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Abstract
In this paper, we introduce a new subclass of analytic bi-univalent functions defined by
using q-derivative operator. Further, we obtain both some initial and general coefficient
bounds, and also Fekete-Szegö inequalities for bi-univalent functions that belong to this
class. Our results extend and improve some known results as special cases.
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1. Introduction and definitions
Let A denote the class of functions of the form

f(z) = z +
∞∑

n=2
anz

n (1.1)

which are analytic in the open unit disk D = {z ∈ C : |z| < 1} . Let P(β) be the class of
analytic functions satisfying the condition ℜh(z) > β in D with h(0) = 1.

Definition 1.1 ([15]). Let Pm(β) denote the class of analytic functions h(z) in D, satis-
fying the properties h(0) = 1 and∫ 2π

0

∣∣∣∣ℜh(z) − β

1 − β

∣∣∣∣ dθ ≤ mπ, (1.2)

where z = reiθ, m ≥ 2 and 0 ≤ β < 1.

For m = 2, P2(β) = P(β). When β = 0, Pm(β) reduces to the class Pm(0) = Pm defined
by Pinchuk [16]. Also we get the well known class P2(0) = P of Carathéodory functions.
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Definition 1.2 ([12, 13]). For 0 < q < 1, the q-derivative operator Dqf of a function
f ∈ A given by (1.1) is defined by

Dqf (z) =


f(z)−f(qz)

(1−q)z , z ̸= 0,

f ′ (0) , z = 0,
(1.3)

provided f ′ (0) exists.

We note from Definition 1.2 that

lim
q→1−

Dqf (z) = lim
q→1−

f (z) − f (qz)
(1 − q) z

= f ′(z)

for a function f , which is differentiable in D. It is deduced from (1.1) and (1.3) that

Dqf (z) = 1 +
∞∑

n=2
[n]q anz

n−1, (1.4)

where
[n]q = 1 − qn

1 − q
.

We also note that [n]q → n as q → 1−.
Let S denote the subclass of A consisting of univalent functions in D. The Koebe one-

quarter theorem [7] ensures that the image of D under every univalent function f ∈ S
contains the disk with center in the origin and radius 1/4. Thus, every univalent function
f ∈ S has an inverse f−1 : f(D) → D, satisfying

f−1(f(z)) = z (z ∈ D)

and
f
(
f−1(w)

)
= w

(
|w| < r0(f); r0(f) ≥ 1

4

)
.

The inverse function g = f−1 is given by

g(w) = f−1(w)
= w − a2w

2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + · · ·

= w +
∞∑

n=2
Anw

n. (1.5)

A function f ∈ A is said to be bi-univalent in D if both f and f−1 are univalent in D,
supposing that D ⊆ f(D), and we denote the class of bi-univalent functions by Σ.

Using the Faber polynomial expansion [8] of functions f ∈ Σ, the coefficients of its
inverse map g = f−1 may be expressed [3] as follows:

g(w) = f−1(w) = w +
∞∑

n=2

1
n
K−n

n−1 (a2, a3..., an)wn, (1.6)

where

K−n
n−1 = (−n)!

(−2n+ 1)!(n− 1)!
an−1

2 + (−n)!
(2(−n+ 1))!(n− 3)!

an−3
2 a3

+ (−n)!
(−2n+ 3)!(n− 4)!

an−4
2 a4 + (−n)!

(2(−n+ 2))!(n− 5)!
an−5

2 [a5 + (−n+ 2)a2
3]

+ (−n)!
(−2n+ 5)!(n− 6)!

an−6
2 [a6 + (−2n+ 5)a3a4] +

∑
j≥7

an−j
2 Vj ,
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such that Vj with 7 ≤ j ≤ n is a homogeneous polynomial in the variables a2, a3, ..., an.
In particular, the first three terms of K−n

n−1 are

K−2
1 = −2a2, K−3

2 = 3
(
2a2

2 − a3
)
, K−4

3 = −4(5a3
2 − 5a2a3 + a4).

