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ABSTRACT 
Algorithmic thinking and programming abilities of students is controversial and popular issue in technological 

education programs in schools and universities. Students that have not best mathematical and analytical 

background may have difficulties in learning computer programing. Moreover, learning programming is highly 

difficult for a single individual to establish connection between discrete pseudo code of algorithm and source code. 

Another problem is required time to write a piece of program code. In order to solve this problem, there are some 

tools that tutor students to get analyze and realize relation between pseudo code and source code. In this study, we 

propose a deep learning method that is Long Short Term-Memory (LSTM) based source code generator from 

Turkish pseudo codes. For this purpose, we used Introduction to programming course exams in vocational high 

school as dataset to train LSTM. When users query a Turkish pseudo code of algorithm, C# source code is 

generated. In order to measure success of proposed system, generated source code and instructor’s source code is 

analyzed with text similarity methods. Results show that proposed system is useful for students to learn 

fundamental programming skills. 
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Türkçe Sözde Algoritma Kodu için LSTM Tabanlı Kaynak Kod 

Üretimi 
 

ÖZET 
Öğrencilerin algoritmik düşünme ve programlama yetenekleri, okullarda ve üniversitelerde teknolojik eğitim 

programlarında tartışmalı ve popüler bir konudur. İyi bir matematiksel ve analitik geçmişe sahip olmayan 

öğrenciler, bilgisayar programlamayı öğrenmede zorluklar yaşayabilir. Dahası, programlama öğrenme, bireyin 

sözde algoritma kodu ile kaynak kodu arasında bağlantı kurması için oldukça zordur. Başka bir problem, bir 

program kodu yazmak için gereken zamandır. Bu problemi çözmek için öğrencilere sözde kod ile kaynak kod 

arasındaki ilişkiyi analiz etme ve fark etme konusunda eğitim veren bazı araçlar vardır. Bu çalışmada, Türkçe 

sözde kodlardan LSTM tabanlı kaynak kod üreteci olan bir derin öğrenme yöntemi önerilmiştir. Bu amaçla, Uzun-

Kısa Süreli Bellek (LSTM)'i eğitmek için veri seti olarak meslek yüksek okulundaki programlamaya giriş dersi 

sınavları kullanılmıştır. Kullanıcılar bir Türkçe sözde algoritma kodunu sorguladığında C # kaynak kodu 

üretilmektedir. Önerilen sistemin başarısını ölçmek için üretilen kaynak kodu ve öğretim elemanının kaynak kodu 

metin benzerlik yöntemleri ile analiz edilmiştir. Sonuçlar, önerilen sistemin öğrencilerin temel programlama 

becerilerini öğrenmeleri için yararlı olduğunu göstermektedir. 
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I. INTRODUCTION 
 

Computer programs are useful and inevitable software in information technologies. Moreover, they are 

used in all area of the science and life such as medicine [1], agriculture [2], law [3], physics [4], 

education [5] etc. These programs are written by programmers and software engineers. Education of 

programming is controversial and also has some difficulties [6]. There are a lot of ways to learn 

programming such as online platforms, books, undergraduate and graduate programs at colleges and 

universities. Especially, academic education of how to write a program is sometimes difficult because 

some students have not mathematical background and analytical thinking skills [7]-[9]. Generally, 

students follow step by step instructions that is called pseudo code and convert them to source code with 

a programming language. In this process, understanding how to use and where to use variables, loops 

etc is can be taught by the auxiliary tools or systems. By using these tools, students can compare their 

codes and also learn how to convert pseudo code to source code. These tools are called as automatic 

code (program) generator [10]. 

 

Automatic code generation is a difficult problem. In order to overcome this issue, there are several 

studies that uses different methods such as natural language processing (NLP) [11],[12], synthesizing 

methods [13], probabilistic methods [14],[15] and deep neural networks [16],[17]. Manshadi et al. [18] 

used probabilistic model and NLP to generate source code with very few training data. These studies 

are Programming with NLP (PBNL) examples. Also, there are Programming by Example (PBE) 

approach [19],[20]. Another study is compositional synthesis framework based on NLP [21]. Lei et al. 

