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Abstract
In this paper, we investigate suborbital graphs Gu,n of the normalizer ΓB(N) of Γ0(N)
in PSL(2,R) for N = 2α3β, where α = 0, 2, 4, 6 and β = 1, 3. In each of these cases,
the normalizer becomes a triangle group and the graph arising from the action of the
normalizer contains hexagonal circuits. In order to obtain graphs, we first define an
imprimitive action of ΓB(N) on Q̂ using the group HB(N) and then we obtain some
properties of the graphs arising from this action.
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1. Introduction
Groups are often studied in terms of their actions either on the elements of a set or on

particular objects within a structure. One of the most known examples of such situations
are maps. A regular map M is a dissection of a closed surface into vertices, edges, and
faces such that the automorphism group Aut(M) acts transitively on vertex-edge-face
incidence triples. In fact, they generalize the platonic solids to surfaces other than the
sphere. Having the "highest level of symmetry", the theory of maps and their symmetries
is surprisingly rich and interacts with other disciplines in mathematics such as algebraic
topology, group theory, hyperbolic geometry, the theory of Riemann surfaces, and Galois
theory. We refer the reader to [6, 7, 12] for further reading.

Understanding groups like Γ0(N) or other congruence groups of the modular group and
their normalizers in PSL(2,R) are of special interest for finite group theorists due their
links with the Monster simple group. Our object in the present paper is one of them, the
normalizer of Γ0(N) in PSL(2,R).

As indicated in [19], the existence of infinitely many maps with given properties often
reduces to related triangle groups. With this motivation, we have already examined the
relationship between the normalizer with signatures (2, 3, ∞) and (2, 4, ∞), and the regular
maps in [20,21], respectively. The work in this paper may be thought of as a continuation
of work done in [20, 21]. Although, many of the results and their proofs in this paper
are straightforward adjustments of those in [20, 21], our purpose here is to investigate
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some combinatorial properties of the normalizer with signature (2, 6, ∞) by a suitable
map subgroup. Lastly, we also refer the reader to [3, 9–11, 16–18] for the relationship of
the principal congruence subgroup modn of the Modular group and regular maps in this
manner.

2. Preliminaries
Let PSL(2,R) denote the group of all linear fractional transformation

T : z → az + b

cz + d
, where a, b, c and d are reals with ad − bc = 1.

In terms of matrix representation, the elements of PSL(2,R) correspond to the matrices

±
(

a b
c d

)
, wherea, b, c and d are reals with ad − bc = 1.

This is in fact the automorphism group of the upper half plane
H := {z ∈ C : Im(z) > 0} .

The modular group Γ is the subgroup of PSL(2,R) such that a, b, c, d are integers. The
subgroup Γ0(N) = {g ∈ Γ : c ≡ 0 (mod N)} is a well-known congruence subgroup of
the classical modular group Γ. The normalizer of Γ0(N) in PSL(2,R) turns to be a very
important group in the study of moonshine and for this reason has been studied by many
authors (see, for example, [4, 5, 8, 13,14]). It consists exactly of the matrices(

ae b/h
cN/h de

)
(2.1)

where e ∥ N
h2 and h is the largest divisor of 24 for which h2|N . Hence, the determinant e

of the matrix is positive, and r ∥ s means that r|s and (r, s/r) = 1 (r is called an exact
divisor of s). We denote the normaliser by ΓB(N).

3. The action of ΓB(N) on Q̂
From now on, unless otherwise stated explicitly, N denotes an integer such that N =

2α3β for α = 0, 2, 4, 6 and β = 1, 3. For these values of N , we have 3h2 = N and e = 1 or
3, so the group ΓB(N) is the set of transformations corresponding to the matrices

I. (
a b/h

3ch d

)
, ad − 3bc = 1,

II. (
3a b/h
3ch 3d

)
, 9ad − 3bc = 3 or 3ad − bc = 1,

where h is the largest divisor of 24 for which h2|N .

Definition 3.1. The elements of ΓB(N) of type I is called even elements and the elements
of type II is called odd elements. The set of all even elements is denoted by HB(N).

Proposition 3.2. HB(N) is a subgroup of index 2 in ΓB(N).

