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Highlights 
• This paper focuses on the importance of the RCA cleaning process. 

• Effect of the RCA cleaning process is proposed for on growth rate of AlN layer in the study. 

• The RCA cleaning process increases the growth rate and improves the crystal quality were obtained. 
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Abstract 

In this work, the effect of Si (111) substrate surface cleaning by RCA (Radio Corporation of 

America) method on growth rate and crystalline quality of epitaxially grown AlN thin films by 

MOVPE (Metal Organic Vapor Phase Epitaxy) technique is investigated. In situ reflectance 

system and high resolution X-ray diffraction (HRXRD) technique are used for the analysis of 

growth rate and crystal quality of epitaxial AlN layers, respectively. Also, The Raman 

measurement is done to show the effect of the RCA cleaning procedure on the position of the 

peaks that occurred in the Raman spectra. The results have shown that the surface cleaning of Si 

(111) substrate by the RCA method removes the oxide layer formed on the surface, also helps to 

decrease the parasitic reactions and increases the adatom efficiency, results in an increased growth 

rate of the AlN layer. Besides, surface cleaning of Si (111) substrate by the RCA method has 

reduced the FWHM value ~5% for ω-2θ scan and ~60% for ω scan of AlN epilayer, indicating 

an improvement in crystal quality. 
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1. INTRODUCTION 

 

Group III-V semiconductors are compounds made by group III elements and group V elements in the 

periodic table [1]. Compounds (GaN, InN, AlN, etc.) or alloys (InGaN, AlGaN, InAlGaN, etc.) made by 

group III elements (In, Ga, and Al) and group V element (N) are called III-nitride or III-N semiconductors 

[2]. III-N semiconductors with wide bandgap and high breakdown voltage have gradually started to replace 

the traditional materials in the last 20 years. GaN has been the most popular compound of this group and 

after obtaining high crystal quality GaN, it was awarded the Nobel Prize in Physics in 2014 for its high 

brightness blue light emitting diodes (LEDs) studies [3]. It has attracted much attention to the applications 

of electronic and optoelectronic devices in many fields (daily life, defense industry, health, lighting, and 

energy) since this award [4]. Optoelectronic devices such as LEDs, laser diodes (LDs), solar cells, 

photodetectors and electronic devices such as high electron mobility transistors (HEMTs), high power pn 

diodes, Schottky diodes have been produced using III-N materials in recent years [5, 6]. GaN material has 

dominated these areas and has gradually become the focus of attention in scientific studies and industry [7]. 

Almost all LEDs used for high efficiency lighting in the market are GaN based. In 2023, the GaN 

semiconductor device market is expected to have a market size of $2.8 billion [8]. In addition to its excellent 

properties and success in the lighting industry, GaN crystal has been attracted attention in the high power-

frequency field. There are many Figures of Merit (FOM) compared in the literature in terms of material 

properties of Si and GaN, which are dominant in the high power-frequency industry. When the FOM of 

GaN is compared to Si it seems that GaN has ~10 times and 1900 times higher than Si regarding BPFM   
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(Bipolar power handling capacity FOM) and FET(Field Effect Transistor) power switching product FOM, 

respectively [9]. GaN material, instead of entering the market alone with these features, has become 

interesting for hybrid and electric vehicles, power supplies, and photovoltaic converters of transistors grown 

on Si substrate. With the cooperation of GaN material and the Si industry (GaN on Si), the market size in 

the transistor field is expected to be $ 600 million in 2024 and $ 1.7 billion in 2027 [10]. 

 

AlN which is one member of III-N semiconductors has the highest range of the bandgap (6.2 eV) [11], high 

critical electric field (450 kV/cm) [12], high thermal conductivity [13], most stable high-temperature 

performance. AlN is nominated as a candidate material for the near future due to all the excellent properties 

especially for deep-ultraviolet region and high power-frequency devices. In the last years, it has become 

interesting thanks to its excellent properties compared to GaN [14]. Due to the extremely high cost of AlN 

substrate, AlN based optoelectronics and especially electronic applications have not been developed as 

expected until today. Therefore, AlN-based devices are generally grown on silicon and sapphire substrates. 