[22] use Bayesian generative model and NLP techniques to generate source code from English input 

specifications. Case based reasoning is another method to automated code generation [23]. Algosmart 

is another classical source code generator based on tagged XML documents [24]. In addition, there are 

deep learning methods to generate source code [25],[26]. In the proposed study, we developed source 

code generator for Turkish pseudo codes by using both NLP and deep learning methods. Thus, success 

of the system is increased. 

 

The rest of the article is organized as follows; in section 2, used methods are explained. In section 3, 

application of the proposed system is explained. Evaluation of the calculations are discussed in section 

4 and results are given in the last section. 

 

 

II. METHODS 
 

A. NATURAL LANGUAGE PROCESSING AND LATENT SEMANTIC ANALYSIS 

 
Natural language processing (NLP), one of the popular applications of artificial intelligence, is the 

analysis, understanding and reconstruction of language according to certain rules [27]. NLP operations 

mostly include text preprocessing, morphological analysis, syntactic analysis and semantic analysis 

sections [28]. In morphological analysis, it includes the processes of finding the roots by separating the 

suffixes of the words. Thus, it is determined which type the word belongs to, such as noun, adjective 

and verb [29]. In the syntactic analysis part, the usage purposes of the words in the sentence such as 

subject, object, adverb are determined [30]. The use of these words in different places and numbers in 

the sentence may have different meanings. Semantic analysis, on the other hand, examines the 

association of discrete words with appropriate objects [31]. It is provided to reveal the semantic 

connections of the words and to reveal the concept maps. Thus, words such as synonyms and close 

meanings are determined [32]. After these operations, text normalization is performed. To do this, 

natural language processing tools such as NLTK [33] and Zemberek [34] are used to convert capital 

letters, convert numbers to text, remove punctuation and markups, remove spaces, open abbreviations 

and remove unnecessary words [35]. When there are a lot of texts to process, sometimes it is necessary 

to decrease the amount of the texts. For these reasons, Latent Semantic Analysis (LSA) which is a 

statistical method for information retrieval problems [36], is used for elimination of irrelevant texts and 
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also comparison of texts based on corpus. Thus, texts are represented as vectors [37] that if the meaning 

of individual words is in the related corpus or not. The basic aim of LSA is to determine the similarity 

between words and documents by computing the similarity of corresponding vector representations. 

Singular value decomposition (SVD) method is used in LSA to calculate statically term and document 

co-occurrence information to decrease document size. 

 

B. LONG SHORT-TERM MEMORY 

 
Deep learning algorithms are used frequently in many areas such as image processing, classification, 

and natural language processing [38]. These methods, which we can also call deep learning networks, 

differ from classical artificial neural networks in several ways, such as the application of layer numbers 

[39]. Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) are the most known 

deep learning algorithms [40],[41]. RNNs are able to process input sequences of arbitrary length and 

time series problems. In training phase of long sequence RNN problems, gradient vector component 

may grow or decay [42]. So that can cause gradient vanishing problems and can cause learning problems 

to find correct relations in the sequences of the RNN model. Overwhelming of this issue, LSTM, a 

specific version of classical RNN, is developed. LSTM is used in areas such as handwriting recognition, 

voice recognition [43],[44]. Success of the LSTM on long sequences is based on its memory cell [45]. 

Memory cell (c) can preserve state over long periods of time and consists of an input gate (i) to decide 

whether an input data be prevented or conveyed to the memory cell, an output gate (o) to produce or 

prevent an output itself by repetitive links in two sequential time steps (t), a forget gate (f) to decide 

recall or omit previous cell (Figure 1). 

 

 
 

Figure 1. LSTM memory cell [45] 

 
Sigmoid gates are used to control read and write process of the memory cell. At given time step 𝑡, LSTM 

get inputs: current input 𝑥𝑡, the previous hidden state of all LSTM units ℎ𝑡−1 and previous memory cell 

state 𝑐𝑡−1. At this time step, gates are updated for 𝑥𝑡, ℎ𝑡−1 and 𝑐𝑡−1 as follows [45];  

 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 +  𝑊ℎ𝑖ℎ𝑡−1 +  𝑏𝑖)  (1) 

 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓)  (2) 

 

𝑜𝑡 = 𝜎(𝑊𝑜𝑖𝑥𝑡 +  𝑊ℎ𝑜ℎ𝑡−1 +  𝑏𝑜)  (3) 

 