Proof. It is clear that HB(N) ≤ ΓB(N). We show that the index is 2. In order to do
this, we show that any two odd elements of ΓB(N) determine the same coset of HB(N)
in ΓB(N). Let

A1 =
(

3a1 b1/h
3c1h 3d1

)
, A2 =

(
3a2 b2/h
3c2h 3d2

)



668 N. Yazıcı Gözütok, B.Ö. Güler

be two odd elements. Then A1 and A2 determine the same coset of HB(N) in ΓB(N) if
and only if A−1

2 A1 ∈ HB(N). Thus, it is enough to show that A−1
2 A1 ∈ HB(N). To this

end, we have

A−1
2 A1 =

(
3d2 −b2/h

−3c2h 3a2

) (
3a1 b1/h
3c1h 3d1

)
=

(
9a1d2 − 3c1b2 3(b1d2 − b2d1)/h

9(a2c1 − c2a1)h 9d2a1 − 3b1c2

)
.

The resulting matrix has determinant 9, thus if we divide all entries by 3, transformation
does not change and we have determinant equal to 1. Thus, by the definition of an even
element, we have

A−1
2 A1 =

(
3a1d2 − c1b2 (b1d2 − b2d1)/h

3(a2c1 − c2a1)h 3d2a1 − b1c2

)
∈ HB(N).

�

Now, we determine the action of ΓB(N) on Q̂. Every element of Q̂ can be represented
by a reduced fraction x

y
, with x, y ∈ Z and (x, y) = 1. Since x

y
= −x

−y
, this representation

is not unique. We represent ∞ as 1
0

= −1
0

. The action of the transformation
(

a b
c d

)
on

x

y
is

(
a b
c d

)
: x

y
→ ax + by

cx + dy
.

Note that if
(

a b
c d

)
has determinant 1 and (x, y) = 1, then (ax + by, cx + dy) = 1.

The following theorem holds by [1] as a consequence of cusp number. Here, we give a
different arithmetical proof which more suitable for our purpose.

Theorem 3.3. The action of ΓB(N) on Q̂ is transitive.

Proof. It is enough to prove that the orbit of ∞ is Q̂. Let x

y
∈ Q̂. There are three cases

to be considered:
Case 1. Assume that (y, h) = 1.

i) Let 3 | y. In this case, there is an integer k such that y = 3k. Since (x, y) = 1,
(hx, y) = 1. Then there exist integers a, b such that ahx − by = 1. Now

consider the matrix
(

hx b/h
hy a

)
. Determinant of this matrix is 1 and by using

y = 3k, we have

(
hx b/h
hy a

)
=

(
hx b/h
3hk a

)
∈ ΓB(N)

and (
hx b/h
hy a

) (
1
0

)
= x

y
.

ii) Let 3 - y. Since (x, y) = 1, (hx, y) = 1. Also, as y is odd, we have (3hx, y) = 1.
Thus there exist integers a, b such that 3ahx−by = 1. Now consider the matrix(

3hx b/h
3hy 3a

)
. Determinant of this matrix is 3. Thus we have
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(
3hx b/h
3hy 3a

)
∈ ΓB(N)

and (
3hx b/h
3hy 3a

) (
1
0

)
= x

y
.

Case 2. Assume that (y, h) = h. In this case, as h|y, there is an integer t such that y = ht.
i) Let 3 - y. Since 3 - y and (x, y) = 1, we have (3x, y) = 1. Thus there exist

integers a, b such that 3ax − by = 1. Now consider the matrix
(

3x b
3y 3a

)
.

Determinant of this matrix is 3 and by using y = ht, we have(
3x b
3y 3a

)
=

(
3x bh/h
3th 3a

)
∈ ΓB(N)

and (
3x b
3y 3a

) (
1
0

)
= x

y
.

ii) Let 3 | y. We know that y = ht. Also, t could satisfy 3 | t or 3 - t.
A) Let 3 | t. In this case, there is an integer k such that t = 3k. Substituting

this in y = ht, we have y = 3hk. Since (x, y) = 1, there exist integers a, b

such that ax − by = 1. Now consider the matrix
(

x b
y a

)
. Determinant

of this matrix is 1 and by using y = 3hk, we have

(
x b
y a

)
=

(
x bh/h

3kh a

)
∈ ΓB(N)

and (
x b
y a

) (
1
0

)
= x

y
.

