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Abstract
The cumulative residual extropy is an uncertainty measure that parallels extropy in an
absolutely continuous cumulative distribution function. The dynamic version of this mea-
sure is known as dynamic survival extropy. In this paper, we study some properties
of the dynamic survival extropy using quantile function approach. Unlike the dynamic
survival extropy, the quantile-based dynamic survival extropy determines the quantile
density function uniquely through a simple relationship. We also extend the definition of
quantile-based dynamic survival extropy into order statistics. Finally, an application of
new quantile-based uncertainty measure as a risk measure is derived.
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1. Introduction
Shannon [27] by developing information theory, introduced a criterion for measurement

of uncertainty which is called "entropy". Shannon’s entropy has found a special place in
the sciences, including economics, physics, computer, telecommunications, communication
theory, reliability and so on. If X is a non-negative continuous random variable (rv) with
probability density function (pdf) fX(x), then Shannon’s entropy of X is given by H(X) =∫ +∞

0 fX(x) log fX(x)dx. Lad et al. [12] provided a completion to theories of information
based on entropy. They showed that Shannon’s entropy function has a complementary
dual function which is called "extropy". The extropy of discrete rv X is given by J(X) =
−

∑N
i=1(1 − pi) log(1 − pi), where pi = P (X = xi). When the range of possibilities

for discrete rv X increases, the extropy measure J(X) can be closely approximated by
1 − 1

2
∑N

i=1 p2
i , which led to the definition of differential extropy. The extropy of non-

negative continuous rv X with pdf fX(x) is given by J(X) = −1
2

∫ +∞
0 f2

X(x)dx.
Extropy has several applications. For example, (i) extropy is used to score the forecast-

ing distributions using the total scoring rule [4]; (ii) extropy is interpreted as a measure
of the amount of uncertainty represented by the distribution for rv, that is, if the extropy
of X is less than that of another rv Y , that is, J(X) ≤ J(Y ), then X is said to have more
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uncertainty than Y [21]; (iii) extropy is used to compare two mixed systems with same
signature but with different components [21].

For some studies on extropy and its applications, we refer to [6, 7, 9, 17,19–22,24,34].
If a component is known to have survived to age t then extropy is no longer useful to

measure the uncertainty of remaining lifetime of the component. An approach for solving
this limitation is use of the residual differential extropy introduced by [20]. Differential
extropy of a random lifetime X is defined as

ξJ(X; t) = − 1
2F̄ 2

X(t)

∫ +∞

t
f2

X(x)dx, t ≥ 0.

Replacing pdf in the extropy function J(X) with survival function (sf), Jahanshahi et
al. [5] proposed a new measure of uncertainty of non-negative absolutely continuous rv
X with sf F̄X(x), called cumulative residual extropy (CREX). This sf-based uncertainty
measure is defined as

ξJ(X) = −1
2

∫ +∞

0
F̄ 2

X(x)dx. (1.1)

Let two rvs X and Y be lifetimes of two systems A and B. Jahanshahi et al. [5] showed
that, if CREX of rv X is less than rv Y (i.e. ξJ(X) ≤ ξJ(Y )), then system A has less
uncertainty than system B. They also proposed two applications of the CREX to risk
measure and independence. In such cases, the information measures are functions of time,
and thus they are dynamic. In such situations, either CREX is not suitable and therefore
it should be modified to dynamic form. Most recently, Sathar and Nair [25] proposed
dynamic version of CREX (called dynamic survival extropy) and studied its important
properties. Dynamic survival extropy of a random lifetime X is defined as

ξJ(X; t) = − 1
2F̄ 2

X(t)

∫ +∞

t
F̄ 2

X(x)dx, t ≥ 0. (1.2)

When a system has completed t units of time, ξJ(X; t) gives information of the extropy for
the remaining lifetime of the system. On the other hand, if the dynamic survival extropy
of random lifetime X is less than random lifetime Y , (i.e. ξJ(X; t) ≤ ξJ(Y ; t)), then we
can say that, system A (with lifetime X) has less uncertainty than system B (with lifetime
Y ) about the remaining lifetime. It is clear that ξJ(X; 0) = ξJ(X).

Since the quantile function (qf) have several properties that are not shared by the
cumulative distribution function (cdf), the quantile-based methods have been employed
effectively to investigate the information properties of such models. The qf of continuous
rv X can be specified in terms of cdf FX(x) as

QX(u) = F −1
X (u) = inf{x | FX(x) ≥ u}, u ∈ [0, 1].

Although both distribution and quantile functions convey the same information about the
distribution of a rv, quantile functions (qfs) have several properties that are not shared by
cdfs. For example, there are explicit general distribution forms for the qf of order statistics.
It is easier to generate random numbers from the qf; there are probability models having
no closed form cdfs. However, they have closed form qfs. Also, the use of qfs in the place
of cdf provides new models, alternative methodology, easier algebraic manipulations and
methods of analysis in certain cases and some new results that are difficult to derive by
using distribution function [3, 14].

Accordingly, Sunoj and Sankaran [29] introduced quantile versions of the Shannon’s
entropy and dynamic version of it. The quantile-based residual entropy of random lifetime
X is defined by

H(X; QX(u)) = ln(1 − u) + (1 − u)−1
∫ 1

u
ln qX(p)dp, u ∈ (0, 1), (1.3)



On quantile-based dynamic survival extropy 1351

where qX(u) = Q
′(u) is the quantile density function (qdf). The measure (1.3) gives the

expected uncertainty contained in the conditional density about the predictability of an
outcome of X until 100(1 − u)% point of distribution. For the usefulness of information
measures based on qf, we refer to [1,8,16,23,30] and the references therein. Recently, the
concept of quantile-based information measures is extended for order statistics. For study
about this extend of quantile-based information measures, we refer to [11,28].

Motivated with the usefulness of dynamic survival extropy, in this paper, we investigate
some new aspects of it using the quantile function approach. Moreover, we propose a
quantile-based dynamic survival extropy of order statistics and prove some of its properties.
The quantile-based dynamic survival extropy has several advantages. For example, (i)
unlike the dynamic survival extropy, the quantile-based dynamic survival extropy uniquely
determines the quantile density function; (ii) we derive quantile-based dynamic survival
extropy functions for certain qfs which do not have an explicit form for cdfs; (iii) based
on the quantile-based dynamic survival extropy function, we define a new quantile based
stochastic order, to compare the uncertainties of residual lives of two random lives X
and Y at the age points QX(u) and QY (u) at which X and Y possess equally survival
probabilities; and (iv) we provide the new characterizations for a family of distribution
through simple relationships.

