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Abstract

In the present article, we prove some results concerning the existence of solutions for a class of initial
value problem for nonlinear implicit fractional di�erential equations with non-instantaneous impulses and
generalized Hilfer fractional derivative in Banach spaces. The results are based on �xed point theorems of
Darbo and Mönch associated with the technique of measure of noncompactness. An example is included to
show the applicability of our results.
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1. Introduction

Fractional derivatives and fractional integrals generalize to noninteger order the derivative and the integral
of a function. There are several kinds of fractional derivatives, such as, the Riemann�Liouville fractional
derivative, the Grunwald�Letnikov fractional derivative, the Caputo derivative, the Marchaud fractional
derivative, the generalized Hilfer derivative, etc. [4, 5, 6, 16, 17]. There are numerous books and articles
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focused on linear and nonlinear problems for fractional di�erential equations involving di�erent kinds of
fractional derivatives, see, for example, [3, 7, 8, 10, 11, 13].

The class of problems for fractional di�erential equations with abrupt and instantaneous impulses is
vastly studied, and di�erent topics on the existence and qualitative properties of solutions are considered,
[15, 18, 28]. In pharmacotherapy, instantaneous impulses cannot describe the dynamics of certain evolution
processes. For example, when one considers the hemodynamic equilibrium of a person, the introduction
of drugs into the bloodstream and the consequent absorption for the body are a gradual and continuous
process. In [1, 2, 9] the authors studied some new classes of abstract impulsive di�erential equations with
not instantaneous impulses.

The stability of functional equations originated from a question by Ulam [27]. Hyers [21] gave a �rst
a�rmative partial answer to Ulam's question for Banach spaces. Hyers Theorem was generalized by Rassias
[25] in 1978. Afterwards, many interesting results of the generalized Ulam-Hyers and Ulam-Hyers-Rassias
stability of all kinds of functional equations have been investigated by a number of mathematicians; one
can see the monograph of Abbas et al. [8] and the paper by Rus [26] in which the Ulam-Hyers stability for
operator equations is discussed.

Motivated by the works mentioned above, in this paper, we establish existence results for the initial value
problem of a nonlinear implicit generalized Hilfer-type fractional di�erential equation with non-instantaneous
impulses, (

ρDα,β
s+k
u

)
(t) = f

(
t, u(t),

(
ρDα,β

s+k
u

)
(t)

)
; t ∈ Ik, k = 0, . . . ,m, (1)

u(t) = gk(t, u(t)); t ∈ Ĩk, k = 1, . . . ,m, (2)

(
ρJ 1−γ

a+
u
)

(a+) = φ0, (3)

where ρDα,β
s+k

and ρJ 1−γ
a+

are, respectively, the generalized Hilfer-type fractional derivative of order α ∈ (0, 1)

and type β ∈ [0, 1] and generalized fractional integral of order 1 − γ, (γ = α + β − αβ), ρ > 0, φ0 ∈ E ,
Ik := (sk, tk+1]; k = 0, . . . ,m, Ĩk := (tk, sk]; k = 1, . . . ,m, a = s0 < t1 ≤ s1 < t2 ≤ s2 < . . . ≤ sm−1 < tm ≤
sm < tm+1 = b < ∞, u(t+k ) = lim

ε→0+
u(tk + ε) and u(t−k ) = lim

ε→0−
u(tk + ε) represent the right and left hand

limits of u(t) at t = tk, f : Ik ×E ×E → E is a given function and gk : Ĩk ×E → E; k = 1, . . . ,m, are given

continuous functions such that

(
ρJ 1−γ

s+k
gk

)
(t, u(t)) |t=sk = φk ∈ E , where (E, ‖ · ‖) is a real Banach space.

The present paper is organized as follows. In Section 2, some notations are introduced and we recall
some preliminaries about the generalized Hilfer fractional derivative and auxiliary results. In Section 3, two
results for the problem (1)-(3) are presented which are based on the �xed point theorems of Mönch and
Darbo associated with the technique of measure of noncompactness. In Section 4, we discuss the Ulam-
Hyers-Rassias Stability for the problems. Finally, in the last section, we give an example to illustrate the
applicability of our results.

2. Preliminaries

In this section, we introduce notations, de�nitions, and preliminary facts which are used throughout this
paper. Let 0 < a < b, J = [a, b]. Let (E, ‖ · ‖) be a Banach space.