B) Let 3 - t. As (x, y) = 1, (x, t) = 1. Also, as 3 - t, it is obtained
(3x, t) = 1. Thus there exist integers a, b such that 3ax − bt = 1. Now

consider the matrix
(

3x b/h
3y 3a

)
. Determinant of this matrix is 3 and by

using y = ht, we have

(
3x b/h
3y 3a

)
=

(
3x b/h
3th 3a

)
∈ ΓB(N)

and (
3x b/h
3y 3a

) (
1
0

)
= x

y
.

Case 3. Assume that (h, y) = s, where s ̸= 1 and s ̸= h. Since s|h and s|y, there exist
integer m, n such that h = sm, y = sn and (m, n) = 1.

i) Let 3 - t. Since (m, y) = 1 and (x, y) = 1, (mx, y) = 1. Also, as 3 - t, we have
(3mx, y) = 1. Thus there exist integers a, b such that 3amx − by = 1. Now

consider the matrix
(

3mx b/m
3my 3a

)
. Determinant of this matrix is 3 and by

using h = sm and y = sn, we have
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(
3mx b/m
3nh 3a

)
=

(
3mx bs/h
3nh 3a

)
∈ ΓB(N)

and (
3mx b/m
3my 3a

) (
1
0

)
= x

y
.

ii) Let 3 | y. We know that y = kn. Also, n could satisfy 3 | n or 3 - n.
A) Let 3 | n. There is an integer t such that n = 3t. Thus, we obtain

y = 3st. Since 3 | t and (x, y) = 1, we have 3 - x. Similarly as 3 | n and
(m, n) = 1, we have 3 - m. On the other hand, (x, t) = 1 and 3 - x, and
so, (x, 3t) = 1. Similarly, since (m, n) = 1, we have (m, 3t) = 1. Thus
(x, 3t) = 1 and (m, 3t) = 1 yield (mx, 3t) = 1. Then there exist integers

a, b such that amx − 3bt = 1. Now consider the matrix
(

mx b/h
3th a

)
.

Determinant of this matrix is 1, then we have

(
mx b/h
3th a

)
∈ ΓB(N)

and (
mx b/h
3th a

) (
1
0

)
= x

y
.

B) Let 3 - n. Note that (x, y) = 1 yields (x, n) = 1. As 3 - n, (3x, n) = 1.
Also using (m, n) = 1, we have (3mx, n) = 1. Thus there exist integers

a, b such that 3amx − bn = 1. Now consider the matrix
(

3mx b/h
3nh 3a

)
.

Determinant of this matrix is 3, thus

(
3mx b/h
3nh 3a

)
∈ ΓB(N)

and (
3mx b/h
3nh 3a

) (
1
0

)
= x

y
.

�
Theorem 3.4. The stabiliser of ∞ in ΓB(N) is the group whose elements are the trans-
formations corresponding to the matrices(

1 u/h
0 1

)
, u ∈ Z.

Proof. First we show that an odd element of ΓB(N) does not stabilise ∞. If it does, we
have (

3a b/h
3ch 3d

) (
1
0

)
=

(
1
0

)
.

This yields a = 1 and c = 0. By determinant, it is written 3ad − bc = 1. Substituting
a = 1 and c = 0 in 3ad − bc = 1 yields 3d = 1. This contradicts with d is an integer.
Thus, the elements of ΓB(N) stabilising ∞ are even elements. Now, for an even element
stabilising ∞, (

a b/h
3ch d

) (
1
0

)
=

(
1
0

)
.
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It is obtained a = 1 and c = 0. By determinant we have also d = 1. Therefore an even

element stabilising ∞ is of the form
(

1 b/h
0 1

)
.

Conversely, since
(

1 u/h
0 1

) (
1
0

)
=

(
1
0

)
, any element that has the form

(
1 u/h
0 1

)
is

contained in the stabiliser of ∞. �
Now we consider the imprimitivity of the action of ΓB(N) on Q̂, hence we start with

a general discussion of primitivity of permutation groups. Let (G, ∆) be a transitive
permutation group, consisting of a group G acting on a set ∆ transitively. An equivalence
relation ≈ on ∆ is called G-invariant if, whenever α, β ∈ ∆ satisfy α ≈ β, then g(α) ≈ g(β)
for all g ∈ G. The equivalence classes are called blocks, and the block containing α is
denoted by [α]. We call (G, ∆) imprimitive if ∆ admits some G-invariant equivalence
relation different from

i) the identity relation, that is, α ≈ β if and only if α = β;
ii) the universal relation, that is, α ≈ β for all α, β ∈ ∆.