The heteroepitaxial growth of the high crystal quality AlN epitaxial layer on different substrates is one of 

the most important problems in the literature [15]. AlN layer can be grown more difficult for reasons such 

as growth at higher temperatures (~ 1200 °C) compared to GaN [16], the high parasitic reaction between 

TMAl (Al(CH3)3) and NH3 [17], and the low surface mobility of the Al atom [18]. The parasitic 

reactions between TMAl and NH3 in the vapor phase are shown below [19]: 

 

Al(CH3)3 + NH3→Al(CH3)3 . NH3,                                    (1) 

Al(CH3)3 . NH3→Al(CH3)2 . NH2 + CH4,                               (2) 

nAl(CH3)2 . NH2→ [Al(CH3)2 . NH2]n where  n≥3                (3) 

Al(CH3)2 . NH2→[Al(CH3)2 . NH2]2                  (4) 

→AlNparticles, 

[Al(CH3)2 . NH2]2→ AlNparticles.                   (5) 

 

According to Equations (4) and (5), the AlN particles formed during growth are removed from the 

deposition zone by thermophoresis and do not contribute to growth. The use of silicon substrates is common 

due to the large-scale use of AlN epitaxial films and the ease of industrial mass production. However, high 

quality AlN epitaxial films grown on silicon substrates cannot be easily achieved due to the large lattice 

mismatch and thermal expansion coefficient difference [20], which result in high density defects in AlN 

epitaxial layers [21, 22]. The silicon substrate surface may also have an impact on AlN epitaxial growth 

because of chemical contaminants and impurities, which can result in effect the property of grown AlN 

epitaxial films, device performance, and efficiency [23, 24]. As a result, the silicon substrate surface may 

be critical regarding epitaxial growth as the silicon surface in the atmospheric environment is naturally 

oxidized in a short time and affected by organic and inorganic impurities [25]. Radio Corporation of 

America (RCA) process developed by Werner Kern is a chemical cleaning process applied to clean organic 

and heavy metal impurities on the substrate. It includes the three main steps; first, cleaning organic 

impurities. Second, cleaning the layer formed by the self-oxidation of silicon in the atmosphere 

environment. Last, the removal of ionic (heavy metal residues) impurities [26, 27]. The effects of cleaning 

the silicon substrate surface from possible impurities such as oxide on the crystal, optical, and electrical 

properties of the epitaxial film are available in the literature [28]. It is well known that the growth rate of 

epitaxial growth changes with the growth parameters such as flow rate of metalorganic sources (TMGa 

(Ga(CH3)3), TMAl, TMIn (In(CH3)3), etc.), reactor pressure, and growth temperature [29-32]. However, 

there is no report in the literature showing the effect of cleaning the surface of the Si (111) substrate on the 

growth rate of the AlN epitaxial layer to the best of our knowledge. 

 

In this study, the effect of surface cleaning of Si (111) substrate by RCA process on the growth rate and the 

structural characterization of MOVPE grown AlN layers is investigated. In-situ reflectance system is used 

for the analysis of growth rate and high resolution X-ray diffraction (HRXRD) technique is used for the 

analysis of crystal quality of epitaxial AlN layers. Characterization of epitaxially grown layers can be made 

by in-situ during growth and ex-situ after growth. In-situ characterization is very effective and also practical 

since it allows investigating the source of an unknown effect that occurs during the epitaxial growth [33]. 

For this purpose, a semiconductor laser operating at 880 nm wavelength is used as an in-situ monitoring 
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system to see the growth steps and effects on the AlN layer during growth. Ex-situ characterization 

technique such as HRXRD is employed to the grown samples to investigate structural characterization. 

HRXRD measurements are performed by using Rigaku SmartLab diffractometer, equipped with a rotating 

Cu anode that provides 9 kW X-ray power (45 kV tube voltage and 200 mA tube current) and a four-bounce 

Ge (220) monochromator. The Raman spectroscopy-Witec is carried out to make more analysis. In-situ 

reflectance measurements and XRD scans results have shown that the RCA cleaning procedure increases 

the growth rate of the AlN layer and improves the crystal quality, respectively. 