By C we denote the Banach space of all continuous functions from J into E with the norm

‖u‖∞ = sup{‖u(t)‖ : t ∈ J}.
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Consider the weighted Banach space

Cγ,ρ(Ik) =

{
u : Ik → E : t→

(
tρ − sρk
ρ

)1−γ
u(t) ∈ C([sk, tk+1], E)

}
,

where 0 ≤ γ < 1, k = 0, . . . ,m, and

Cnγ,ρ(Ik) =
{
u ∈ Cn−1(Ik) : u(n) ∈ Cγ,ρ(Ik)

}
, n ∈ N,

C0
γ,ρ(Ik) = Cγ,ρ(Ik).

Also consider the Banach space

PCγ,ρ(J) =

{
u : (a, b]→ E : u ∈ Cγ,ρ(∪mk=0Ik) ∩ C(∪mk=1Ĩk, E) and there exist

u(t−k ), u(t+k ), u(s−k ), and u(s+
k ) with u(t−k ) = u(tk)

}
, 0 ≤ γ < 1,

and

PCnγ,ρ(J) =
{
u ∈ PCn−1(J) : u(n) ∈ PCγ,ρ(J)

}
, n ∈ N,

PC0
γ,ρ(J) = PCγ,ρ(J),

with the norm

‖u‖PCγ,ρ = max

{
max

k=0,...,m

{
sup
t∈Ik

∥∥∥∥∥
(
tρ − sρk
ρ

)1−γ
u(t)

∥∥∥∥∥
}
, max
k=1,...,m

{sup
t∈Ĩk
‖u(t)‖}

}
.

By L1(J), we denote the space of Bochner�integrable functions f : J −→ E with the norm

‖f‖1 =

∫ b

a
‖f(t)‖dt.

De�nition 2.1. [22] (Generalized fractional integral).
Let α ∈ R+ and g ∈ L1(J). The generalized fractional integral of order α is de�ned by

(ρJ αa+g) (t) =

∫ t

a
sρ−1

(
tρ − sρ

ρ

)α−1 g(s)

Γ(α)
ds, t > a, ρ > 0,

where Γ(·) is the Euler gamma function de�ned by Γ(α) =
∫∞

0 tα−1e−tdt, α > 0.

De�nition 2.2. [22](Generalized fractional derivative).
Let α ∈ R+ \ N and ρ > 0. The generalized fractional derivative ρDαa+ of order α is de�ned by

(ρDαa+g) (t) = δnρ (ρJ n−α
a+

g)(t)

=

(
t1−ρ

d

dt

)n ∫ t

a
sρ−1

(
tρ − sρ

ρ

)n−α−1 g(s)

Γ(n− α)
ds, t > a,

where n = [α] + 1 and δnρ =
(
t1−ρ ddt

)n
.

Theorem 2.1. [22] Let α > 0, β > 0, 1 ≤ p ≤ ∞, 0 < a < b <∞. Then, for g ∈ L1([sk, tk+1]), k = 0, . . . ,m,
we have (

ρJ α
s+k

ρJ β
s+k
g

)
(t) =

(
ρJ α+β

s+k
g

)
(t).
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Lemma 2.1. [22, 24] Let α > 0, 0 ≤ γ < 1 and k = 0, . . . ,m. Then, ρJ α
s+k

is bounded from Cγ,ρ(Ik) into

Cγ,ρ(Ik).

Lemma 2.2. [24] Let 0 < a < b < ∞, α > 0, 0 ≤ γ < 1, u ∈ Cγ,ρ(Ik) and k = 0, . . . ,m. If α > 1− γ, then
ρJ α

s+k
u ∈ C([sk, tk+1], E) and (

ρJ α
s+k
u
)

(sk) = lim
t→s+k

(
ρJ α

s+k
u
)

(t) = 0.

Lemma 2.3. [12] Let t > sk, k = 0, . . . ,m. Then, for α ≥ 0 and β > 0, we have[
ρJ α

s+k

(
sρ − sρk
ρ

)β−1
]

(t) =
Γ(β)

Γ(α+ β)

(
tρ − sρk
ρ

)α+β−1

,[
ρDα

s+k

(
sρ − sρk
ρ

)α−1
]

(t) = 0, 0 < α < 1.

Lemma 2.4. [24] Let α > 0, 0 ≤ γ < 1, k = 0, . . . ,m, and g ∈ Cγ,ρ(Ik). Then,(
ρDα

s+k

ρJ α
s+k
g
)

(t) = g(t), for all t ∈ Ik, k = 0, . . . ,m.