𝑔𝑡 = 𝜙(𝑊𝑥𝑐𝑥𝑡 +  𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)  (4) 
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𝑐𝑡 = 𝑓𝑡 ⨀ 𝑐𝑡−1 + 𝑖𝑡  ⨀ 𝑔𝑡  (5) 

 

ℎ𝑡 = 𝑜𝑡  ⨀ 𝜙(𝑐𝑡)  (6) 

 

where the produced weight matrices are 𝑊 and bias vectors are 𝑏. The sigmoid activation function is 

presented with 𝜎(𝑥) = 1/(1 + exp(−𝑥)) and hyperbolic tangent is presented with 𝜙(𝑥) =
(exp(𝑥) − exp(−𝑥)) / (exp(𝑥) + exp (−𝑥)) equations. ⨀ symbol represents the dot products of 

vectors. The hidden output with 𝐾 different possible outcomes; ℎ𝑡 = {ℎ𝑡𝑘}𝑘=0
𝐾 , ℎ𝑡 ∈ 𝑅𝐾 will be used to 

predict next word by softmax function with parameters 𝑊𝑠 and 𝑏𝑠  [45]: 

 

𝐹(𝑝𝑡𝑖; 𝑊𝑠, 𝑏𝑠) =  
𝑒𝑥𝑝(𝑊𝑠ℎ𝑡𝑖+ 𝑏𝑠)

∑ 𝑒𝑥𝑝(𝑊𝑠ℎ𝑡𝑗+ 𝑏𝑠)𝐾
𝑗=1

  (7) 

 

where 𝑝𝑡𝑖 is the estimated word probability. 

 

C. EVALUATION METRICS 

 
Texts created or translated in natural language processing methods should be evaluated. One of the 

frequently used methods for this is BLEU [46]. In this method, the similarity between the desired 

reference text and the produced or translated text to be tested is examined [47]. If the similarity between 

texts is close, the value converges to 1, and if the similarity is distant, it approaches 0. While doing this, 

it is calculated according to the frequency of how many times the n-grams between the reference text 

and the text tested. In the proposed study, each similarity metric is tested on same parameters, 

respectively. For this purpose, mscocoapi [48] that can be downloaded from github was used. 

 

Mean Absolute Error (MAE) is defined as average of absolute variations between target values and 

estimations [49]. MAE is a linear score, that is, all singular variations are on average equivalent weight. 

Since the MAE value is easy to interpret, it is frequently used in regression and time series problems 

and it is used for measuring average errors (𝑒) in a range of predictions (𝑛) without considering direction 

(Equation 8). 

 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑒𝑗|𝑛

𝑗=1   (8) 

 

The MAE value can range from 0 to ∞ but it is desired to have small value. For example, predictions 

with lower values shows better performance. 

 

 

III. APPLICATION OF PROPOSED CODE GENERATION 

SYSTEM 
 

The proposed method uses LSTM to process user query inputs as problem statements to produce 

corresponding source code. The general working process of the proposed system is that, firstly, 

characters are read one by one from input up to the end of sequence in each time step. Same process is 

applied to the output with a softmax layer. This layer counts the occurrence probabilities of each word 

to produce a vector. The vector that has highest probability is selected as output and sent to the model 

as an input at the next time step.  

 

In the system, users can query problem statements in Turkish. Turkish is an agglutinative language so it 

is difficult to process according to English [50]. When an input is given as raw text, words such as 

synonyms and close meanings are determined and then text normalization is performed by using NLP 

techniques. For this purpose, Zemberek is used to convert capital letters, convert numbers to text, 

remove punctuation and markups, remove spaces, open abbreviations and remove unnecessary words. 

The dataset of the system is gained from last 10 years’ exams of the “Introduction the Algorithm and 
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Programming” lesson in associate degree. 8 basic problem statement is defined from 72 students’ exam 

papers. Thus, 72X10=720 source code is prepared for each problem statement. LSA is implemented on 

these source codes with reference correct source code (instructor’s answer key) to eliminate unrelated 

data because the students’ answers can be incorrect. So, a threshold value that is 0.7 is defined to 

eliminate the low successful papers. Exam papers that higher similarity value than threshold for each 

problem statement are selected (Table 1). 

