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Abstract

The exponential Diophantine equations of type px +qy = z2 have been widely studied over the past decade. Authors studied these equations
by considering primes p and q, and in general, for positive integers p and q. In this paper, we will be extending the study to Diophantine
equations of type

px +qy = z3.

In particular, we will be working with Diophantine equations of type

px +(p+4)y = z3, (0.1)

where p and p+4 are cousin primes; that is, primes that differ by four. We state some sufficient conditions for the non-existence of solutions
of equation (1) on the set of positive integers. The proof uses some results in the theory of rational cubic residues as well as results in
quadratic reciprocity, and some elementary techniques. It will be shown also that other Diophantine equations of similar type can also be
studied with the approaches used in this paper.
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1. Introduction

The study of Diophantine equations can be traced back to ancient times and it is still of interest in the field of Number Theory up to the
present time. The simplest type of Diophantine equations is the linear type in two variables x and y, which is of the form

ax+by = c,

for given integers a,b and c [3].
Another type of Diophantine equation that is recently being studied by numerous mathematicians is the exponential type in two variables x
and y and is of the form

ax +by = c,

where a,b and c arethe given integers. Interestingly, this was extended to three variables. Diophantine equations of type

ax +by = z2

have been studied for positive integer constants a and b (see, for details, [1], [2], [5], [6], [7], [8] and the references cited therein). Some
authors have used results about quadratic residues to solve these equations [4]. Now, it is natural to ask for the solutions of the Diophantine
equations of type

ax +by = z3,

where a and b are given positive integers.
In this paper, we use some results in the theory of rational cubic residues to some open problems. In particular, by considering certain
conditions, we characterize the positive integer solutions of the Diophantine equation px +(p+4)y = z3, where p and p+4 are cousin
primes and p≡ 1 (mod 3). This gives us a way on solving other similar Diophantine equations.
We first state some well-known results, and prove two lemmas because they are essential in the proof of our main result.
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Theorem 1.1. Let n be an integer possessing a primitive root, and an integer a such that gcd(a,n) = 1. Then, the congruence
xk ≡ a (mod n) has a solution if and only if the following congruence is satisfied:

aφ(n)/d ≡ 1 (mod n),

where d = gcd(k,φ(n)). If it has a solution, there are exactly d solutions modulo n.

The proof of this can be seen in Theorem 8-12 of [3].

Theorem 1.2. Let p be prime and a an integer such that gcd(a, p) = 1. Then, the congruence x3 ≡ a (mod p) has a solution if and only if
a(p−1)/d ≡ 1 (mod p), where d = gcd(3, p−1). If it has a solution, then there are exactly d solutions modulo p.

It can be easily seen that this is a corollary of the preceding theorem by assuming that k = 3 and n to be prime.

Lemma 1.3. Let p be prime satisfying p ≡ 1 (mod 3), and a an integer with gcd(a, p) = 1. If the congruence z3 ≡ a (mod p) has no
solutions z ∈ Z, then the congruence z3 ≡ ax (mod p) has no solutions for any x ∈ N that is not a multiple of 3.

Proof. Assume the contrary by supposing that z3 ≡ ax (mod p) has a solution, where x is not a multiple of 3. By using Theorem 1.2, we get
(ax)(p−1)/3 = (a(p−1)/3)x ≡ 1 (mod p). Also, since z3 ≡ a (mod p) has no solutions in z then a(p−1)/3 6≡ 1 (mod p). Now, we consider
x = 3k+2 for some k ∈ N. Note that by using Fermat’s little theorem, it is true also that (a(p−1)/3)3k ≡ 1 (mod p). Hence, we get(

a
p−1

3

)3k+2
≡
(

a
p−1

3

)3k
(mod p).

This gives (
a

p−1
3

)2
≡ 1 (mod p),

which implies that a(p−1)/3 ≡−1 (mod p). This further tells that ap−1 ≡ (−1)3 ≡−1 (mod p), which is a contradiction. We also get a
contradiction if x is assumed to be 3k+1, for some positive integer k.

Lemma 1.4. Let q 6= 7 be an odd integer. Then the Jacobi symbol
(

7
q

)
is equal to 1 if and only if q≡ 1,3,9,19,25,27 (mod 28).