In general, an expansion of Kp
n−1 is given ([1], [17]) by

Kp
n−1 (a2, a3..., an)

= pan + p!
(p− 2)!2!

D2
n−1 + p!

(p− 3)!3!
D3

n−1 + ....+ p!
(p− n+ 1)! (n− 1) !

Dn−1
n−1,

(1.7)

where Dp
n−1 = Dp

n−1 (a2, a3..., an) (for details, see [18]). We also have ([1], [17])

Dl
n−1 (a2, a3..., an) =

∞∑
n=1

l!
µ1! · · ·µn−1!

aµ1
2 · · · aµn−1

n ,

and the sum is taken over all non-negative integers µ1, . . . , µn−1 satisfying{
µ1 + µ2 + · · · + µn−1 = l,
µ1 + 2µ2 + · · · + (n− 1)µn−1 = n− 1.

It is clear that Dn−1
n−1(a2, ..., an) = an−1

2 [3].
Lewin [14] investigated the class Σ of bi-univalent functions and obtained the bound for

the second coefficient. Brannan and Taha [6] considered certain subclasses of bi-univalent
functions, similar to the familiar subclasses of univalent functions consisting of strongly
starlike, starlike and convex functions. They introduced the classes of bi-starlike functions
and bi-convex functions, and obtained estimates on the initial coefficients. Recently, Ali
et al. [4], Srivastava et al. [19], Frasin and Aouf [9], Goyal and Goswami [10], Aljouiee and
Goswami [5] and many others have introduced and investigated subclasses of bi-univalent
functions and investigated bounds for the initial coefficients.

In the light of this definitions, the purpose of this paper is to define a new subclass of
analytic bi-univalent functions by means of the q-derivative and to obtain both initial and
general coefficient bounds for functions belonging to this new class. We also investigate
Fekete-Szegö problem.

Definition 1.3. For p ∈ N = {1, 2, . . .} , m ≥ 2, 0 ≤ β < 1, 0 < q < 1, a function f ∈ Σ
given by (1.1) is said to be in the class Hp

Σ(q;m;β), if the following conditions are satisfied:
(Dqf(z))p ∈ Pm(β) (z ∈ D) (1.8)

and
(Dqg(w))p ∈ Pm(β) (w ∈ D) (1.9)

where g = f−1 is defined by (1.5) .

Remark 1.4. As a special case to Definition 1.3, by setting p = 1 we have a new subclass
H1

Σ(q;m;β) =: HΣ(q;m;β) of analytic bi-univalent functions which consist of functions
f ∈ Σ satisfying

Dqf(z) ∈ Pm(β) (z ∈ D)
and

Dqg(w) ∈ Pm(β) (w ∈ D)
where g = f−1 is defined by (1.5) .

Remark 1.5. (i) For q → 1−, Hp
Σ(q;m;β) is the class BRp

Σ(m;β) introduced by
Aljouiee and Goswami [5].

(ii) For m = 2 and q → 1−, Hp
Σ(q;m;β) is the class introduced by Jahangiri et al. [11].

(iii) For p = 1, m = 2 and q → 1−, Hp
Σ(q;m;β) is the class introduced by Srivastava

et al. [19].
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2. Coefficient bounds
Throughout this paper, we suppose that

m ≥ 2, 0 ≤ β < 1, 0 < q < 1, p ∈ N.

In this section, we investigate the bounds of coefficients of Taylor-Maclaurin series
expansion for functions f ∈ Hp

Σ(q;m;β). Firstly, by means of Faber polynomial expansion,
we will obtain general coefficient bounds (Theorem 2.3 below), and then we will get initial
coefficient bounds (Theorem 2.6 below).

In order to prove our main results, we need the following lemmas.

Lemma 2.1 ([16]). Let the function Φ given by Φ(z) = 1 +
∞∑

n=1
hnz

n be convex in D. If

Φ(z) ∈ Pm, then
|hn| ≤ m (n ∈ N).