 

2. MATERIAL METHOD 

 

In this study, two different AlN samples have been grown to investigate the effect of surface cleaning on 

the growth rate and crystalline quality of AlN. Sample B has been cleaned by the RCA process just before 

the growth and any cleaning process has been not applied to Sample A. The cleaning procedure is as 

follows: First step; deionized (DI) water, H2O2, NH4OH solution in a ratio of 5: 1: 1 is prepared and heated 

up to 77-80°C. Before the temperature rises above 80°C, the substrate is kept in this solution for 12 minutes. 

The substrate is rinsed with DI water for 1 minute. In this step, a possible oxide layer is removed from the 

surface. Second step; DI water, H2O2, HCl solution in a ratio of 6: 1: 1 is prepared and heated up to 77-

80°C. Before the temperature rises above 80°C, the substrate is kept in this solution for 12 minutes. The 

substrate is rinsed with DI water for 1 minute. In this step, ionic impurities are removed, metal ions and 

metal hydroxide dissolve using a hydrochloric/peroxide mixture. Third step; DI water, HF solution in a 

ratio of 100:1 is prepared within a polypropylene beaker. It is immersed in the solution for 20-30 seconds 

until the substrate is observed to be hydrophobic. The substrate is rinsed with DI water for 1 minute and 

immersed in another DI water beaker for 2-3 minutes. In this step, the natural oxide is removed from the 

silicon surface with the aqueous HF solution and the dangling bonds of the silicon are saturated with 

hydrogen [26, 27]. Then Sample A and B have been grown on a 2 inch (111) oriented Si substrate by 

AIXTRON 200/4 RF-S horizontal flow MOVPE system.TMAl (trimethylaluminum) precursor is used as a 

source of Al (aluminum) and the N element (nitrogen) is obtained from NH3 (ammonia). Before starting 

the growth, the Si substrates have been thermally annealed at 1250 °C and 100 mbar reactor pressure in H2 

ambient for 10 minutes. Then, the reactor temperature and pressure are reduced to 860 °C and 50 mbar, 

respectively, and the AlN nucleation layer of ~ 20nm thickness has been grown. After the nucleation layer 

growth, the reactor temperature is increased from 860 °C to 1370 °C, providing the AlN layer to 

recrystallize. Subsequently, the AlN layer has been grown by the PALE (pulsed atomic layer epitaxy) 

technique [34, 35]. Figure 1 shows the schematic representation of grown AlN layers without (a) and with 

RCA applied (b) Si (111) substrates. 

 

(a)                                                       (b) 

Figure 1. Schematic diagram of Sample A (a) and Sample B (b) 

 

3. THE RESEARCH FINDINGS AND DISCUSSION 

 

Real time in-situ reflectance measurement is a very effective and practical method to observe the grown 

surface. Figure 2 shows the in-situ reflectance measurements (red and blue curve) and reactor temperature 

(green curve) of Sample A and Sample B. AlN growth process can be labeled with five steps (i), (ii), (iii), 

and (iv) together with desorption of silicon substrate. The first step (i) corresponds to the desorption of the 

silicon substrate. At this step, the substrate is kept at high temperatures (1250 °C) and under hydrogen 

ambient to remove impurities on the surface. The second step (ii) corresponds to the growth of the low 

temperature (860 °C) AlN nucleation layer. The third step (iii) corresponds to the recrystallization step. At 

this step, the reactor temperature is increased and the AlN layer grown at low temperature is recrystallized. 
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The fourth step (iv) corresponds to high temperature (1370 °C) AlN growth. Since AlN has a smaller 

refractive index than silicon [36, 37], the reflectance shows a decreasing behavior. It is seen from Figure 2 

that the finish points of reflectance curves of Sample A and B are different which proves that surface 

cleaning of Si (111) substrate changes the growth rate of epitaxially grown AlN.  