Otherwise (G, ∆) is called primitive. These two relations are supposed to be trivial re-
lations. Clearly, a primitive group must be transitive, for if not the orbits would form a
system of blocks. The converse is false, but we have the following useful result.

Lemma 3.5 ([2], Chapter 1, Theorem 1.6.5). Let (G, ∆) be a transitive permutation group.
Then (G, ∆) is primitive if and only if the stabilizer Gα of α ∈ ∆ is a maximal subgroup
of G for each α ∈ ∆.

By the above lemma we see that whenever for some α, Gα � H � G, then ∆ admits some
G-invariant equivalence relations other than the trivial cases. Because of the transitivity,
every element of ∆ has the form g(α) for some g ∈ G. Thus one of the non-trivial
G-invariant equivalence relations on ∆ is given as follows:

g(α) ≈ g′(α) if and only if g′ ∈ gH.

If we set G = ΓB(N), ∆ = Q̂, H = HB(N), the set of even elements of ΓB(N), and
Gα = ΓB(N)∞ the stabiliser of ∞ in ΓB(N), then we clearly see that ΓB(N)∞ � HB(N) �
ΓB(N). Thus, by Lemma 3.5, ΓB(N) acts imprimitively on Q̂.

We define the following ΓB(N)-invariant equivalence relation ≈ on Q̂. Since ΓB(N) acts
transitively on Q̂, every element of Q̂ has the form g(∞) for some g ∈ ΓB(N). Therefore,
it is easily seen that

g(∞) ≈ g′(∞) if and only if g′ ∈ gHB(N),
gives a ΓB(N)-invariant imprimitive equivalence relation.

By our general discussion of imprimitivity, the number of blocks under ≈ is given by
the index |ΓB(N) : HB(N)|. By Proposition 3.2, the number of blocks is 2. It is easily
seen that the blocks are

[0] =
{

x

yh
: (x, y) = 1 and 3 - y

}
[∞] =

{
x

3yh
: (x, y) = 1 and 3 - x

}
.

This result shows that there are two types of vertices in Q̂. We call the vertices in [0],
the odd vertices, and the vertices in [∞], the even vertices. For instance, by considering
the ∞ as 1

3.0.h
, we have ∞ is an even vertex whereas by considering 0 as 0

1.h
, we have 0

is an odd vertex.
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4. Suborbital graphs for ΓB(N)
A suborbital graph is a graph arisen from a transitive group action. The concept of

this graph was introduced by Sims in [15]. It is known that a map is an embedding of a
graph into a surface, and the faces of this map is formed by the circuits of the graph. In
this section we aim to find hexagonal circuits using suborbital graphs.

Let (G, ∆) be a transitive permutation group. Then G acts on ∆ × ∆ by
T : (α, β) 7→ (T (α), T (β)), T ∈ G, α, β ∈ ∆.

The orbits of this action are called suborbitals of G, that contained α, β and are denoted
by O(α, β). For O(α, β) we can form a suborbital graph G(α, β). Its vertices are the
elements of ∆ and there is an edge from γ to δ, denoted by γ → δ, if (γ, δ) ∈ G(α, β). A
circuit of length m is a sequence ν1 → ν2 → · · · → νm → ν1 such that νi ̸= νj for i ̸= j,
where m ≥ 3. We call a circuit a triangle, a quadrilateral or a hexagon if m = 3, 4 or
m = 6, respectively.

Indeed O(β, α) is also a suborbital. This suborbital is either equal to or disjointed from
O(α, β). If orbitals are disjoint, then G(β, α) is just G(α, β) with the arrows reversed. In
this case, the suborbital graphs G(β, α) and G(α, β) are called paired. If orbitals are equal,
then we have G(β, α) = G(α, β). Then the suborbital graph G(α, β) is called self-paired.

As ΓB(N) acts transitively on Q̂, then every suborbital contains a pair
(

∞,
u

n

)
for

some u

n
∈ Q̂. This suborbital is denoted by Ou,n and the corresponding suborbital graph

is denoted by Gu,n. We now investigate some properties of Gu,n.