The paper is organized as follows: In Section 2, we recall some preliminary concepts
about qf. In this section, we discuss dynamic survival extropy in terms of the qf. Sev-
eral properties of this uncertainty measure such as characterization results, aging classes
and stochastic comparisons are proposed. In Section 3, we proposed the quantile-based
dynamic survival extropy of first order statistic and sample maxima and studied some of
its properties. In Section 4, we use the absolute value of quantile-based dynamic survival
extropy function as risk measure. Some examples are presented for evaluating and com-
paring this new risk measure with quantile form of the generalized right tail deviation
measure. Finally, some concluding remarks are provided in Section 5.

2. Quantile-based dynamic survival extropy
In this section, we study a dynamic measure of uncertainty, the quantile version of

dynamic survival extropy of non-negative absolutely continuous rv X. First, we recall
some notations and preliminary concepts of qf [14].

Let X be a non-negative absolutely continuous rv with cdf FX(x), pdf fX(x) and qf
QX(u). If FX(x) is right continuous and strictly increasing we have FX(QX(u)) = u, so
that FX(x) = u implies x = QX(u) and qX(u)fX(QX(u)) = 1, for all u ∈ [0, 1].

Two primary concepts used to represent the physical properties of the failure patterns
are the hazard rate and mean residual. There are extended concepts of the hazard rate
and mean residual for quantile function called hazard quantile function (hqf) and mean
residual quantile function (mrqf), respectively, defined as, for all u ∈ (0, 1)

HX(u) = hX(QX(u)) = fX(QX(u))
F̄X(QX(u))

= [(1 − u)qX(u)]−1, (2.1)

MX(u) = mX (QX(u)) = 1
(1 − u)

∫ 1

u
(QX(p) − QX(u)) dp = 1

(1 − u)

∫ 1

u

dp

HX(p)
dp,

where mX (x) = E[X − x | X > x] is the mean residual life function of X. We can
interpret the hqf explains the conditional probability of failure in the next small interval
of time given survival until 100(1 − u)% point of distribution. On the other hand, we
can interpret mrqf as the mean remaining life of a unit beyond the 100(1 − u)% of the
distribution. Also, mrqf uniquely determines the qdf by

qX(u) = MX(u) − (1 − u) M ′
X(u)

(1 − u)
. (2.2)
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Remark 2.1. Let X be a non-negative absolutely continuous rv with finite mean and qf
QX(x) such that Q(0) = 0. The conditional value-at-risk of X is given by

CV aR[X; u] = E[XQX(u)] = E[X − QX(u)|X > QX(u)] (2.3)

= 1
(1 − u)

∫ +∞

QX(u)
F̄X(x)dx, u ∈ (0, 1). (2.4)

In the context of reliability theory the conditional value-at-risk function is also called mrqf
[2].

Since qX(u)fX(QX(u)) = 1, u ∈ [0, 1] and substituting x = QX(p) in relation (1.1),
we can define the quantile version of dynamic survival extropy of non-negative absolutely
continuous rv X as follows [10]:

Definition 2.2. Let X be a non-negative absolutely continuous rv with qf QX(x) and
qdf qX(x). The quantile-based dynamic survival extropy of X is defined as

ξJ (X; QX(u)) = − 1
2 (1 − u)2

∫ 1

u
(1 − p)2qX(p) dp, u ∈ (0, 1). (2.5)

From relation (2.5) it easily follows that ξJ(X; QX(u)) takes values in (−∞, 0]. Based
on the presented definition of the quantile-based dynamic survival extropy, we can infer
the following cases:

(1) The quantile-based dynamic survival extropy measures spectrum of the survival
extropy’s uncertainty contained in the conditional sf about the predictability of an
outcome of X until 100(1 − u)% point of distribution.

(2) The quantile-based dynamic survival extropy measures the uncertainty of resid-
ual life XQX(u), that is, quantile-based dynamic survival extropy measures the
uncertainty of X at age point QX(u).

From relation (2.1), in terms of HX(u), ξJ (X; QX(u)) becomes [10]

ξJ (X; QX(u)) = − 1
2 (1 − u)2

∫ 1

u

(1 − p)
HX(p)

dp. (2.6)

Also, from relation (2.2), in terms of MX(u), ξJ (X; QX(u)) becomes

ξJ (X; QX(u)) = − 1
2 (1 − u)2

∫ 1

u
(1 − p)

(
MX(p) − (1 − p) M

′
X(p)

)
dp

= − 1
2 (1 − u)2

[∫ 1

u
(1 − p) MX(p) dp −

∫ 1

u
(1 − p)2 M

′
X(p) dp

]
.

Applying integration by parts on the last term yield

ξJ (X; QX(u)) = −MX(u)
2

+ 1
2 (1 − u)2

∫ 1

u
(1 − p) MX(p) dp. (2.7)

Now, differentiating (2.7) with respect to u

qX(u) = 2
(

ξJ
′ (X; QX(u)) − 2ξJ (X; QX(u))

(1 − u)

)
. (2.8)

It is to be noted that from above relations, by knowing qf, qdf, or hqf, the expression
for quantile-based dynamic survival extropy is quite simple to compute. To study the
ξJ(X; QX(u)) value for some rvs that do not have explicitly known cdfs, though it has
closed form qfs, we provide the following examples.
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Example 2.3. Let X be a rv of generalized lambda family with a closed form quantile
function as follows:

QX(u) = λ1 + 1
λ2

(
uλ3 + (1 − u)λ4

)
, (2.9)

where λ1, λ2, λ4 ∈ R and λ3 ∈ Z+. Then, quantile-based dynamic survival extropy of rv
X is given by

ξJ (X; QX(u)) = − 1
2λ2 (1 − u)2

(
λ3β̄u(λ3, 3) + λ4β̄u(1, λ4 + 2)

)
,

where β̄x(α, β) =
∫ 1

x zα−1(1 − z)β−1dz is the incomplete beta function.

Figure 1. Graphs of ξJ (X; QX(u)) for generalized lambda family (2.9) with
various choices of parameters.

Figure 1 provides the graphs of ξJ(X; QX(u)) for various values of λ1, λ2, λ3, λ4, re-
spectively, in the case where X is a rv of generalized lambda family (2.9). Note that
ξJ(X; QX(u)) is nonincreasing function and nondecreasing function of u in terms of vari-
ous values of λ1, λ2, λ3, λ4.