Lemma 2.5. [24] Let 0 < α < 1, 0 ≤ γ < 1, k = 0, . . . ,m. If g ∈ Cγ,ρ(Ik) and ρJ 1−α
s+k

g ∈ C1
γ,ρ(Ik), then for

all t ∈ Ik, k = 0, . . . ,m,

(
ρJ α

s+k

ρDα
s+k
g
)

(t) = g(t)−

(
ρJ 1−α

s+k
g

)
(sk)

Γ(α)

(
tρ − sρk
ρ

)α−1

.

De�nition 2.3. [24] Let order α and type β satisfy n − 1 < α < n and 0 ≤ β ≤ 1, with n ∈ N, and
k = 0, . . . ,m. The generalized Hilfer-type fractional derivative, with ρ > 0 of a function g ∈ Cγ,ρ(Ik), is
de�ned by (

ρDα,β
s+k
g

)
(t) =

(
ρJ β(n−α)

s+k

(
tρ−1 d

dt

)n
ρJ (1−β)(n−α)

s+k
g

)
(t)

=

(
ρJ β(n−α)

s+k
δnρ

ρJ (1−β)(n−α)

s+k
g

)
(t).

In this paper we consider the case n = 1 only, because 0 < α < 1.

Property 2.2. [24] The operator ρDα,β
s+k

can be written as

ρDα,β
s+k

= ρJ β(1−α)

s+k
δρ

ρJ 1−γ
s+k

= ρJ β(1−α)

s+k

ρDγ
s+k
, γ = α+ β − αβ, k = 0, . . . ,m.

Property 2.3. [24] The fractional derivative ρDα,β
s+k

is an interpolator of the following fractional derivatives:

Hilfer (ρ → 1), Hilfer�Hadamard (ρ → 0+), generalized (β = 0), Caputo�type (β = 1), Riemann�Liouville
(β = 0, ρ → 1), Hadamard (β = 0, ρ → 0+), Caputo (β = 1, ρ → 1), Caputo�Hadamard (β = 1, ρ → 0+),
Liouville (β = 0, ρ→ 1, a = 0) and Weyl (β = 0, ρ→ 1, a = −∞).

Consider the following parameters α, β, γ satisfying

γ = α+ β − αβ, 0 < α, β, γ < 1.
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We de�ne the spaces

Cα,βγ,ρ (Ik) =

{
u ∈ Cγ,ρ(Ik), ρDα,βs+k

u ∈ Cγ,ρ(Ik)
}
,

and

Cγγ,ρ(Ik) =

{
u ∈ Cγ,ρ(Ik), ρDγs+k

u ∈ Cγ,ρ(Ik)
}
,

where k = 0, . . . ,m.

Since ρDα,β
s+k
u = ρJ γ(1−α)

s+k

ρDγ
s+k
u, it follows from Lemma 2.1 that

Cγγ,ρ(Ik) ⊂ Cα,βγ,ρ (Ik) ⊂ Cγ,ρ(Ik).

Also,

PCγγ,ρ(J) =

{
u : (a, b]→ E : u ∈ Cγγ,ρ(∪mk=0Ik) ∩ C(∪mk=1Ĩk, E)

}
.

Lemma 2.6. [24] Let 0 < α < 1, 0 ≤ β ≤ 1, γ = α+ β − αβ and k = 0, . . . ,m. If u ∈ Cγγ,ρ(Ik), then

ρJ γ
s+k

ρDγ
s+k
u = ρJ α

s+k

ρDα,β
s+k
u,

and
ρDγ

s+k

ρJ α
s+k
u = ρDβ(1−α)

s+k
u.

De�nition 2.4. ([14]) let X be a Banach space and let ΩX be the family of bounded subsets of X. The
Kuratowski measure of noncompactness is the map µ : ΩX −→ [0,∞) de�ned by

µ(M) = inf{ε > 0 : M ⊂
m⋃
j=1

Mj , diam(Mj) ≤ ε},

where M ∈ ΩX . The map µ satis�es the following properties :

• µ(M) = 0⇔M is compact (M is relatively compact).

• µ(M) = µ(M).

• M1 ⊂M2 ⇒ µ(M1) ≤ µ(M2).

• µ(M1 +M2) ≤ µ(B1) + µ(B2).