Lemma 4.1. Let u

n
∈ Q̂, (n, h) = t and n = n1t, h = h1t. Also, A =

(
a b/h

3ch d

)
, and

B =
(

3a′ b′/h
3c′h 3d′

)
∈ ΓB(N). Then the followings hold:

i) If 3|n1, then A

(
u

n

)
is an even vertex and B

(
u

n

)
is an odd vertex.

ii) If 3 - n1, then A

(
u

n

)
is an odd vertex and B

(
u

n

)
is an even vertex.

Proof. First, let us calculate the actions of A and B on u

n
:

A

(
u

n

)
=

(
a b/h

3ch d

) (
u
n

)
= auh + bn

(3cuh + dn)h
= auh1 + bn1

(3cuh1 + dn1)h
, (4.1)

B

(
u

n

)
=

(
3a′ b′/h
3c′h 3d′

) (
u
n

)
= 3a′uh + b′n

3(c′uh + d′n)h
= 3a′uh1 + b′n1

3(c′uh1 + d′n1)h
. (4.2)

Now let 3|n1. Then there is an integer n2 such that n1 = 3n2. By substituting this in
(4.1), we have

A

(
u

n

)
= auh1 + bn1

3(cuh1 + dn2)h
.

Since the determinant of A is 1, 3 - a. Also, since 3|n1 and (u, n1) = 1, (n1, h1) = 1, it
is obtained that 3 - u, and 3 - h1. Therefore the expression in the numerator of A

(
u

n

)
does not divide 3. Moreover, the matrix

(
a b
3c d

)
has determinant 1 and (uh1, n1) = 1.

Consider the action(
a b
3c d

) (
uh1
n1

)
= auh1 + bn1

3cuh1 + dn1
= auh1 + bn1

3(cuh1 + dn2)
.
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Thus, we have (auh1 + bn1, 3(cuh1 + dn2)) = 1. Giving (auh1 + bn1, cuh1 + dn2 = 1) = 1.
By the definition of an even vertex, A

(
u

n

)
is an even vertex.

For B

(
u

n

)
, by substituting n1 = 3n2 in (4.2), we have

B

(
u

n

)
= 3(a′uh1 + b′n2)

3(c′uh1 + 2d′n2)h
= a′uh1 + b′n2

(c′uh1 + 3d′n2)h
.

Since the determinant of A is 1, 3 - c′. Also, since 3|n1 and (u, n1) = 1, (n1, h1) = 1, it
is obtained that u and h1 are odd. Note that 3 - c′uh1 + 3d′n2. Moreover, the matrix(

3a b
c d

)
has determinant 1 and (uh1, n2) = 1. Consider the action

(
a′ b′

c′ 3d′

) (
uh1
n2

)
= a′uh1 + b′n2

c′uh1 + 3d′n2
.

Thus, we have (a′uh1 +b′n2, c′uh1 +3d′n2) = 1. By the definition of an odd vertex, B

(
u

n

)
is an odd vertex.

The proof of (ii) is similar to the proof of (i). �

Theorem 4.2 (Edge Conditions). Let u

n
∈ Q̂, (n, h) = t and n = n1t, h = h1t. Then the

followings hold:
i) If 3|n1, then

I) there is an edge r

3sh
→ x

3yh
in Gu,n if and only if x ≡ ±urh1 (mod n1),

y ≡ ±ush1

(
mod n1

3

)
and ry − sx = ±n1

3
.

II) There is an edge r

sh
→ x

yh
in Gu,n if and only if x ≡ ±urh1

(
mod n1

3

)
,

y ≡ ±ush1 (mod n1) and ry − sx = ±n1
3

.

III) There are no edges of the form r

3sh
→ x

yh
and r

sh
→ x

3yh
in Gu,n.

ii) If 3 - n1,
I) There is an edge r

sh
→ x

3yh
in Gu,n if and only if x ≡ ±3urh1 (mod n1),

y ≡ ±ush1 (mod n1) and 3ry − sx = ±n1.
II) There is an edge r

3sh
→ x

yh
in Gu,n if and only if x ≡ ±urh1 (mod n1),

y ≡ ±3ush1 (mod n1) and ry − 3sx = ±n1.
III) There are no edges of the form r

3sh
→ x

3yh
and r

sh
→ x

yh
in Gu,n.

Proof. We prove only (i). The proof of (ii) is similar. Let 3|n1.