Example 2.4. Let X be a rv with a closed form quantile density function as follows:
qX(u) = K(1 − u)−A(− ln(1 − u))−M , (2.10)

where K, A and M are real constants. Using relation (2.5) and by substituting − ln(1 −
p) = z, quantile-based dynamic survival extropy of rv X is given by

ξJ (X; QX(u)) = K

2 (1 − u)2

∫ +∞

− ln(1−u)
z−M e−z(3−A)dz

= K

2 (1 − u)2 Γ̄− ln(1−u)(1 − M, 3 − A),

where Γ̄x(α, β) =
∫ +∞

x zα−1e−zβdz is the incomplete gamma function.

Figure 2 provides the graphs of ξJ(X; QX(u)) for K = 0.2, 2.5, 0.5, M = 0.7, 0.9, 0.6 and
A = 0.1, 0.8, 0.5, respectively, in the case where X is a rv with qdf given by (2.10). Note
that ξJ(X; QX(u)) is nonincreasing and nondecreasing function of u in terms of various
values of K, M, A.
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Figure 2. Graphs of ξJ (X; QX(u)) for qdf (2.10) with various choices of param-
eters.

Remark 2.5. It is obvious that if X and Y have the same distribution then ξJ(X; QX(u))
= ξJ(Y ; QX(u)), the question that arises is: "What about the converse?". Using relation
(2.8), If qX(u) = qY (u), then ξJ(X; QX(u)) = ξJ(Y ; QX(u)). This implies that under-
lying quantile density function can be characterized uniquely by quantile-based dynamic
survival extropy. Thus, there is a unique characteristic of ξJ(X; QX(u)) unlike the dy-
namic survival extropy ξJ(X; t) in (1.2), where no such explicit relationship exists between
ξJ(X; x) and f(x).

Sathar and Nair [25] proposed two ageing classes (nonparametric classes of statistical
models) increasing dynamic survival extropy (IDSEx) and decreasing dynamic survival
extropy (DDSEx). In the following, we define two nonparametric classes of statistical
models, using the monotonicity of the quantile-based dynamic survival extropy function.

Definition 2.6. We say that X has an increasing (decreasing) quantile-based dynamic
survival extropy, shortly written as IQDSEx (DQDSEx), if ξJ(X; QX(u)) is nondecreasing
(nonincreasing) in u, u ≥ 0.

Since qf QX(u) is an increasing function, we can say that IDSEx (DDSEx) is equivalent
to IQDSEx (DQDSEx). In the following and using the monotonicity of the quantile-based
dynamic survival extropy function, we derive upper and lower bounds for quantile-based
dynamic survival extropy depending on the hqf. From the relation (2.8) it holds that if
X is IQDSEx (DQDSEx), then ξJ(X; QX(u)) ≥ (≤) − (1−u)qX(u)

4 . Thus, it follows that if
X is IQDSEx (DQDSEx), then from (2.1) we have

ξJ(X; QX(u)) ≥ (≤) − 1
4HX(u)

. (2.11)

Table 1 gives some applications of monotonicity of the quantile-based dynamic survival
extropy function. The table provides some statistical models that belongs to IQDSEx
or DQDSEx classes. Also, in the table we have presented upper or lower bounds of the
quantile-based dynamic survival extropy for these statistical models.
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Table 1. The quantile-based dynamic survival extropy of some statistical models,
monotone nature of these models and bounds for ξJ(X; QX(u)).

Statistical model and qf ξJ(X; QX(u)) Monotone nature bound
Uniform − (b−a)(1−u)

6 IQDSEx ≥ − (b−a)(1−u)
4

QX(u) = a + (b − a)u, a ≥ 0, b > a IHR

Rescaled beta −α(1−u)
1
β

2(2β+1) IQDSEx ≥ −α(1−u)
1
β

4β

QX(u) = α
(
1 − (1 − u)

1
β

)
, α > 0, β > 0 DHR

Pareto type I −α(1−u)− 1
β

2(2β−1) DQDSEx ≤ − α

4β(1−u)
1
β

QX(u) = α(1 − u)− 1
β , α > 0, β > 0 DHR

Pareto type II −α(1−u)− 1
β

2(2β−1) DQDSEx ≤ − α

4β(1−u)
1
β

QX(u) = α
(
(1 − u)− 1

β − 1
)
, α > 0, β > 0 DHR

Generalized Pareto − b(1−u)− a
a+1

2(a+2) DQDSEx ≤ − b(1−u)
(

(1−u)− a
a+1 −1

)
4a

QX(u) = b
a

(
(1 − u)− a

a+1 − 1
)
, a > 0, b > 0 DHR

Log logistic −
β̄u( 1

β
,2− 1

β
)

2αβ(1−u)2 , β > 1
2 IQDSEx ≥ −u

1
β (1−u)

1
β

−1

4α

QX(u) = 1
α

(
u

1−u

) 1
β , α > 0, β > 0 DHR for β < 1

Exponential − 1
4λ Boundary class = − 1

4λ
QX(u) = −λ−1 ln(1 − u), λ > 0 Boundary class

Weibull −λ− 1
α γ̄− ln(1−u)( 1

α
,2)

2α(1−u)2 DQDSEx ≤ −
(

−ln(1−u)
) 1

α

4αλ
1
α

QX(u) = λ− 1
α

(
− ln(1 − u)

) 1
α , 0 < α < 1, λ > 0 DHR for α < 1

IHR for α > 1

Remark 2.7. Since the monotonicity of hazard rate function and quantile hazard function
are identical, we can say that X has an increasing (decreasing) hazard rate [IHR (DHR)] if
HX(u) is increasing (decreasing) in u. Based on Table 1, some statistical models belongs
to IHR (DHR) classes, while they belong to DQDSEx (IQDSEx). Thus, we can say that
IHR (DHR) property does not imply IQDSEx (DQDSEx) property.

The following theorem shows that the constant quantile-based dynamic survival extropy
characterizes exponential distribution.

Theorem 2.8. The non-negative absolutely continuous rv X has constant quantile-based
dynamic survival extropy if and only if X is exponentially distributed.

Proof. The "if" part is direct from Table 1. To prove the "only if" part, assume that
ξJ (X; QX(u)) = c, is constant. Using relation (2.8), we obtain QX(u) = 4c ln(1 − u) =
−λ−1 ln(1 − u), where λ = − 1

4c . Hence the proof is complete. □

The following theorem shows that the linear quantile-based dynamic survival extropy
characterizes the linear mean residual quantile distribution [13].