 

 

Figure 2. In situ reflectance measurements (red and blue curve) of Sample A and Sample B and reactor 

temperature (green curve) 

Figure 3 shows the growth rates of Sample A and Sample B calculated from in situ reflectance 

measurements. The growth rate of the AlN layer grown on Si substrate with RCA has been obtained as 

0.162 nm/s, and the growth rate of the AlN layer grown on Si substrate without RCA has been obtained as 

0.158 nm/s. It is concluded from the observations and calculations that the only reason for the growth rate 

difference between the two samples is surface cleaning. It is also thought that the surface cleaning by the 

RCA process removed as much as the oxide layers and it helps to decrease the parasitic reactions and 

increase the adatom efficiency to produce more AlN epitaxial films. 

 

Figure 3. Effect of the RCA process on the growth rate 
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HRXRD technique is used for the analysis of the crystalline quality of epitaxial AlN layers. ω-2θ and ω 

scans give information about the lateral and vertical crystalline quality and the interface transition 

roughness of the crystal structures. In these scans, the peak intensity and FWHM value are related to the 

crystal quality. The FWHM value gives information about the stress occurring in the structure. As the stress 

increases, the FWHM value increases linearly. Also, the defect density is inversely proportional to the peak 

intensity [38]. As it is known different types of stresses exist in materials. First-order stresses, called macro-

stresses, are homogeneous on a large scale, involving many grains (i.e., a few hundred microns). The fact 

that these stresses shift the peak position is the main effect on the XRD peak. The second and third-order 

stresses (microstresses) are homogeneous at the size of about tens of microns (small areas like part of a 

grain). Second and third order stresses manifest with the broadening of the XRD peak, i.e., the increase in 

FWHM [39]. 

In a ω-2θ scan, the x-ray source, and the detector are moved the same amount relative to the sample surface 

around the determined Bragg angle. Meanwhile, the momentum transition vector is moved vertically to the 

relevant crystal planes of the sample. Thus, the vertical lattice constant, roughness between vertical planes, 

grain size analysis, strain, and stress analysis, etc. can be obtained from the ω-2θ scan. Figure 4 shows the 

ω-2θ scans of Sample A and Sample B. Also, the FWHM values and the peak intensity of the AlN peaks 

have been compared in the inset of the graph. Sample A has a FWHM value of 996 arcsec and a maximum 

intensity of 227 a.u. Sample B has a FWHM value of 944 arcsec and a maximum intensity of 1670 a.u. In 

other words, Sample B has not only a lower FWHM value but also a high peak intensity. Therefore, an 

improvement in the crystal quality is observed with the decrease of the stress in the structure. 

 

Figure 4. HRXRD ω-2θ scans of Sample A and Sample B 

 

The c-axis lattice constants of the AlN films have been deduced from the 𝜔-2𝜃 scans for Sample A and B. 

The Bragg’s angle of high angular reflection (0002) which corresponds to the AlN film has been utilized 

to determine the lattice spacing (dhkl) from Bragg’s law. The lattice parameters and out-of-plane residual 

strain for hexagonal crystal have been calculated using the following equations [40]:  
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where h, k, and l are miller indices, the lattice parameter c0 of 0.4978 nm corresponds to the bulk AlN 

crystal and εzz  is an out-of-plane residual strain. The c-axis lattice constants (out-of-plane residual strain) 

for Sample A and B have been calculated 0.496851 nm (0.002465) and 0.497477 nm (0.00121), 

respectively. 

In general, another important scan to investigate the quality of semiconductor crystals is the ω-scan. In ω-

scan, after the Bragg angle of the relevant plane of the sample is found, the x-ray source and the detector 

are moved in the same direction. Thus, the magnitude of the momentum transition vector is constant in the 

vertical direction. By changing the momentum transition vector in the horizontal direction, the quality of 

the crystal in the plane and the interface effect can be obtained. Figure 5 shows the ω-scans of the two 

samples. When the peak FWHM of the AlN peaks have been compared, it is clear that Sample A has a 

larger FWHM than Sample B. Sample A has a FWHM value of 18273 arcsec and a maximum intensity is 

227 a.u. while Sample B has a FWHM value is 6983 arcsec and maximum intensity of 1649 a.u. Therefore, 

it is clearly shown that when the RCA cleaning process is applied the crystal quality of epitaxial AlN 

improves. 