Lemma 2.2 ([2]). If ϕ(z) = 1 +
∞∑

n=1
ϕnz

n is an analytic function in D, then

(ϕ(z))p = 1 +
∞∑

n=1
Kp

n (ϕ1, ϕ2, · · · , ϕn) zn. (2.1)

Theorem 2.3. Let the function f ∈ Hp
Σ(q;m;β) be given by (1.1). If ak = 0 for 2 ≤ k ≤

n− 1, then we have

|an| ≤ m(1 − β)
p [n]q

(n ≥ 3) . (2.2)

Proof. Since f is of the form (1.1), then by (1.4) and Lemma 2.2, we obtain

(Dqf(z))p = 1 +
∞∑

n=1
Kp

n (ã1, ã2, ..., ãn) zn, ãn = [n+ 1]q an+1. (2.3)

Similarly, for g = f−1 given by (1.5) and (1.6), we have

Dqg(w) = 1 +
∞∑

n=2

[n]q
n

K−n
n−1(a2, a3, · · · , an)wn−1 =: 1 +

∞∑
n=1

Ãnw
n. (2.4)

Consequently, by Lemma 2.2, we get

(Dqg(w))p = 1 +
∞∑

n=1
Kp

n(Ã1, Ã2, · · · , Ãn)wn, Ãn =
[n+ 1]q
n+ 1

K−(n+1)
n (a2, a3, · · · , an+1).

(2.5)
Now from the Definition 1.3, there exists two functions

ψ(z) = 1 + c1z + c2z
2 + · · · ∈ Pm

and
φ(w) = 1 + d1w + d2w

2 + · · · ∈ Pm

such that

(Dqf(z))p = β + (1 − β)ψ(z) = 1 + (1 − β) c1z + (1 − β) c2z
2 + · · · (2.6)

and

(Dqg(w))p = β + (1 − β)φ(w) = 1 + (1 − β) d1w + (1 − β) d2w
2 + · · · , (2.7)

respectively. Now comparing the coefficients of equations (2.3) and (2.6), it gives

Kp
n (ã1, ã2, ..., ãn) = (1 − β) cn, ãn = [n+ 1]q an+1 (2.8)
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for all n. Similarly, from (2.5) with (2.7), we get

Kp
n(Ã1, Ã2, ..., Ãn) = (1 − β) dn, Ãn =

[n+ 1]q
n+ 1

K−(n+1)
n (a2, a3, ..., an+1) (2.9)

for all n. If ak = 0 for 2 ≤ k ≤ n − 1, then combining the equations (2.8) and (2.9) and
using relation (1.7), it yields

p[n]q an = (1 − β) cn−1,

−p[n]q an = (1 − β) dn−1.

By taking absolute value both sides on above equations and using Lemma 2.1, we get

|an| ≤ (1 − β) |cn−1|
p [n]q

= (1 − β) |dn−1|
p [n]q

≤ m(1 − β)
p [n]q

(n ≥ 3) .

□

Remark 2.4. (i) If we take q → 1− in Theorem 2.3, we get the result obtained by
Aljouiee and Goswami [5, Theorem 4].

(ii) If we take q → 1− and m = 2 in Theorem 2.3, we get the result obtained by
Jahagiri et al. [11, Theorem 2.1].

Letting p = 1 in Theorem 2.3, we get the following consequence.

Corollary 2.5. Let the function f ∈ HΣ(q;m;β) be given by (1.1). If ak = 0 for 2 ≤ k ≤
n− 1, then we have

|an| ≤ m(1 − β)
[n]q

(n ≥ 3) .

If we relax the condition ak = 0 in Theorem 2.3, then we have following theorem.

