(Z)(A) ⊆ A ⊆ Nr∗(Z)(A)
(2) Nr∗(Z)(A ∩B) = Nr∗(Z)(A) ∩Nr∗(Z)(B)
(3) N∗r (Z)(A ∪B) = Nr

∗(Z)(A) ∪Nr∗(Z)(B)
(4) Nr∗(Z)(A ∪B) ⊇ Nr∗(Z)(A) ∪Nr∗(Z)(B)
(5) N∗r (Z)(A ∩B) = N∗r (Z)(A) ∩N∗r (Z)(B)
(6) A ⊆ B thenNr∗(Z)(A) ⊆ Nr∗(Z)(B), N∗r (Z)(A) ⊆ Nr∗(Z)(B).
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Example 2.7. Let V = Z12 be a vector space on K. Where K = {0, 1} is two ele-
ments field. Z1 = {0, 6}, Z2 = {0, 4, 8} is a subspace of V. A = {0, 2, 3, 6, 8, 9, 10}, .B =
{1, 5, 7, 9} Then

For r = 1 , δr = δZr = α+ Zr = [α]Zr , δ1 = {[α]Z1 , [α]Z2},
δZ1

= α+ Z1 = [α]Z1
, [0]Z1

= {0, 6}, [1]Z1
= {1, 7},

[2]Z1
= {2, 8}, [3]Z1

= {3, 9}, [4]Z1
= {4, 10}, [5]Z1

= {5, 11}
δZ2 = α+ Z2 = [α]Z2 , [0]Z2 = {0, 4, 8}, [1]Z2 = {1, 5, 9},

[2]Z2 = {2, 6, 10}, [3]Z2 = {3, 7, 11}
N1∗(Z)(A) = {α ∈ V : α + Z = [α]Zr

⊆ A} = {0, 3, 6, 8, 9}, N1∗(Z)(B) = {1, 7}
N1
∗(Z)(A) = {α ∈ V : [α]Zr

∩ B 6= ∅} = Z12, N1
∗(Z)(B) = {1, 3, 5, 7, 9, 11}

BndN1(Z)(A) = Z12�{0, 3, 6, 9} ≥ 0. BndN1(Z)(B) = {1, 3, 5, 7, 9, 11}�{1, 7} ≥
0.

for r = 2 , δr = δZr = α + Zr = [α]Zr , δ2 = {[α]{Z1,Z2}}, {Z1, Z2} =
{0, 4, 6, 8}
δ{Z1,Z2} = α+ ({Z1, Z2}) = [α]{Z1,Z2} , [0]Z1 = {0, 4, 6, 8}, [1]{Z1,Z2} = {1, 5, 7, 9},

[2]{Z1,Z2} = {2, 6, 8, 10}, [3]Z1
= {3, 7, 9, 11},

N2∗(Z)(A) = {α ∈ V : α + Z = [α]Zr ⊆ A} = {2, 6, 8, 10}, N1
∗(Z)(A) = {α ∈

V : [α]Zr ∩ A 6= ∅} = Z12, BndN1(Z)(A) = Z12�{2, 6, 8, 10} ≥ 0. N2∗(Z)(B) =
{α ∈ V : α+ Z = [α]Zr

⊆ B} = {1, 5, 7, 9}, N1
∗(Z)(B) = {α ∈ V : [α]Zr

∩B 6=
∅} = {1, 5, 7, 9}, BndN1(Z)(B) = ∅ ≥ 0.Then A,B is a NSS in vector space.
Then the following statements are true;

(1) Nr∗(Z)(A) ⊆ A ⊆ Nr∗(Z)(A) , {0, 3, 6, 8, 9} ⊆ {0, 2, 3, 6, 8, 9, 10} ⊆ Z12

(2) Nr∗(Z)(A ∩B) = Nr∗(Z)(A) ∩Nr∗(Z)(B) = ∅
(3) N∗r (Z)(A ∪B) = Nr

∗(Z)(A) ∪Nr∗(Z)(B) = Z12

(4) Nr∗(Z)(A ∪B) ⊇ Nr∗(Z)(A) ∪Nr∗(Z)(B) = {0, 1, 3, 6, 7, 8, 9}
(5) N∗r (Z)(A ∩B) = N∗r (Z)(A) ∩N∗r (Z)(B) = {1, 3, 5, 7, 9, 11}