 

Figure 5.Normalized HRXRD (0002) ω-scans of Sample A and Sample B 

The natural oxide layer on the Si substrate leads to low coherence between the AlN layer and the Si 

substrate. Also, since the interfacial layer is amorphous it is very difficult to grow epitaxial AlN on top of 

this amorphous layer. This makes it difficult to obtain a smooth AlN surface for the growth of AlN on the 

Si substrate [41]. A smooth, oxide-free Si surface is essential for the growth of a quality AlN layer. The 

pre-growth Si surface is very important in determining crystal quality and thus the stress of AlN [42]. As a 

result, the removal of the oxide layer on the Si surface decreases the tensile stress in the structure. Thus, 

the decrease in tensile stress in the AlN causes a decrease in FWHM. 

The Raman spectra of Sample A and B are demonstrated in Figure 6. The Raman spectra for Sample A and 

B exhibit the peaks of E2(high) of 652.7 and 653.8 cm–1, A1(TO) of 619.2 and 618.0 cm–1, and A1(LO) of 

881.7 and 883.9 cm–1, respectively. The Raman spectra of the bulk AlN crystal give the E2(high), A1(TO), 

and A1(LO) at 657, 610, and 890 cm-1, respectively [43]. 
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Figure 6. Raman spectra of Sample A and B at room temperature 

The shift in E2(high) peak frequency has been seen in Figure 6 resulting from the strain. The wavenumber 

of the E2(high) mode is 652.7 cm-1 for Sample A, while it is 653.8 cm-1 for Sample B. The Raman peak 

shifts to a higher frequency due to compression stress and to a lower frequency due to tensile stress [44]. It 

seems that the wavenumber of the E2(high) shifts almost 4.3 cm-1 and 3.2 cm-1 which corresponds to the 

existence of the tensile strain for Sample A and B, respectively. So, it is understood that Sample A has a 

larger tensile strain than that of Sample B. Also, in-plane tensile stresses and strains for Sample A and B 

have been calculated by using the following equations:  

σ =
 phonon peak shift

K
         and        ε =

σ

ϒ
                                                                                       (7) 

where K is the pressure coefficient of 4.3 cm−1 GPa−1, σ is the in-plane tensile stress and ϒ is the biaxial 

stress of AlN of 469 GPa [45, 46]. The values of in-plane stress (strain) have been obtained 1 GPa (0.00213) 

and 0.74 GPa (0.00158) for Sample A and B, respectively. 

 

4. RESULTS 

 

In this study, the effect of surface cleaning of Si (111) the substrate by RCA process on the growth rate and 

the structural characterization of MOVPE grown AlN layers is investigated. In-situ reflectance system and 

HRXRD technique are used for the analysis of growth rate and crystalline quality of epitaxial AlN layers, 

respectively. It has been shown that the RCA process increases the growth rate of AlNepilayer from 0.158 

nm/s to 0.162 nm/s. Even the growth rates look similar since one of the main obstacles of the commercial 

development of AlN is its low growth rate, it is thought that a small growth rate difference of Sample A 

and B should be taken into consideration. It is thought that the RCA process removes oxide layers as much 

as possible, thus helping to reduce parasitic reactions. When surface cleaning of Si (111) is applied, it has 

been observed that the FWHM values of AlN of ω-2θ scan decrease from 996 arcsec to 944 arcsec and the 

maximum intensities of AlN in ω-2θ scan increase from 227 a.u. to 1640 a.u. Also, it is observed that the 

FWHM values of AlN of ω scan decrease from 18273 arcsec to 6983 arcsec, and the maximum intensities 

of AlN of ω scan increase from 227 a.u to 1649 a.u. Therefore, it is clearly shown that the RCA cleaning 

procedure improves the crystalline quality by decreasing the stress in the structure. 
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