I) We show only the case r

3sh
→
>

x

3yh
; the other case is similar. Suppose that there

is an edge r

3sh
→
>

x

3yh
in Gu,n. Then there exists an element T in ΓB(N) such

that T

(1
0

)
= r

3sh
and T

(
u

n

)
= x

3yh
. Since T

(1
0

)
= r

3sh
, T is an even element.

Thus, if T =
(

a b/h
3ch d

)
, we have

T

(1
0

)
=

(
a b/h

3ch d

) (
1
0

)
= a

3ch
= r

3sh
,
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which yields a = r and c = s. On the other hand,

T

(
u

n

)
=

(
a b/h

3ch d

) (
u
n

)
= auh + bn

(3cuh + dn)h
= auh1 + dn1

3(cuh1 + dn1
2 )h

= x

3yh

gives us x = auh1 + dn1 and y = cuh1 + dn1
3 . Using the last equations, and, a = r

and c = s, we conclude that x ≡ urh1 (mod n1), y ≡ ush1

(
mod n1

3

)
. Also, by

the determinant of T , we know that ad − 3bc = 1. Note that(
ah b
3ch d

) (
1 u
0 n

)
=

(
ah auh + bn
3ch 3cuh + dn

)
=

(
rh tx
3sh 3ty

)
.

The determinants of the matrices on the left hand side of the above equation are
h and n, respectively. Also, the determinant of the matrix on the right hand side
is 3th(ry − sx). Thus, we have hn = 3th(ry − sx) and so ry − sx = n1

3
.

Conversely, let x ≡ urh1 (mod n1), y ≡ ush1

(
mod n1

3

)
and ry − sx = n1

3
.

Since x ≡ urh1 (mod n1), y ≡ ush1

(
mod n1

3

)
, there exist integers b, d such that

x = urh1 + bn1 and y = ush1 + d
n1
3

. Consider the matrix S =
(

r b/h
3sh d

)
. As

ry − sx = n1
3

, it is obtained that rd − 3bs = 1. This yields S ∈ ΓB(N). One can

easily verify that S(1
0

) = r

3sh
and S(u

n
) = x

3yh
. Thus r

3sh
→
>

x

3yh
is an edge in

Gu,n.
II) We show only the case r

sh
→
>

x

yh
; the other case is similar. Suppose that there is

an edge r

sh
→
>

x

yh
in Gu,n. Then there exists an element T in ΓB(N) such that

T

(1
0

)
= r

sh
and T

(
u

n

)
= x

yh
. Since T

(1
0

)
= r

sh
, T is an odd element. Thus,

if T =
(

3a b/h
3ch 3d

)
, we have

T

(1
0

)
=

(
3a b/h
3ch 3d

) (
1
0

)
= a

ch
= r

sh
,

which yields a = r and c = s. On the other hand,

T

(
u

n

)
=

(
3a b/h
3ch 3d

) (
u
n

)
= 3auh + bn

3(cuh + dn)h

=
3(auh1 + dn1

3 )
3(cuh1 + dn1)h

=
auh1 + dn1

3
(cuh1 + dn1)h

x

yh

gives us x = auh1 + dn1
3 and y = cuh1 + dn1. Using the last equations, and, a = r

and c = s, we conclude that x ≡ urh1

(
mod n1

3

)
, y ≡ ush1 (mod n1). Also, by

the determinant of T , we know that 3ad − bc = 1. Note that(
3ah b
3ch 3d

) (
1 u
0 n

)
=

(
3ah 3auh + bn
3ch 3cuh + 2dn

)
=

(
3rh 3tx
3sh 3ty

)
.

The determinants of the matrices on the left hand side of the above equation are
3h and n, respectively. Also, the determinant of the matrix on the right hand side
is 9th(ry − sx). Thus, we have 3hn = 9th(ry − sx) and so ry − sx = n1

3
.
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Conversely, let x ≡ urh1

(
mod n1

3

)
, y ≡ ush1 (mod n1) and ry − sx = n1

3
.

Since x ≡ urh1

(
mod n1

3

)
and y ≡ ush1 (mod n1), there exist integers b, d such

that x = urh1 + b
n1
3

and y = ush1 + dn1. Consider the matrix S =
(

3r b/h
3sh 3d

)
.