Theorem 2.9. For non-negative absolutely continuous rv X, ξJ (X; QX(u)) = a + bu,
a, b > 0 holds if and only if X follows a family of distribution with qf

QX(u) = 4(a + b) log(1 − u) + 6bu.

Proof. The first part of the proof follows from relation (2.5). Conversely, assume that
ξJ (X; QX(u)) = a + bu, a, b > 0. Using relation (2.8), we obtain qX(u) = −4(a+b)

1−u + 6b =
Q

′
X(u), which completes the proof. □

Sathar and Nair [25], compared the uncertainties of two rvs X and Y by comparing
their dynamic survival extropy functions at the same time points t. Here, we introduce a
stochastic order so as to compare the uncertainties of X and Y based on the quantile-based
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dynamic survival extropy functions at the age points QX(u) and QY (u) at which X and
Y possess equally survival probabilities.

Definition 2.10. The non-negative absolutely continuous rv X is said to be smaller than
Y in the
• dynamic survival extropy order denoted by X

DSEx
⩽ Y , if ξJ(X; t) ≤ ξJ(Y ; t) for all

t ≥ 0.
• quantile-based dynamic survival extropy order denoted by X

QDSEx
⩽ Y , if ξJ(X; QX(u)) ≤

ξJ(Y ; QY (u)) for all u ∈ [0, 1].

Based on the following example, we show that defined stochastic orders do not seem to
have been discussed in literature.

Example 2.11. Let X and Y have two Pareto type I distribution with survival functions
(sfs) F̄X(x) =

( 1
x

)b and ḠX(x) =
( 1

x

)d, b, d > 0, b ≤ d, respectively. From definition of
dynamic survival extropy using relation (1.2), we obtain

J(X; t) = − bt

2(2 − b)
≥ − dt

2(2 − d)
= J(Y ; t), b, d ̸= 2, t ≥ 1.

On the other hand, from Table 1, we have

ξJ(X; QX(u)) = −(1 − u)− 1
b

2(2b − 1)
≤ −(1 − u)− 1

d

2(2d − 1)
= ξJ(Y ; QY (u)), b, d ̸= 1

2
,

for all u ∈ (0, 1). Hence, X
QDSEx

⩽ Y ⇏ X
DSEx
⩽ Y . Also, interchanging the roles of X

and Y implies that X
DSEx
⩽ Y ⇏ X

QDSEx
⩽ Y .

Definition 2.12. The rv X is said to be smaller than Y in the hazard quantile function

order denoted by X
QHR
⩽ Y , if HX(u) ≥ HY (u) for all u ∈ (0, 1).

Remark 2.13. (i) From definition of hazard quantile function order and using relation

(2.6), X
QHR
⩾ Y implies that X

QDSEx
⩽ Y . But, X

QHR
⩽ Y dose not imply X

QDSEx
⩽ Y .

For example, consider two rvs X and Y distributed as U(0, 1) and U(0, 3), respectively.

We have X
QHR
⩽ Y while X

QDSEx
⩾ Y .

(ii) Consider the continuous non-negative rvs X and Y. If X and Y have the same lower
end of the support and if QY (u)

QX(u) is increasing in u ∈ (0, 1), then X
st
⩽ Y (the usual

stochastic order) implies that X
QHR
⩽ Y (see [31]). Hence, from part (i), X

st
⩾ Y imply

that X
QDSEx

⩽ Y .
(iii) If X or Y is decreasing failure rate (DFR), then X

hr
⩽ Y (the hazard rate order)

implies that X
QHR
⩽ Y (see [31]). Hence, From part (i), X

hr
⩾ Y implies that X

QDSEx
⩽ Y .

Following theorem shows the quantile-based dynamic survival extropy can be a super-
additive functional.

Theorem 2.14. Let X and Y be two independent continuous non-negative rvs with same
left-end of the support points and right-end support points rX = rY < +∞. If X and Y

have log-concave density and QY (u)
QX(u) is increasing in u ∈ (0, 1), then

(i) ξJ(X + Y ; QX+Y (u)) ≥ max{ξJ(X; QX(u)), ξJ(Y ; QY (u))}.
(ii) ξJ(X + Y ; QX+Y (u)) ≥ ξJ(X; QX(u)) + ξJ(Y ; QY (u)).
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Proof. From Theorem 3.B.7 of [26], we imply that X
disp
⩽ X +Y (the dispersive order) for

any rv Y independent of X with log-concave density. This implies that X
st
⩾ X + Y under

the hypothesis rX = rY < +∞ (see Theorem 3.B.13 of [26]). Thus, if QY (u)
QX(u) is increasing

in u ∈ (0, 1), Remark 2.13 implies that ξJ(X + Y ; QX+Y (u)) ≥ ξJ(X; QX(u)). Similarly,
we have ξJ(X + Y ; QX+Y (u)) ≥ ξJ(Y ; QY (u)) when Y has a log-concave density. Hence,
we give the result of part (i). Due to part (i), the result of part (ii) follows by recalling
that the quantile-based dynamic survival extropy of a continuous non-negative rv is always
non-positive. □
Remark 2.15. Suppose that a density fX(x) can be written as

fX(x) = fφX (x) = exp(φX(x)) = exp(−(−φX(x))),
where φX(x) is concave function (and −φX(x) is convex function). The class of all densities
fX(x) on R, of this form is called the class of log-concave densities.
The class of log-concave densities is rich and contains important densities in probability,
statistics and analysis. Gaussian density, Laplace density, uniform density on a convex
set, chi density are all log-concave. Moreover, many familiar probability distributions
lack closed form cdfs, but have pdfs that are represented by simple algebraic expressions.
Conveniently, it turns out that log-concavity of the pdf implies log-concavity of the cdf. For
example, the cumulative normal distribution does not have a closed form representation
and direct verification of its log-concavity is difficult. But the normal density function is
easily seen to be log-concave, since its natural logarithm is a concave quadratic function.