Theorem 2.6. Let the function f ∈ Hp
Σ(q;m;β) be given by (1.1). Then

|a2| ≤



√
2m(1−β)

p(p−1)[2]2q+2p[3]q
, 0 ≤ β ≤ 1 − 2p[2]2q

m((p−1)[2]2q+2[3]q)
,

m(1−β)
p[2]q

, 1 − 2p[2]2q
m((p−1)[2]2q+2[3]q)

≤ β < 1,

(2.10)

|a3| ≤


2m(1−β)

p(p−1)[2]2q+2p[3]q
+ m(1−β)

p[3]q
, 0 ≤ β ≤ 1 − 2p[2]2q

m((p−1)[2]2q+2[3]q)
,

m2(1−β)2

p2[2]2q
+ m(1−β)

p[3]q
, 1 − 2p[2]2q

m((p−1)[2]2q+2[3]q)
≤ β < 1,

(2.11)

and ∣∣∣a3 − a2
2

∣∣∣ ≤ m(1 − β)
p [3]q

. (2.12)

Proof. Since f ∈ Hp
Σ(q;m;β), from (2.3) with (2.8) , and (2.5) with (2.9), we have

p[2]qa2 = (1 − β)c1 (2.13)

and
−p[2]qa2 = (1 − β)d1, (2.14)

respectively. Taking absolute value in both equations and using Lemma 2.1, it gives

|a2| ≤ m(1 − β)
p[2]q

.
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On the other hand, from equations (2.8), (2.9) and (1.7), it follows that
p(p− 1)

2
[2]2qa

2
2 + p[3]q a3 = (1 − β)c2 (2.15)

and (
p(p− 1)

2
[2]2q + 2p [3]q

)
a2

2 − p[3]q a3 = (1 − β)d2. (2.16)

Adding (2.15) to (2.16), we obtain

a2
2 = (1 − β) (c2 + d2)

p(p− 1)[2]2q + 2p [3]q
. (2.17)

Taking absolute value in (2.13) and (2.17) and using Lemma 2.1, we have the coefficient
bounds for a2 given by (2.10) .

Subtracting (2.16) from (2.15), we get
2p[3]q a3 − 2p[3]qa

2
2 = (1 − β) (c2 − d2) .

Again by Lemma 2.1, we get desired result in (2.12).
Further, we obtain from the above equality that

a3 = a2
2 + (1 − β) (c2 − d2)

2p[3]q
. (2.18)

Taking absolute value in (2.18), we obtain

|a3| ≤ |a2|2 + (1 − β) (|c2| + |d2|)
2p[3]q

. (2.19)

Applying Lemma 2.1, we get from (2.10) and (2.19) that

|a3| ≤ 2m(1 − β)
p(p− 1)[2]2q + 2p [3]q

+ m(1 − β)
p[3]q

for

0 ≤ β ≤ 1 −
2p[2]2q

m
(
(p− 1)[2]2q + 2 [3]q

)
and that

|a3| ≤ m2(1 − β)2

p2[2]2q
+ m(1 − β)

p[3]q
for

β ≥ 1 −
2p[2]2q

m
(
(p− 1)[2]2q + 2 [3]q

) .
This completes the proof of Theorem 2.6. □
Remark 2.7. (i) If we take q → 1− in Theorem 2.6, we get the result obtained by

Aljouiee and Goswami [5, Theorem 5].
(ii) If we take q → 1− and m = 2 in Theorem 2.6, we get the result obtained by

Jahagiri et al. [11, Theorem 2.2].

Letting p = 1 in Theorem 2.6, we get the following consequence.

Corollary 2.8. Let the function f ∈ HΣ(q;m;β) be given by (1.1). Then

|a2| ≤



√
m(1−β)

[3]q
, 0 ≤ β ≤ 1 − [2]2q

m[3]q
,

m(1−β)
[2]q

, 1 − [2]2q
m[3]q

≤ β < 1,
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|a3| ≤


2m(1−β)

[3]q
, 0 ≤ β ≤ 1 − [2]2q

m[3]q
,

m2(1−β)2

[2]2q
+ m(1−β)

[3]q
, 1 − [2]2q

m[3]q
≤ β < 1,

and ∣∣∣a3 − a2
2

∣∣∣ ≤ m(1 − β)
[3]q

.