Proof. By the Generalized Quadratic Reciprocity Law, we have that

(
7
q

)(q
7

)
=

{
1 if q≡ 1 (mod 4)
−1 if q≡ 3 (mod 4)

=⇒
(

7
q

)
=


(q

7

)
if q≡ 1 (mod 4)

−
(q

7

)
if q≡ 3 (mod 4)

.

We also know that (q
7

)
=

{
1 if q≡ 1,2,4 (mod 7)
−1 if q≡ 3,5,6 (mod 7)

.

The conclusion follows.

The following result on the theory of rational cubic residues is also needed to justify our main result.

Lemma 1.5. The integer 2 is a cubic residue modulo p = 1
4 (L

2 +27M2) if and only if L≡M ≡ 0 (mod 2).

The proof of this lemma can be seen in Proposition 7.1 of [4].

2. Main Result

We now present the main theorem.

Theorem 2.1. Let p and p+4 be primes such that p≡ 1 (mod 3). If p = 1
4 (L

2 +27M2), where L 6≡ 0 (mod 2) (or M 6≡ 0 (mod 2)), then
the exponential Diophantine equation px +(p+4)y = z3 has no solutions (x,y,z) in the set of positive integers.

Proof. Take the equation px +(p+4)y = z3 modulo p to get z3 ≡ 22y (mod p). Now, if LM 6≡ 0 (mod 2), then by Lemma 1.5,
z3 ≡ 2 (mod p) has no solution in z. By using Lemma 1.3, we observe that z3 6≡ 22y (mod p) except when y is a multiple of 3. Hence, we
only consider y = 3y1 where y1 ∈ N. In this case, we have

px = z3− (p+4)3y1 = (z− (p+4)y1)(z2 +(p+4)y1 z+(p+4)2y1).

Since p is prime, there exist integers α and β , α < β such that α +β = y and

pβ

pα
= pβ−α =

z2 +(p+4)y1 z+(p+4)2y1

z− (p+4)y1
= z+2(p+4)y1 +

3(p+4)2y1

z− (p+4)y1
.

This implies that the term z− (p+4)y1 must divide the expression 3(p+4)2y1 . So, we can write z− (p+4)y1 = 3(p+4) j or z− (p+4)y1 =
(p+4) j , where 0≤ j ≤ 2y1. Note that j > 0 is not possible since this will give us (p+4) | z, which is clearly a contradiction. Hence, j = 0
and we get either z− (p+4)y1 = 3 or z− (p+4)y1 = 1. For the first case, we have

px +(p+4)y = ((p+4)y1 +3)3 = (p+4)y +9(p+4)2y1 +27(p+4)y1 +27.
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We get px = 9(p+ 4)2y1 + 27(p+ 4)y1 + 27, but this is contrary to the fact that p ≡ 1 (mod 3). Hence, we are left with the case where
z = (p+4)y1 +1. For this one, we get

px +(p+4)y = ((p+4)y1 +1)3 = (p+4)y +3(p+4)2y1 +3(p+4)y1 +1.

Simplifying, we obtain

px = 3(p+4)2y1 +3(p+4)y1 +1. (2.1)

We now look the equation in modulo 4 and 8. Note that z is even. So, z3 ≡ 0 (mod 8) (and z3 ≡ 0 (mod 4)). On the other hand, we have
the following congruences:

px +(p+4)y ≡


2 (mod 4) if p≡ 1 (mod 4)
2 (mod 4) if p≡ 3 (mod 4) and x≡ y (mod 2)
0 (mod 4) if p≡ 3 (mod 4) and x 6≡ y (mod 2)

.

Thus, p≡ 3 (mod 4), and x and y must be of different parity. Working on this equation modulo 8 will give us the following scenarios:

px +(p+4)y ≡


4 (mod 8) if p≡ 3 (mod 8) and x is odd,y is even
0 (mod 8) if p≡ 3 (mod 8) and x is even,y is odd
4 (mod 8) if p≡ 7 (mod 8) and x is even,y is odd
0 (mod 8) if p≡ 7 (mod 8) and x is odd,y is even

.

Here, we get two possible cases; namely, p≡ 3 (mod 8) with x even and y odd, and p≡ 7 (mod 8) with x odd and y even.