3. Quantile-based dynamic survival extropy of order statistics
Let X1, X2, ..., Xn be independent and identically distributed (iid) non-negative rvs that

have sfs F̄ (x). If Xi:n denotes the ith order statistics in this sample of size n, then the
lifetime of a (n-i+1)-out-of-n system is determined by Xi:n with sf F̄i:n(x). In spacial
cases, the lifetime of two series and parallel systems are determined by X1:n and Xn:n
with sfs F̄1:n(x) and F̄n:n(x), respectively. The quantile-based uncertainty measures of
order statistics is useful to compare the uncertainties of lifetimes of two (n-i+1)-out-of-
n systems. In this section, we focus on the quantile-based dynamic survival extropy of
lifetime of series (first order statistic) and parallel (sample maxima) systems.
In analogy with relation (1.2), the dynamic survival extropy of ith order statistics Xi:n is
given by

ξJ(Xi:n; t) = −1
2F̄ 2

i:n(t)

∫ +∞

t
F̄ 2

i:n(x)dx

= −1
2β̄2

F (t)(i, n − i + 1)

∫ +∞

t
β̄2

F (x)(i, n − i + 1)dx.

Since the quantile form of sf of ith order statistics is defined as F̄i:n(x) = β̄u(i,n−i+1)
β̄(i,n−i+1) , the

quantile-based dynamic survival extropy of ith order statistics Xi:n is given by

ξJ(Xi:n; QXi:n(u)) = −1
2β̄2

u(i, n − i + 1)

∫ 1

u
β̄2

p(i, n − i + 1)qX(p)dp.

In spacial case and for the series system with lifetime X1:n, we have

ξJ(X1:n; QX1:n(u)) = −1
2(1 − u)2n

∫ 1

u
(1 − p)2nqX(p)dp. (3.1)

Also for the parallel system with lifetime Xn:n, we have

ξJ(Xn:n; QXn:n(u)) = −1
2(1 − un)2

∫ 1

u
(1 − pn)2qX(p)dp. (3.2)
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Differentiating (3.1) with respect to u on both sides, we can obtain

qX(u) = 2ξJ
′(X1:n; QX1:n(u)) − 4nξJ(X1:n; QX1:n(u))

(1 − u)
. (3.3)

Similarity, by differentiating (3.2) with respect to u on both sides, we get

qX(u) = 2ξJ
′(Xn:n; QXn:n(u)) − 4nξJ(Xn:n; QXn:n(u))

u1−n(1 − un)
. (3.4)

Above equation shows that the quantile-based dynamic survival extropy of X1:n and Xn:n
uniquely determines the underling distribution function. In following examples, we study
the values of ξJ(X1:n; QX1:n(u)) and ξJ(Xn:n; QXn:n(u)) for two family of qfs that do not
have explicitly known cdfs.

Example 3.1. Let X be a rv of generalized lambda family with a closed form quantile
function as (2.9). Then, the quantile-based dynamic survival extropy of X1:n and Xn:n
are given by

ξJ(X1:n; QX1:n(u)) = −1
2λ2(1 − u)2n

(
λ3β̄u(λ3, 2n + 1) + λ4β̄u(1, λ4 + 2n)

)
,

ξJ(Xn:n; QXn:n(u)) = −1
2λ2(1 − un)2

(
nλ3β̄un(λ3

n
, 3) + λ4(β̄u(1, λ4)

+ β̄u(2n + 1, λ4) − 2β̄u(n + 1, λ4))
)
.

Example 3.2. Let Xi:n be the ith order statistic based on a random sample of size n from
no closed quantile density function given by qX(u) = KuV (1 − u)−(B+V ), K, B, V ∈ R.
Then, we obtain the quantile-based dynamic survival extropy of X1:n and Xn:n as follows:

ξJ(X1:n; QX1:n(u)) = −K

2(1 − u)2n

(
β̄u(V + 1, −(B + V ) + 2n + 1)

)
,

ξJ(Xn:n; QXn:n(u)) = −K

2(1 − un)2

(
β̄u(V + 1, −(B + V ) + 1) + β̄u(V + 2n + 1, −(B + v) + 1)

+ β̄u(V + n + 1, −(B + V ) + 1)
)
.

Now, we find bounds for quantile-based dynamic survival extropy of first order statistic
and sample maxima based on the hqf HX(u). These bounds are useful when the qdf has
no closed form or ξJ(X1:n; QX1:n(u)) and ξJ(Xn:n; QXn:n(u)) are difficult to compute.

Theorem 3.3. Let X be a continuous non-negative rv with qf QX(u) and hqf HX(u).
(i) If the quantile-based dynamic survival extropy of first order statistic is increasing (de-
creasing) in u, then

ξJ(X1:n; QX1:n(u)) ≥ (≤) −1
4nHX(u)

. (3.5)

(ii) If the quantile-based dynamic survival extropy of sample maxima is increasing (de-
creasing) in u, then

ξJ(Xn:n; QXn:n(u)) ≥ (≤) −(1 − un)
4nunH̄X(u)

, (3.6)

where H̄X(u) = f(QX(u))
F (QX(u)) = 1

uqX(u) is the quantile form of reversed hazard rate function.

Proof. Assume that ξJ(X1:n; QX1:n(u)) is increasing (decreasing), so that
ξJ

′(X1:n; QX1:n(u)) ≥ 0(≤ 0). Thus, the lower and upper bounds as (3.5) can be ob-
tained from relation (3.3). Similarly, the bounds as (3.6) can be obtained from relation
(3.4). □
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The quantile-based dynamic survival extropy of order statistics is useful to compare the
uncertainties of lifetimes of (n − i + 1)-out-of-n systems. The following remark can be
viewed as direct application of part (iii) of Remark 2.13 in the area of order statistics.
Remark 3.4. Let X1, X2, ..., Xn be iid non-negative DFR rvs having continuous qfs
QX(u). Then,

(a) Xi:n
QDSEx

⩾ Xi+1:n. That is ξJ(Xi:n; QXi:n(u)) is a decreasing function of i.

(b) X1:n
QDSEx

⩾ X1:n−1.

(c) Xn−1:n−1
QDSEx

⩾ Xn:n.

(d) We know that X
hr
⩽ X1:n. Thus, X

QDSEx
⩾ X1:n. Also, since Xn:n

hr
⩽ X, we have

Xn:n
QDSEx

⩾ X.

(e) If X1
hr
⩽ Y1 then Xi:n

QDSEx
⩾ Yi:n.

Remark 3.5. Consider the Cox proportional hazard model, defined by hY (x) = θhX(x),
θ > 0. The quantile-based dynamic survival extropy of first order statistic Y1:n is given by

ξJ(Y1:n; QY1:n(u)) = −1
2(1 − u)2n

∫ 1

u
(1 − p)2nqY (p)dp.