3. Fekete-Szegö problem
In this section, we obtain Fekete-Szegö inequalities for functions f ∈ Hp

Σ(q;m;β). For
this purpose, we need the following lemma.
Lemma 3.1 ([20]). Let k, l ∈ R and z1, z2 ∈ C. If |z1| < R and |z2| < R, then

|(k + l) z1 + (k − l) z2| ≤


2R |k| , |k| ≥ |l| ,

2R |l| , |k| ≤ |l| .
.

Theorem 3.2. Let the function f ∈ Hp
Σ(q;m;β) be given by (1.1) and µ ∈ R. Then

∣∣∣a3 − µa2
2

∣∣∣ ≤


2m(1−β)

p(p−1)[2]2q+2p[3]q
|1 − µ| , µ ∈

(
−∞, − (p−1)[2]2q

2[3]q

]
∪
[
2 + (p−1)[2]2q

2[3]q
,∞
)
,

m(1−β)
p[3]q

, µ ∈
[
− (p−1)[2]2q

2[3]q
, 2 + (p−1)[2]2q

2[3]q

]
,

.

Proof. From (2.17) and (2.18), we can write

a3 − µa2
2 = (1 − µ) (1 − β) (c2 + d2)

p(p− 1)[2]2q + 2p [3]q
+ (1 − β) (c2 − d2)

2p[3]q

= (1 − β)
(

1 − µ

p(p− 1)[2]2q + 2p [3]q
+ 1

2p[3]q

)
c2

+(1 − β)
(

1 − µ

p(p− 1)[2]2q + 2p [3]q
− 1

2p[3]q

)
d2.

By Lemma 3.1, we obtain from the above equality that

∣∣∣a3 − µa2
2

∣∣∣ ≤


2m (1 − β) |H(µ)| , |H(µ)| ≥ 1

2p[3]q
,

m(1−β)
p[3]q

, |H(µ)| ≤ 1
2p[3]q

,

where
H(µ) = 1 − µ

p(p− 1)[2]2q + 2p [3]q
.

This completes the proof. □
Remark 3.3. If we take q → 1−, m = 2 and p = 1 in Theorem 3.2, we get the result
obtain in [21].

If we take q → 1− in Theorem 3.2, we get following result.
Corollary 3.4. Let the function f ∈ BRp

Σ(m;β) be given by (1.1) and µ ∈ R. Then

∣∣∣a3 − µa2
2

∣∣∣ ≤


m(1−β)
p(2p+1) |1 − µ| , µ ∈

(
−∞, −2(p−1)

3

]
∪
[

2(p+2)
3 ,∞

)
,

m(1−β)
p[3]q

, µ ∈
[
−2(p−1)

3 , 2(p+2)
3

]
.
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If we take q → 1− and m = 2 in Theorem 3.2, we get following result.

Corollary 3.5. Let the function f ∈ R(p;β) be given by (1.1) be in the class and µ ∈ R.
Then

∣∣∣a3 − µa2
2

∣∣∣ ≤


2(1−β)
p(2p+1) |1 − µ| , µ ∈

(
−∞, −2(p−1)

3

]
∪
[

2(p+2)
3 ,∞

)
,

2(1−β)
3p , µ ∈

[
−2(p−1)

3 , 2(p+2)
3

]
.

.

Letting p = 1 in Theorem 3.2, we get the following consequence.

Corollary 3.6. Let the function f ∈ HΣ(q;m;β) be given by (1.1) and µ ∈ R. Then

∣∣∣a3 − µa2
2

∣∣∣ ≤


m(1−β)

[3]q
|1 − µ| , µ ∈ (−∞, 0] ∪ [2,∞) ,

m(1−β)
[3]q

, µ ∈ [0, 2] .

4. Conclusion
In this paper, we have obtained the coefficient bounds for the class of Hp

Σ(q;m;β) with
the help of Faber polynomial. Further, we have derived the Fekete-Szegö problem for the
same class.

Acknowledgment. Authors are thankful to the referee for his/her comments to im-
prove the paper.
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