As ry − sx = n1
3

, it is obtained that 3rd − bs = 1. This yields S ∈ ΓB(N). One

can easily verify that S

(1
0

)
= r

sh
and S

(
u

n

)
= x

yh
. Thus r

sh
→
>

x

yh
is an edge

in Gu,n.
III) The proof of this case follows from Lemma 4.1.

�
Theorem 4.3. Gu,n contains no triangle.

Proof. Suppose in contrary, that Gu,n contains a triangle. By the edge conditions (The-
orem 4.2) and the transitivity, if 3|n1, then the triangle is written as

1
0

→ u

n
→ x

y
→ 1

0
, (4.3)

where all vertices are even; and if 3 - n1, then it is impossible to write a triangle as in
equation (4.3). Thus, we have only the triangle (4.3). Now, since u

n
is an even vertex, we

can write it as uh1
n1h

. Therefore, the triangle takes the form

1
0

→ uh1
n1h

→ x

y
→ 1

0
.

For the edge x

y
→ 1

0
, since x

y
is an even vertex, there exists an integer y′ such that

y = 3y′h. By part I of Theorem 4.2 (i), we obtain that y′ = n1
3

.
Now, by rewriting the triangle, we have

1
0

→ uh1
n1h

→ x

n1h
→ 1

0
.

For the edge uh1
n1h

→ x

n1h
, by I of Theorem 4.2 (i), we obtain that x = uh1 ± 1 and

x ≡ ±u2h2
1 (mod n1). These two expressions yield u2h2

1 ±uh1 +1 ≡ 0 (mod n1). As 3|n1,
this congruence states that 3|u2h2

1 ± uh1 + 1, giving that 3 - uh1 and 3 - uh1 ± 1. This is
a contradiction. Thus, the proof follows. �

Theorem 4.4. Let u

n
∈ Q̂, (n, h) = t and n = n1t, h = h1t then the followings hold:

i) If 3|n1, then Gu,n contains a hexagon if and only if u2h2
1 ±2uh1 +1 ≡ 0 (mod n1).

ii) If 3 - n1, then Gu,n contains a hexagon if and only if 3u2h2
1±3uh1+1 ≡ 0 (mod n1).

Proof. i) Let 3|n1. Assume that Gu,n contains a hexagon. By transitivity, and part
I of Theorem 4.2 (i), this hexagon is of the form

1
0

→ u

n
<−→ x1

y1

<−→ x2
y2

<−→ x3
y3

<−→ x4
y4

→ 1
0

, (4.4)

where all of the vertices are even. Since u

n
is an even vertex, we write it as uh1

3n1
3 h

.

Also, since all of the other vertices are even, there are integers ki, i = 1, 2, 3, 4 such
that yi = kin1h. Thus, the hexagon is of the form
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1
0

→ uh1
n1h

<−→ x1
k1n1h

<−→ x2
k2n1h

<−→ x3
k3n1h

<−→ x4
k4n1h

→ 1
0

. (4.5)

For the second edge, by part I of Theorem 4.2 (i), we get x1 = uh1k1 + 1 and
x1 ≡ u2h2

1 (mod n1). Hence,

u2h2
1 + uh1k1 + 1 ≡ 0 (mod n1) . (4.6)

Also for the last edge, by part I of Theorem 4.2 (i) we obtain that 1 ≡
−ux4h1 (mod n1). Using (4.6), we have

x4 ≡ uh1 + k1 (mod n1) . (4.7)
Now, consider the element

T =

−uh1
u2h2

1 + uh1k1 + 1
n1h

−n1h uh1 + k1

 ∈ ΓB(N).

It is clear that T 2(∞) = x1
k1n1h

. One can easily show also that

T 3(∞) = (k2
1 − 1)uh1 + k1
(k2

1 − 1)n1h
= x2

k1n1h
,

T 4(∞) = (k2
1 − 2)uh1k1 + k2

1 − 1
(k2

1 − 2)k1n1h
= x3

k3n1h
.

Finally, for the last edge, using part I of Theorem 4.2 (i), we have k4 = 1. Using
the edge x3

k3n1h
<−→ x4

n1h
, part I of Theorem 4.2 (i) and the equality

(k2
1 − 2)uh1k1 + k2

1 − 1
(k2

1 − 2)k1n1h
= x3

k3n1h
,

we have (k2
1 − 2)uh1 − x4 = −k1. This yields k2

1 − 2 | k1. Since k1 is a positive
integer, k1 = 1 or k1 = 2. But if k1 = 1, then the circuit is not a hexagon. Thus
we have k1 = 2.