= −1
2(1 − u)2n

∫ 1

u
(1 − p)2n (1 − p)

1
θ

−1

θ
qX(1 − (1 − p)

1
θ )dp

= −1
2(1 − u)2n

∫ 1

1−(1−u)
1
θ

(1 − z)2nθqX(z)dz, (3.7)

where the last equation is obtained by taking z = 1−(1−p)
1
θ . On the other hand, relation

(3.7) gives

ξJ(Y1:n; QY1:n(u)) ≤ −1
2(1 − u)2n

∫ 1

u
(1 − z)2nqX(z)dz

≤ ξJ(X1:n; QX1:n(u)).
Similarly, for the quantile-based dynamic survival extropy of sample maxima, we can find
ξJ(Yn:n; QYn:n(u)) ≤ ξJ(Xn:n; QXn:n(u)).

Next, we prove a characterization theorem for some well-known distributions using the
relationship between the quantile-based dynamic survival extropy and the hqf of the first
order statistics.
Theorem 3.6. Let X1:n denote the first order statistics with hqf HXi:n(u). Then, the
quantile-based dynamic survival extropy ξJ(X1:n; QX1:n(u)) is given by

ξJ(X1:n; QX1:n(u)) = −C H−1
Xi:n

(u), (3.8)
if and only if X is distributed as
(i) uniform distribution, if C = n

2(2n+1) .
(ii) exponential distribution, if C = 1

4 .
(iii) Pareto type I distribution, if C = nα

2(2nα−1) .

Proof. Assume that the relationship (3.8) holds. Using (3.1) we have∫ 1

u
(1 − p)2nqX(p)dp = 2C(1 − u)2nH−1

Xi:n
(u). (3.9)

Substituting HXi:n(u) = fi:n(QX(u))
F̄1:n(QX(u)) = n

(1−u)qX(u) and simplifying, (3.9) gives∫ 1

u
(1 − p)2nqX(p)dp = 2C(1 − u)2n+1qX(u)

n
. (3.10)
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Differentiating from (3.10) with respect to u and after some algebraic simplification, we
get

q
′
X(u)

qX(u)
= 2C(2n + 1) − n

2C(1 − u)
. (3.11)

Integrating (3.11) with respect to u and simplifying, we obtain

qX(u) = (1 − u)− 2C(2n+1)−n
2C eL,

where L is the constant of integration. Now, if C = n
2(2n+1) and L = ln(b − a); b > 1,

which implies that Q(u) = a + (b − a)u. Thus, we have the uniform distribution U(a, b).
If C = 1

4 and L = − ln λ, which implies that Q(u) = λ−1 ln(1 − u). Thus, we have the
exponential distribution with parameter λ > 0. If C = nα

2(2nα−1) and L = ln
(

α
β

)
; α > 0,

β > 0, we have α(1 − u)− 1
β . This means, we have the Pareto type I distribution. Only

the if part of the theorem is easy to be proved. □

4. Application
This is well-known that the qf QX(u) of rv X plays a very important role in comparing

risks. In fact, in this context it is known as value-at-risk and is denoted by V ar[X; u] =
QX(u), u ∈ (0, 1). It is employed to infer that the amount of capital needed to keep the
probability of going bankrupt is at least 1 − u. As the value-at-risk at given level u gives
only a local information about the underlying risk, a more refined measure is known as
conditional value-at-risk and is denoted by (see Remark 2.1)

CV aR[X; u] = E[X − V ar[X; u] | X > V ar[X; u]], u ∈ (0, 1).
Hence, the conditional value-at-risk is the average losses that exceed the threshold at
value-at-risk confidence level u. It can be notice that CV aR[X; u] = MX(u) (see Remark
2.1). Using relation (2.7), we obtain

ξJ (X; QX(u)) = −CV aR[X; u]
2

+ 1
2 (1 − u)2

∫ 1

u
(1 − p) CV aR[X; p] dp.

Thus CV aR[X; u] determines ξJ (X; QX(u)) uniquely. This coincidence allows the appli-
cation of absolute value of quantile-based dynamic survival extropy function |ξJ(X; QX(u))|
∈ [0, +∞) as risk measure. In addition, |ξJ(X; QX(u))| provides an account of the un-
certainty associated with the losses at each percentile u. Furthermore, |ξJ(X; QX(u))|
preserves some basic properties of a risk measure as follows:

(1) Using Remark 2.13, we can consider a monotonicity property for the absolute
value of quantile-based dynamic survival extropy under the hypothesis of usual
stochastic order.

(2) Relation |ξJ(aX + b; QX(u))| = a|ξJ(X; QX(u))|, a, b > 0, shows the absolute
value of quantile-based dynamic survival extropy is a shift-independent measure.

(3) Using Theorem 2.14, we can obtain a subadditive property of |ξJ(X; QX(u))|.
There are some sf-based information measures considered as a risk measure in
literature. Yang [33] proposed the cumulative residual entropy function as a risk
measure for heavy-tailed distribution when variance dose not exist. Psarrakos and
Toomaj [18] studied a generalized form of cumulative residual entropy and dynamic
form of it as risk measures. Recently, Jahanshahi et al. [5] proposed the absolute
value of CREX function as risk measure.

We can not use sf-based information measures as a risk measure for some rvs having no
closed form sfs. In such situations, we suggest quantile-based information measures.

Most Recently, Nair et al. [15] point out the use of quantile-based dynamic cumulative
residual entropy as a risk measure. In this section, we consider the absolute value of
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quantile-based dynamic survival extropy function |ξJ(X; QX(u))| at fixed value u = u0 as
risk measure in real-life problems.

From real-life problems and for fixed time value t0, Psarrakos and Toomaj [18] defined
the generalized right tail deviation measure as

R(X; r, t0) =
∫ +∞

t0

(
F̄ (x)
F̄ (t0)

)r

dx −
∫ +∞

t0

F̄ (x)
F̄ (t0)

dx, 0 < r ≤ 1. (4.1)

Substituting x = QX(p) in relation (4.1), we can propose a quantile form of the generalized
right tail deviation measure as

R(X; r, u0) =
∫ 1

u0

( 1 − p

1 − u0

)r

qX(p)dp −
∫ 1

u0

( 1 − p

1 − u0

)
qX(p)dp, 0 < u0 ≤ 1. (4.2)

Note that for r = 1
2 , above relations give the right tail deviation measure D(X) [32]

and quantile form of it D(X; u0), respectively. In following examples we consider some
statistical models to comparing |ξJ(X; QX(u0))|, R(X; r, u0) and D(X; u0).