• µ(cM) = |c|µ(M), c ∈ R.

• µ(convM) = µ(M).

Lemma 2.7. ([19]) Let D ⊂ PCγ,ρ(J) be a bounded and equicontinuous set, then
(i) the function t→ µ(D(t)) is continuous on J , and

µPCγ,ρ = max

{
max

k=0,...,m

{
sup
t∈Ik

µ

((
tρ − sρk
ρ

)1−γ
u(t)

)}
, max
k=1,...,m

{sup
t∈Ĩk

µ (u(t))}

}
,

(ii) µ

(∫ b

a
u(s)ds : u ∈ D

)
≤
∫ b

a
µ(D(s))ds, where

D(t) = {u(t) : t ∈ D}, t ∈ J.
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Lemma 2.8. Let f : Ik × E → E be a function such that f(·, u(·), ρDα,β
s+k
u(·)) ∈ C(Ik, E), k = 0, . . . ,m, for

any u ∈ Cγ,ρ(Ik). Then u ∈ Cγγ,ρ(Ik) is a solution of the di�erential equation, for 0 < α < 1, 0 ≤ β ≤ 1,(
ρDα,β

s+k
u

)
(t) = f(t, u(t), ρDα,β

s+k
u(t)), for each, t ∈ Ik, k = 0, . . . ,m, (4)

if and only if u satis�es the following Volterra integral equation,

u(t)=

(
ρJ 1−γ

s+
k

u

)
(s+k )

Γ(γ)

(
tρ−sρk
ρ

)γ−1

+ 1
Γ(α)

∫ t
sk

(
tρ−sρ
ρ

)α−1
sρ−1f(s, u(s), ρDα,β

s+k
u(s))ds,

(5)

where γ = α+ β − αβ.

Proof. Assume u ∈ Cγγ,ρ(Ik) satis�es the equation (4) where k = 0, . . . ,m. We prove that u is a solution to
the equation (5). From the de�nition of the space Cγγ,ρ(Ik) and by using Lemma 2.1 and De�nition 2.2, we
have (

ρJ 1−γ
s+k

u

)
(t) ∈ Cγ,ρ(Ik) and (ρDγ

s+k
u)(t) =

(
δρ

ρJ 1−γ
s+k

u

)
(t) ∈ Cγ,ρ(Ik).

By the de�nition of the space Cnγ,ρ(Ik), we obtain(
ρJ 1−γ

s+k
u

)
(t) ∈ C1

γ,ρ(Ik).

Hence, Lemma 2.5 implies that for all t ∈ Ik, k = 0, . . . ,m,

(
ρJ γ

s+k

ρDγ
s+k
u

)
(t) = u(t)−

(
ρJ 1−γ

s+k
u

)
(sk)

Γ(γ)

(
tρ − sρk
ρ

)γ−1

.

Using Lemma 2.6 we have (
ρJ γ

s+k

ρDγ
s+k
u

)
(t) =

(
ρJ α

s+k

ρDα,β
s+k
u

)
(t)

=

(
ρJ α

s+k
f(s, u(s), ρDα,β

s+k
u(s))

)
(t).

Then,

u(t) =

(
ρJ 1−γ

s+k
u

)
(sk)

Γ(γ)

(
tρ − sρk
ρ

)γ−1

+

(
ρJ α

s+k
f(s, u(s), ρDα,β

s+k
u(s))

)
(t),

where t ∈ Ik, k = 0, . . . ,m, that is, u satis�es the equation (5).
Conversely, let u ∈ Cγγ,ρ(Ik) satisfy the equation (5) where k = 0, . . . ,m. We prove that u is a solution

to the equation (4). Apply operator ρDγ
s+k

on both sides of (5), where k = 0, . . . ,m. Then, from Lemma 2.3

and Lemma 2.6 we obtain

(ρDγ
s+k
u)(t) =

(
ρDβ(1−α)

s+k
f(s, u(s), ρDα,β

s+k
u(s))

)
(t). (6)

Since u ∈ Cγγ,ρ(Ik) and by de�nition of Cγγ,ρ(Ik), we have
ρDγ

s+k
u ∈ Cγ,ρ(Ik), then (6) implies that

(ρDγ
s+k
u)(t) =

(
δρ

ρJ 1−β(1−α)

s+k
f

)
(t) =

(
ρDβ(1−α)

s+k
f

)
(t) ∈ Cγ,ρ(Ik). (7)
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As f(·, u(·), ρDα,β
s+k
u(·)) ∈ C(Ik, E) and from Lemma 2.1, it follows that(

ρJ 1−β(1−α)

s+k
f

)
∈ Cγ,ρ(Ik), k = 0, . . . ,m. (8)

From (7), (8) and by the de�nition of the space Cnγ,ρ(Ik), we obtain(
ρJ 1−β(1−α)

s+k
f

)
∈ C1

γ,ρ(Ik), k = 0, . . . ,m.