Consequently, substituting k1 = 2 in (4.6), we obtain that u2h2
1 + 2uh1 + 1 ≡

0 (mod n1).
If the circuit is decreasing, it is obtained similarly that u2h2

1 − 2uh1 + 1 ≡
0 (mod n1).

Conversely, assume that u2h2
1 ± 2uh1 + 1 ≡ 0 (mod n1). Using Theorem 4.2, it

follows that

1
0

→ uh1
n1h

→ 2uh1 ± 1
2n1h

→ 3uh1 ± 2
3n1h

→ 4uh1 ± 3
4n1h

→ uh1 ± 1
n1h

→ 1
0

(4.8)

is a hexagon in Gu,n.
ii) Let 3 - n1. First assume that Gu,n contains a quadrilateral. By transitivity, and

part II of Theorem 4.2 (ii), this quadrilateral is of the form
1
0

→ uh1
n1h

<−→ x1
3k1n1h

<−→ x2
k2n1h

<−→ x3
3k3n1h

<−→ x4
k4n1h

→ 1
0

, (4.9)

where x1
3k1n1h

and x3
3k3n1h

are even vertices, and, x2
k2n1h

and x4
k4n1h

are odd
vertices. Thus, 3 - x1, x3 and 3 - k2, k4.
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For the second edge, by part I of Theorem 4.2 (ii), we get x1 = 3uh1k1 + 1 and
x1 ≡ 3u2h2

1 (mod n1). Hence,

3u2h2
1 + 3uh1k1 + 1 ≡ 0 (mod n1) . (4.10)

Also for the last edge, by part I of Theorem 4.2 (ii) we obtain that 1 ≡
−3ux4h1 (mod n1). Using (4.10), we have

x4 ≡ uh1 + k1 (mod n1) . (4.11)

Now, consider the element

T =

−3uh1
3u2h2

1 + 3uh1k1 + 1
n1h

−3n1h 3(uh1 + k1)

 ∈ ΓB(N).

It is clear that T 2(∞) = x1
3k1n1h

. One can easily show also that

T 3(∞) = (3k2
1 − 1)uh1 + k1

(3k2
1 − 1)n1h

= x2
k1n1h

T 4(∞) = 3(3k2
1 − 2)uh1k1 + 3k2

1 − 1
3(3k2

1 − 2)k1n1h
= x3

k3n1h
.

Finally, for the last edge, by using part I of Theorem 4.2 (ii), we have k4 = 1.
By using the edge x3

3k3n1h
<−→ x4

n1h
, part II of Theorem 4.2 (ii) and the equality

3(3k2
1 − 2)uh1k1 + 3k2

1 − 1
(3k2

1 − 2)k1n1h
= x3

3k3n1h
,

we have (3k2
1 − 2)(uh1 − x4) = k1. This yields 3k2

1 − 2 | k1. Since k1 is a positive
integer, k1 = 1.

Consequently, by substituting k1 = 1 in (4.10), we obtain that 3u2h2
1+3uh1+1 ≡

0 (mod n1).
If the circuit is decreasing, we obtain that similarly that 3u2h2

1 − 3uh1 + 1 ≡
0 (mod n1).

Conversely, assume that 3u2h2
1 ± 3uh1 + 1 ≡ 0 (mod n1). By Theorem 4.2, it

follows that

1
0

→ uh1
n1h

→ 3uh1 ± 1
3n1h

→ 2uh1 ± 1
2n1h

→ 3uh1 ± 2
3n1h

→ uh1 ± 1
n1h

→ 1
0

(4.12)

is a hexagon in Gu,n.
�
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∞∞

1
3

1
2

5
12

4
9

11
24

Figure 1. A hexagon in G1,3

Example 4.5. A hexagon in G1,3 is as follows (see Fig 1)
1
0

→ 1
2

→ 5
12

→4
9

→ 11
24

→ 1
2

→ 1
0

.

∞∞

1
14

1
7

2
21

4
9

5
42

Figure 2. A hexagon in G1,7

Example 4.6. A hexagon in G1,7 is as follows (see Fig 2)
1
0

→ 1
7

→ 5
42

→ 3
28

→ 2
21

→ 1
14

→ 1
0

.
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