 
Table 1. Number of total source codes related with pseudo code statements 

 

Pseudo Code Statement Total source code 

1 630 

2 520 

3 470 

4 420 

5 380 

6 510 

7 450 

8 350 

 

Based on the most similar base problem statement, the system retrieved the representation of user input 

in structured format. After being preprocessed, each word in the structured text was converted into its 

index which was in numerical format to mapping corresponding source code. Each of the character of 

the context statement will be processed in the input layer as the input sequence. Since the learning 

process is the type of supervised learning, we need to include the corresponding source code as the 

output sequence. After the last character of input sequence, the model will start to generate the output 

sequence by using softmax layer which is described in the previous component. 

 

The network used 3 LSTM layers with 128 units in each layer. Training iterations size is 50 epochs. 

After each LSTM layer, a Dropout layer with probability 0.2 was added. The probability 0.2 means that 

one in five inputs will be randomly excluded from each cycle of updating process. Dropout is a 

regularization technique to prevent overfitting. The basic concept is this technique randomly select 

neurons to be ignored during training. When a neuron is dropped out, it cannot contribute to the network 

and receive some values in the backpropagation process. The next layer was Dense layer with the total 

number of words in the vocabulary as the dimension. The last layer used softmax as the activation 

function. The output of this function is modelled as the probability distribution over K different possible 

outcomes. Specifically, it shows the probability of each word in the vocabulary to be the most suitable 

output for the specific element in the output vector. 

 

 

IV. EVALUATION AND DISCUSSION 
 

Effectiveness of the system is tested with 8 pseudo codes to generate (predict) C# source code. Each 

generated source code is compared with reference source code that is provided by instructor. Similarity 

of the source codes are scored with BLEU (Table 2). Moreover, testing errors of the algorithm is 

measured with MAE to evaluate the accuracy. Generated codes may include some errors so they must 

be corrected before the compiling.  Maximum number of the correction in the test is 6 errors. 
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Table 2. BLEU and MAE scored of the tested pseudo code statements 

 

Pseudo Code Statement BLEU Score MAE Number of Corrections 

1 0.863 0.152 0 

2 0.817 0.168 2 

3 0.687 0.184 3 

4 0.542 0.198 5 

5 0.649 0.191 4 

6 0.721 0.178 5 

7 0.803 0.161 3 

8 0.482 0.229 6 
 

Example pseudo code statement 1 (Figure 2) is tested and source code is generated with no error (Figure 

3). So, it can be compiled and run directly with any C# development tool. Generated code may include 

different styled variable names such as “s1” and “sayi (in English: number)” to hold reading input 

numbers. 
 

 
 

Figure 2. Pseudo code statement example 1 

 

 
 

Figure 3. Generated source code with no error for pseudo code statement example 1 

 

Example pseudo code statement 2 (Figure 4) is tested and source code is generated with two errors 

(Figure 5). Firstly, variable “i” is defined twice time in the same code block. Other one is starting value 

of the variable “i” is 0 in the for loop. However, in the pseudo code, “i” is start from 1. After correcting 

these errors, source code can be compiled and run. 

 

 
 

Figure 4. Pseudo code statement example 2 
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Figure 5. Generated source code with two errors for pseudo code statement example 2 

 

 

V. CONCLUSION 
 

Learning programming is difficult because there are a lot of discrete concepts. Lack of algorithmic 

thinking and programming abilities of programmers that have not best mathematical and analytical 

background may cause difficulties in learning computer programing. Thus, writing a piece of program 

code may be time consuming for beginner programmers. For these reasons, automatic source code 

generator is developed for Turkish pseudo codes to help programmers to analyze and realize some 

concepts. For this process, LSTM, a deep learning method, is used to generate C# source code for 

example pseudo codes. Proposed system success is evaluated MAE and BLEU score and results showed 

that source codes can be automatically generated with the help of NLP and deep learning methods 

successfully. Users can use generated codes with software development environments (editors) to 

investigate the corresponding output program. Thus, students have not mathematical background and 

analytical thinking skills can compare their codes and understand how to convert pseudo code to source 

code, how to use and where to use variables, loops etc by the help of the proposed study. In the future, 

by using this proposed system architecture, automatic content generators can be developed for other 

programming languages. Also, the proposed system can be integrated with software development 

environments by using services and APIs.  
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