Applying operator ρJ β(1−α)

s+k
on both sides of (7) and using Lemma 2.5, Lemma 2.2 and Property 2.2, we

have (
ρDα,β

s+k
u

)
(t) = ρJ β(1−α)

s+k

(
ρDγ

s+k
u

)
(t)

= f(t, u(t), ρDα,β
s+k
u(t))

−

(
ρJ 1−β(1−α)

s+k
f

)
(sk)

Γ(β(1− α))

(
tρ − sρk
ρ

)β(1−α)−1

= f(t, u(t), ρDα,β
s+k
u(t)),

that is, (4) holds. This completes the proof.

Theorem 2.4. (Mönch's �xed point Theorem ([23])). Let D be a closed, bounded and convex subset of a
Banach space X such that 0 ∈ D, and let T be a continuous mapping of D into itself. If the implication

V = convT (V ), or V = T (V ) ∪ {0} ⇒ µ(V ) = 0, (9)

holds for every subset V of D, then T has a �xed point.

Theorem 2.5. (Darbo's �xed point Theorem ([20])). Let D be a non-empty, closed, bounded and convex
subset of a Banach space X, and let T be a continuous mapping of D into itself such that for any non-empty
subset C of D,

µ(T (C)) ≤ kµ(C), (10)

where 0 ≤ k < 1, and µ is the Kuratowski measure of noncompactness on X. Then T has a �xed point in D.

Now, we consider the Ulam stability for problem (1)−(3) that will be used in Section 4. Let u ∈ PCγ,ρ(J),
ε > 0, τ > 0 and ϑ : (a, b] −→ [0,∞) be a continuous function. We consider the following inequality :

∥∥∥∥(ρDα,βs+k u
)

(t)− f
(
t, u(t),

(
ρDα,β

s+k
u

)
(t)

)∥∥∥∥ ≤ εϑ(t), t ∈ Ik, k = 0, . . . ,m,

‖u(t)− gk(t, u(t))‖ ≤ ετ, t ∈ Ĩk, k = 1, . . . ,m.

(11)

De�nition 2.5. Problem (1)−(3) is Ulam-Hyers-Rassias (U-H-R) stable with respect to (ϑ, τ) if there exists
a real number af,ϑ > 0 such that for each ε > 0 and for each solution u ∈ PCγ,ρ(J) of inequality (11) there
exists a solution w ∈ PCγ,ρ(J) of (1)−(3) with

‖u(t)− w(t)‖ ≤ εaf,ϑ(ϑ(t) + τ), t ∈ J.

Remark 2.1. A function u ∈ PCγ,ρ(J) is a solution of inequality (11) if and only if there exist σ ∈ PCγ,ρ(J)
and a sequence σk, k = 0, . . . ,m, such that

1. ‖σ(t)‖ ≤ εϑ(t), t ∈ Ik, k = 0, . . . ,m, and ‖σk‖ ≤ ετ , t ∈ Ĩk, k = 1, . . . ,m,

2.

(
ρDα,β

s+k
u

)
(t) = f

(
t, u(t),

(
ρDα,β

s+k
u

)
(t)

)
+ σ(t), t ∈ Ik, k = 0, . . . ,m,

3. u(t) = gk(t, u(t)) + σk, t ∈ Ĩk, k = 1, . . . ,m.
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3. Existence of Solutions

We consider the following linear fractional di�erential equation(
ρDα,β

s+k
u

)
(t) = ψ(t), t ∈ Ik, k = 0, . . . ,m, (12)

where 0 < α < 1, 0 ≤ β ≤ 1, ρ > 0, with the conditions

u(t) = gk(t, u(t)), t ∈ Ĩk, k = 1, . . . ,m, (13)(
ρJ 1−γ

a+
u
)

(a+) = φ0, (14)

where γ = α + β − αβ and φ0 ∈ E, and let φ∗ = max{‖φk‖ : k = 0, . . . ,m}. The following theorem shows
that the problem (12)�(14) has a unique solution given by

u(t) =


φk

Γ(γ)

(
tρ−sρk
ρ

)γ−1
+
(
ρJ α

s+k
ψ
)

(t), t ∈ Ik, k = 0, . . . ,m,

gk(t, u(t)), t ∈ Ĩk, k = 1, . . . ,m.