Example 4.1. Consider some statistical models in Table 1. For uniform distribution we
have

|ξJ(X; QX(u0))| = (b − a)(1 − u0)
6

, R(X; r, u0) = (b − a)
(1 − u0

r + 1
− 1 − u0

2

)
,

D(X; u0) = (b − a)(1 − u0)
6

.

For Pareto type II distribution we obtain

|ξJ(X; QX(u0))| = α(1 − u0)− 1
β

2(2β − 1)
, R(X; r, u0) = α

(
(1 − u0)− 1

β
)( 1

βr − 1
− 1

β − 1

)
,

D(X; u0) = α
(
(1 − u0)− 1

β
)( 2

β − 2
− 1

β − 1

)
.

Figures 3 to 7 show some plots of the functions |ξJ(X; QX(u0))|, R(X; r, u0) and D(X; u0)
for some choices of parameters. For uniform distribution, we can see that R(X; r, u0)
decreases when r grows, and generally when u0 becomes larger. Moreover, Figure 3 gives
following results for uniform distribution

|ξJ(X; QX(u0))| < R(X; r, u0), 0 < r <
1
2

,

|ξJ(X; QX(u0))| > R(X; r, u0), 1
2

< r ≤ 1,

|ξJ(X; QX(u0))| = D(X; u0).

For Pareto type II distribution, we can see that R(X; r, u0) is a nondecreasing function
of u0. But, it decreases when r grows. Moreover, Table 2 gives some results for Pareto
type II distribution from the Figures 4 to 6.

Example 4.2. Let X be a rv with no closed qdf in Example 3.2. After some calculations,
we get

|ξJ(X; QX(u0))| = K

2(1 − u0)2
(
β̄u0(V + 1, −(V + B) + 3)

)
,

and

R(X; r, u0) = K

(
β̄u0(V + 1, −(V + B) + r + 1)

(1 − u0)r
− β̄u0(V + 1, −(V + B) + 2)

(1 − u0)

)
,

while D(X; u0) = R(X; 1
2 , u0).
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Figure 3. Graphs of |ξJ(X; QX(u0))|, D(X; u0) and R(X; r, u0) for uniform
distribution in Example 4.1 with parameters as indicated.

Figure 4. Graphs of |ξJ(X; QX(u0))|, D(X; u0) and R(X; r, u0) for Pareto type
II distribution in Example 4.1 with parameters as indicated.

Figure 5. Graphs of |ξJ(X; QX(u0))|, D(X; u0) and R(X; r, u0) for Pareto type
II distribution in Example 4.1 with parameters as indicated.
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Figure 6. Graphs of |ξJ(X; QX(u0))|, D(X; u0) and R(X; r, u0) for Pareto type
II distribution in Example 4.1 with parameters as indicated.

Figure 7. Graphs of |ξJ(X; QX(u0))|, D(X; u0) and R(X; r, u0) in Example 4.2
for parameters as indicated.

Table 2. Comparison between |ξJ(X; QX(u0))| and R(X; r, u0) of Pareto type II
distribution in Example 4.1 for some choices of parameters.

Parameters Conclusions
α = 0.9, β = 0.9 | ξJ(X; QX(u0)) |< R(X; r, u0), for 0 < r < 1

| ξJ(X; QX(u0)) | is relatively close to R(X; 0.95, u0)
α = 0.4, β = 0.9 | ξJ(X; QX(u0)) |< R(X; r, u0), for 0 < r < 1

| ξJ(X; QX(u0)) | is relatively close to R(X; 0.95, u0)
α = 2, β = 0.4 | ξJ(X; QX(u0)) |< (>)R(X; r, u0), for 0 < r < 0.75 (0.75 < r < 1)

| ξJ(X; QX(u0)) | is relatively close to R(X; 0.75, u0)
α = 2, β = 8 | ξJ(X; QX(u0)) |< R(X; r, u0), for 0 < r < 1

| ξJ(X; QX(u0)) | is relatively close to R(X; 0.9, u0)
α = 10, β = 3 | ξJ(X; QX(u0)) |< (>)R(X; r, u0), for 0 < r < 0.75 (0.75 < r < 1)

| ξJ(X; QX(u0)) | is relatively close to R(X; 0.75, u0)
α = 0.5, β = 8 | ξJ(X; QX(u0)) |< R(X; r, u0), for 0 < r < 1

| ξJ(X; QX(u0)) | is relatively close to R(X; 0.9, u0)

Figure 7 provides the graphs of |ξJ(X; QX(u0))|, R(X; r, u0) and D(X; u0) for some
choices of parameters. For K = 0.5, V = −0.7, B = 1.8, we see that R(X; r, u0) increases
when r grows, and generally when u0 becomes larger. We observe that |ξJ(X; QX(u0))|
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is a nonincreasing function of u0. Moreover, we find that

|ξJ(X; QX(0.05375))| = R(X; 0.2, 0.05375) = 0.13259
|ξJ(X; QX(0.18735))| = R(X; 0.4, 0.18735) = 0.09762
|ξJ(X; QX(0.69758))| = R(X; 0.6, 0.69758) = 0.06659.

For K = 2, V = −1.2, B = −0.2, we see that R(X; r, u0) decreases when r grows, and
generally when u0 becomes larger. We observe that |ξJ(X; QX(u0))| is a nonincreasing
functions of u0. Moreover, we find that |ξJ(X; QX(u0))| > R(X; r, u0) for all 0 < r ≤ 1.

Example 4.3. To study the application of our results in risk analysis, we have a set of 35
observations on the hurricane loss during the period 1949-1980 given in [18]. To examine
behaviour of some risk measures on hurricane loss data we consider CQ(u), CV aR(X; u)
and ξJ(X; u) measures which are based on quantile function. The CQ(u) risk measure was
proposed and studied by [16]. Figure 8 gives the estimates of considered risk measures. It
is seen that all three risk measures are increasing for hurricane loss data.

Figure 8. Estimate of CQ(u), CV aR(X; u) and ξJ(X; u) risk measures for hur-
ricane loss data.

5. Conclusion
The quantile approach is a worthy tool in information theory. In this paper, we present a

quantile form of dynamic survival extropy and study some properties of it. Some highlights
of the proposed quantile-based dynamic survival extropy are as follows:

• It is a quantile measure of uncertainty, which can measure the uncertainty of
residual life XQX(u).