Theorem 2.8. Let Z be a subspace of V, A and B nonempty subspaces of V.Then

(1) N∗r (Z)(A+B) = Nr
∗(Z)(A) ∪Nr∗(Z)(B)

(2) Nr∗(Z)(A+B) ⊇ Nr∗(Z)(A) +Nr∗(Z)(B)
(3) N∗r (Z)(kA) = kNr

∗(Z)(A) for any 0 6= k ∈ K
(4) Nr∗(Z)(kA) = kNr∗(Z)(A)for any 0 6= k ∈ K.

Theorem 2.9. Let Z and W be a subspace of V, A and B nonempty subspaces of
V.Then

(1) Nr∗(Z ∩W )(A) ⊇ Nr∗(Z)(A) ∪Nr∗(W )(A)
(2) N∗r (Z ∩W )(A) ⊆ N∗r (Z)(A) ∩N∗r (W )(A)
(3) N∗r (Z +W )(A+B) = Nr

∗(Z)(A) +Nr
∗(W )(B)

(4) Nr∗(Z +W )(A+B) ⊇ Nr∗(Z)(A) +Nr∗(W )(B)
(5) Z ⊆W ⇒ Nr∗(Z)(A) ⊆ Nr∗(Z)(A) and Nr∗(Z)(A) ⊆ Nr∗(W )(A).

2.6. Near soft approximations in vector spaces. Let σ = (F,B) be a NSS, O
be a vector space over a field K and B be the parameter set. Let σ1 = (F1, B), σ2 =
(F2, B), ..., σn = (Fn, B) be n NSS in (O, B).Then (F,B) = σ1 + σ2 + ... + σn is
a NSS over (O, B) and is defined as F (φ) = {x1 + x2 + ... + xn : xi ∈ Fi(φ), i =
1, 2, ..., n} for each φ ∈ B. Let α ∈ K be any scalar and σ = (F,B) be a NSS over
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(O, B), then αF is a NSS over (O, B) and is defined as follows:α(F,B) = (G,B),
G(φ) = {αx : x ∈ F (φ)}for each φ ∈ B.

Definition 2.10. Let σ = (F,B) be a NSS overO in NAS andO be a vector space
over a field K and B be the parameter set. If (F,B) = σ1 + σ2 + ...+ σn is a NSS
over (O, B) and is defined as F (φ) = {x1 + x2 + ...+ xn : xi ∈ Fi(φ), i = 1, 2, ..., n}
for each φ ∈ B and α ∈ K be any scalar,αF is a NSS over (O, B) and is defined
as follows:α(F,B) = (G,B), G(φ) = {αx : x ∈ F (φ)}for each φ ∈ B . Then N∗r (σ),
Nr∗(σ) are called the upper and lower near soft approximation operators in vector
spaces, respectively and (F,B) called as near soft vector space.

Example 2.11. Let O =Z12 be a vector space over a field K and B = {φ1, φ2} ⊆
F = {φ1, φ2} be a set of functions. φ1 = {0, 4, 8}, φ2 = {0, 6} Let σ1 = (F1, B), σ2 =
(F2, B) be near soft sets in (O, B). (F,B) = {σ1, σ2} = {(F1, B), (F2, B)}

Let σ1 = (F1, B), B = {φ1, φ2} be a soft set defined by

(2.1) F1(φ1) = {0, 4}, F1(φ2) = {0, 6, 8}
. for r = 1, (F1, B) is a NSS;

[0]φ1 = {0, 4, 8}, [1]φ1 = {1, 5, 9}, [2]φ1 = {2, 6, 10}, [3]φ1 = {3, 7, 11}
[0]φ2 = {0, 6}, [1]φ2 = {1, 7}, [2]φ2 = {2, 8}, [3]φ2 = {3, 9}, [4]φ2 = {4, 10}, [5]φ2 = {5, 11}

(2.2) N1∗(σ1) = N1∗(F1(φ), B) = (N1∗F1(φ), B) = (F1∗(φ), B)

for φ2 ∈ B , N1∗(σ) = (F1∗(φ2), B) = {(φ2, {0, 6})}

(2.3) N∗1 (σ1) = (F ∗1 (φ), B)

for φ1, φ2 ∈ B , N∗1 (σ) = {(φ1, {0, 4, 8}), (φ2, {0, 2, 6, 8})}
BndN (σ) ≥ 0 ,then (F1, B) is a NSS.
r = 2, (F1, B) is a NSS;

[0]φ1,φ2
= {0},

[1]φ1,φ2
= {1}, ...