Now, we go back to equation (2) and consider it in modulo (p+4). This simplifies to px ≡ 1 (mod (p+4)). Assume first that x is odd (and

consequently y is even). This implies that px+1 = p2k ≡ p (mod (p+4)). Hence the value of the Legendre symbol
(

p
p+4

)
is 1; that is,

(
p

p+4

)
= 1.

Since p≡ 3 (mod 4) and p+4≡ 3 (mod 4), by using the Quadratic Reciprocity Law, we have(
p

p+4

)
=−

(
p+4

p

)
=−

(
2
p

)2
=−1,

which leads to a contradiction.
We are only left with the case where x is even (and y is odd). For this case, taking equation (2) modulo p+3

2 will give us px ≡ 7 (mod p+3
2 ).

If gcd( p+3
2 ,7) = 1, then the value of the Jacobi symbol

(
7

p+3
2

)
is also 1; that is,

(
7

p+3
2

)
= 1.

Now, we look at all possible values for p+3
2 modulo 28 for prime p modulo 7. Refer to the following table. Note that p≡ 3 (mod 8) also

holds.

p (mod 7) p (mod 56) p+3
2 (mod 28)

p≡ 1 (mod 7) p≡ 43 (mod 56) p+3
2 ≡ 23 (mod 28)

p≡ 2 (mod 7) p≡ 51 (mod 56) p+3
2 ≡ 27 (mod 28)

p≡ 3 (mod 7) p≡ 3 (mod 56) p+3
2 ≡ 3 (mod 28)

p≡ 4 (mod 7) p≡ 11 (mod 56) p+3
2 ≡ 7 (mod 28)

p≡ 5 (mod 7) p≡ 19 (mod 56) p+3
2 ≡ 11 (mod 28)

p≡ 6 (mod 7) p≡ 27 (mod 56) p+3
2 ≡ 15 (mod 28)

Table 1: Values of p+3
2 modulo 28 for each prime p modulo 7

Thus, by using Lemma 1.4, we are only going to consider the cases where p ≡ 2 (mod 7) and p ≡ 3 (mod 7). The case where p ≡ 0
(mod 7) is omitted because it gives p = 7, which is not possible since p ≡ 3 (mod 8). For case p ≡ 2 (mod 7), by taking the equation
px +(p+4)y = ((p+4)y1 +1)3 modulo 7 will lead us to

2x +6≡ (6+1)3 ≡ 0 (mod 7).

Since x is even, we have {4,2,1}+6≡ 0 (mod 7) which gives us x≡ 0 (mod 6). For the case where p≡ 3 (mod 7), we get

3x +0≡ 1 (mod 7).
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Again, since x is even, we have {2,4,1} ≡ 1 (mod 7), which implies that x≡ 0 (mod 6). Hence, for either of the two cases, we notice that
x is a multiple of 6; that is, x = 6x1, for x1 ∈ N. This tells us that

(p2x1)3 +((p+4)y1)3 = z3,

which can be justified to have no solutions by using the Fermats Last Theorem.
The last case that we need to look at is the case where p+3

2 ≡ 0 (mod 7). This is equivalent to p+4≡ 1 (mod 7). Using equation (2.1), we
get px ≡ 3+3+1≡ 0 (mod 7). Since p is prime, this means that p≡ 0 (mod 7). This is a contradiction to the fact that p≡ 4 (mod 8).

To illustrate the paper’s result, we list down all Diophantine equations (1), where p ranges from 7 to 97, and see which Diophantine equations
have no solutions.

p px +(p+4)y = z3 L Conclusion
7 7x +11y = z3 1 no solutions

13 13x +17y = z3 5 no solutions
19 19x +23y = z3 7 no solutions
37 37x +41y = z3 11 no solutions
43 43x +47y = z3 8 no conclusion
67 67x +71y = z3 5 no solutions
79 79x +83y = z3 17 no solutions
97 97x +101y = z3 19 no solutions

Table 1: List of some Diophantine equations of the form (0.1) that satisfy Theorem 2.1

We can see that there is a high probability that the value of L is not even for values of p less than 100. We can see that the theorem caters
majority of the Diophantine equations of the form (0.1).
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