• It can be used for statistical models that do not have explicitly known cdfs, though
it has closed form qfs.

• The quantile-based dynamic survival extropy uniquely determines the quantile
density function.

• We present quantile-based dynamic survival extropy of Xj:n, j = 1, n, which can be
used to compare the uncertainties of residual lives of two series (parallel) systems
at the age points QXj:n(u) and QYj:n(u) at which Xj:n and Yj:n possess equally
survival probabilities.
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• Unlike sf-based information measures, the absolute value of quantile-based dy-
namic survival extropy can be used as risk measure for some random variables
having no closed form sfs.

Acknowledgment. We would like to appreciate the constructive comments by anony-
mous referees which improved the quality and the presentation of our results.

References
[1] S. Baratpour and A.H. Khammar, A quantile-based generalized dynamic cumulative

measure of entropy, Commun. Stat. Theory Methods 47, 3104-3117, 2017.
[2] A. Di Crescenzo, B. Martinucci and J. Mulero, A quantile-based probabilistic mean

value theorem, Probab Eng Inf Sci 30, 261-280, 2016.
[3] W. Gilchrist, Statistical Modelling with Quantile Functions, Boca Raton, FL: Chap-

man and Hall/CRC, 2000.
[4] T. Gneiting and A.E. Raftery, Strictly proper scoring rules, prediction, and estima-

tion, J Am Stat Assoc 102, 359-378, 2007.
[5] S.M.A. Jahanshahi, H. Zarei and A.H. Khammar, On cumulative residual extropy,

Probab Eng Inf Sci 34 (4), 605-625, 2020.
[6] J. Jose and E.I.A. Sathar, Extropy for past life Based on classical records, J. Indian

Soc. Probab. Stat. 22, 27-46, 2021.
[7] J. Jose and E.I.A. Sathar, Residual extropy of k-record values, Stat Probab Lett 146,

1-6, 2019.
[8] A.H. Khammar and S.M.A. Jahanshahi, Quantile based Tsallis entropy in residual

lifetime, Physica A 492, 994-1006, 2018.
[9] S. Krishnan, S.M. Sunoj and N.U. Nair, Some reliability properties of extropy for

residual and past lifetime random variables, J Korean Stat Soc 49, 457-474, 2020.
[10] S. Krishnan, S.M. Sunoj and P.G. Sankaran, Some reliability properties of extropy

and its related measures using quantile function, Statistica 80, 413-437, 2021.
[11] V. Kumar and Rekha, A quantile approach of Tsallis entropy for order statistics,

Physica A 503, 916-928, 2018.
[12] F. Lad, G. Sanfilippo and G. Agro, Extropy: Complementary dual of entropy, Stat

Sci 30, 40-58, 2015.
[13] N.N. Midhu, P.G. Sankaran and N.U. Nair, A class of distributions with the linear

mean residual quantile function and its generalizations, Stat Methodol 15, 1-24, 2013.
[14] N.U. Nair, P.G. Sankaran and N. Balakrishnan, Quantile-Based Reliability Analysis.

New York: Springer, 2013.
[15] N.U. Nair and B. Vineshkumar, Relation between cumulative residual entropy and

excess wealth transform with applications to reliability and risk, Stoch. Qual. Control
36 (1), 43-57, 2021.

[16] A.K. Nanda, P.G. Sankaran and S.M. Sunoj, Renyi’s residual entropy: A quantile
approach, Stat Probab Lett 85, 114-121, 2017.

[17] H.A. Noughabi and J. Jarrahiferiz, Extropy of order statistics applied to testing sym-
metry, Commun. Stat. Simul. Comput. 51 (6), 3389-3399, 2022.

[18] G. Psarrakos and A. Toomaj, On the generalized cumulative residual entropy with
applications in actuarial science, J. Comput. Appl. Math. 309, 186-199, 2017.

[19] G. Qiu and A. Eftekharian, Extropy information of maximum and minimum
ranked set sampling with unequal samples, Commun. Stat. Theory Methods
Doi:10.1080/03610926.2019.1678640, 2020.

[20] G. Qiu and K. Jia, The residual extropy of order statistics, Stat Probab Lett 133,
15-22, 2018.



1366 A.H. Khammar, S.M.A. Jahanshahi, H. Zarei

[21] G. Qiu, L. Wang and X. Wang, On extropy properties of mixed systems, Probab Eng
Inf Sci 33, 471-86, 2019.

[22] M.Z. Raqab and G. Qiu, On extropy properties of ranked set sampling, Statistics 53,
210-26, 2019.

[23] P.G. Sankaran and S.M. Sunoj, Quantile based cumulative entropies, Commun. Stat.
Theory Methods 46, 805-814, 2017.

[24] E.I.A. Sathar and J. Jose, Extropy based on records for random variables representing
residual life, Commun. Stat. Simul. Comput. 52 (1), 196-206, 2020.

[25] E.L.A. Sathar and R.D. Nair, On the dynamic survival extropy, Commun. Stat. The-
ory Methods 50 (6), 1295-1313, 2021.

[26] M. Shaked and J.G. Shanthikumar, Stochastic Orders. Springer, New York, 2007.
[27] C.E. Shannon, A mathematical theory of communication, Bell Syst. tech. j. 27, 379-

423, 1948.
[28] S.M. Sunoj, A.S. Krishnan and P.G. Sankaran, Quantile based entropy of order sta-

tistics, J. Indian Soc. Probab. Stat. 18, 1-17, 2017.
[29] S.M. Sunoj and P.G. Sankaran, Quantile based entropy function, Stat Probab Lett

82, 1049-1053, 2017.
[30] S.M. Sunoj, P.G. Sankaran and N.U. Nair, Quantile-based cumulative Kullback-Leibler

divergence, Statistics 52, 1-17, 2018.
[31] B. Vineshkumar, N.U Nair and P.G. Sankaran, Stochastic orders using quantile-based

reliability functions, J Korean Stat Soc 44, 221-231, 2015.
[32] S. Wang, An actuarial index of the right-tail risk, N Am Actuar J 2, 88-101, 1998.
[33] V. Yang, Study on cumulative residual entropy and variance as risk measure, in: 5th

International conference on business intelligence and financial engineering, published
in IEEE 4, 2012.

[34] J. Yang, W. Xia and T. Hu, Bounds on extropy with variational distance constraint,
Probab Eng Inf Sci 33, 186-204, 2019.