[11]φ1,φ2 = {11}

N2∗(σ1) = {(φ1, {0, 4}), (φ2, {0, 6, 8})}
N∗2 (σ1) = {(φ1, {0, 4}), (φ2, {0, 6, 8})}

BndN (σ) ≥ 0 , then σ1 = (F1, B) is a NSS.
Let σ2 = (F2, B), B = {φ1, φ2} be a soft set defined by

(2.4) F2(φ1) = {0, 8}, F2(φ2) = {1, 2, 7}
. for r = 1, (F2, B) is a NSS ;

(2.5) N1∗(σ2) = N1∗(F2(φ), B) = (N1∗F2(φ), B) = (F2∗(φ), B)

for φ2 ∈ B , N1∗(σ2) = (F2∗(φ2), B) = {(φ2, {1, 7})}

(2.6) N∗1 (σ2) = (F ∗2 (φ), B)
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for φ1, φ2 ∈ B , N∗1 (σ2) = {(φ1, {0, 4, 8}), (φ2, {1, 2, 7, 8})}
BndN (σ) ≥ 0, therefore (F2, B) is a NSS.
Lets see if (F,B) is a near soft vector space.

*: (F,B) = σ1 + σ2 = (F1, B) + (F2, B) = {(φ1, {0, 4}), (φ2, {0, 6, 8})} ∪
{(φ1, {0, 8}), (φ2, {1, 2, 7})} = {(φ1, {0, 4, 8}), (φ2, {1, 2, 6, 7, 8})} is a NSS.

N1∗(F,B) = {(φ1, {0, 4, 8}), (φ2, {1, 2, 6, 7, 8})} = N∗1 (F,B), BndN (F,B) ≥ 0

*: α = 2 ∈ Z be any scalar and σ1 = (F1, B) is a NSS. Then

ασ1 = α(F1, B) = (G,B) = 2.{(φ1, {0, 4}), (φ2, {0, 6, 8})} = {(φ1, {0, 8}), (φ2, {0, 4})}

N1∗(G,B) = ∅ therefore (G,B) is not a NSS. Because of this σ = (F,B)
is not a near soft vector space .

Definition 2.12. Let O be a vector space over a field K and B be a parameter
set. Let σ = (F,B) be a NSS over O. Then G is said to be a near soft vector
space(denotes NSV S) or a near soft linear space of O over K, if G(φ) is a vector
subspace of O, for each φ ∈ B.

Definition 2.13. Let σ = (F,B) be a NSV S of O over K and BndN (F,B) ≥ 0.

i) (F,B) is said to be null NSV S if F (φ) = {ϕ} ,for each φ ∈ B where ϕ is null
element of O.

ii) (F,B) is said to be absolute NSV S if F (φ) = O,for each φ ∈ B.

Definition 2.14. Let σ = (F,B) be a NSV S of O over K.Let σ = (G,B) be a
NSS over (O, B). Then (G,B) is said to be a NSV S of (F,B) if it satistified the
following conditions;

i) for each φ ∈ B, G(φ) is a vector subspace of O over K.
ii) F (φ) ⊇ G(φ) for each φ ∈ B.

3. Conclusions

In this study, we introduce near subsets in the vector space and near soft ap-
proximation operators in vector spaces. Based on the relationships between the
congruences and vector subspaces of a vector space, I have given the definition
of the lower approximations in the near approximation spaces based on a vector
subspace of a subset of the vector space. I think the near soft vector spaces given
here will be useful in theory as well as applications of near sets and soft sets. I will
try to obtain different results and findings regarding these concepts in my future
studies.
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[10] N. Bağırmaz, A. F. Özcan, Rough semigroups on approximation spaces, International Journal
of Algebra, Vol. 9, 2015, no. 7, 339-350.
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