(15)

Theorem 3.1. Let γ = α + β − αβ, where 0 < α < 1 and 0 ≤ β ≤ 1. If ψ : Ik → E, k = 0, . . . ,m, is
a function such that ψ(·) ∈ C(Ik, E), then u ∈ PCγγ,ρ(J) satis�es the problem (12)�(14) if and only if it
satis�es (15).

Proof. Assume u satis�es (12)�(14). If t ∈ I0, then(
ρDα,β

a+
u
)

(t) = ψ(t),

Lemma 2.8 implies we have the solution can be written as

u(t) =

(
ρJ 1−γ

a+
u
)

(a)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1ψ(s)ds.

If t ∈ Ĩ1, then we have u(t) = g1(t, u(t)).
If t ∈ I1, then Lemma 2.8 implies

u(t) =

(
ρJ 1−γ

s+1
u
)

(s1)

Γ(γ)

(
tρ − sρ1
ρ

)γ−1

+
1

Γ(α)

∫ t

s1

(
tρ − sρ

ρ

)α−1

sρ−1ψ(s)ds

=
φ1

Γ(γ)

(
tρ − sρ1
ρ

)γ−1

+
(
ρJ α

s+1
ψ
)

(t).

If t ∈ Ĩ2, then we have u(t) = g2(t, u(t)).
If t ∈ I2, then Lemma 2.8 implies

u(t) =

(
ρJ 1−γ

s+2
u
)

(s2)

Γ(γ)

(
tρ − sρ2
ρ

)γ−1

+
1

Γ(α)

∫ t

s2

(
tρ − sρ

ρ

)α−1

sρ−1ψ(s)ds

=
φ2

Γ(γ)

(
tρ − sρ2
ρ

)γ−1

+
(
ρJ α

s+2
ψ
)

(t).
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Repeating the process in this way, the solution u(t) for t ∈ (a, b] can be written as

u(t) =


φk

Γ(γ)

(
tρ−sρk
ρ

)γ−1
+
(
ρJ α

s+k
ψ
)

(t), t ∈ Ik, k = 0, . . . ,m,

gk(t, u(t)), t ∈ Ĩk, k = 1, . . . ,m.

Conversely, for t ∈ I0, applying
ρJ 1−γ

a+
on both sides of (15) and using Lemma 2.3 and Theorem 2.1, we

get (
ρJ 1−γ

a+
u
)

(t) = φ0 +
(
ρJ 1−γ+α

a+
ψ
)

(t). (16)

Next, taking the limit as t→ a+ of (16) and using Lemma 2.2, with 1− γ < 1− γ + α, we obtain(
ρJ 1−γ

a+
u
)

(a+) = φ0, (17)

which shows that the initial condition
(
ρJ 1−γ

a+
u
)

(a+) = φ0, is satis�ed. Next, for t ∈ Ik, k = 0, . . . ,m, apply

operator ρDγ
s+k

on both sides of (15). Then, from Lemma 2.3 and Lemma 2.6 we obtain

(ρDγ
s+k
u)(t) =

(
ρDβ(1−α)

s+k
ψ

)
(t). (18)

Since u ∈ Cγγ,ρ(Ik) and by de�nition of Cγγ,ρ(Ik), we have
ρDγ

s+k
u ∈ Cγ,ρ(Ik), and then (18) implies that

(ρDγ
s+k
u)(t) =

(
δρ

ρJ 1−β(1−α)

s+k
ψ

)
(t) =

(
ρDβ(1−α)

s+k
ψ

)
(t) ∈ Cγ,ρ(Ik). (19)

As ψ(·) ∈ C(Ik, E) and from Lemma 2.1, it follows that(
ρJ 1−β(1−α)

s+k
ψ

)
∈ Cγ,ρ(Ik), k = 0, . . . ,m. (20)

From (19), (20) and by the de�nition of the space Cnγ,ρ(Ik), we obtain(
ρJ 1−β(1−α)

s+k
ψ

)
∈ C1

γ,ρ(Ik), k = 0, . . . ,m.

Applying operator ρJ β(1−α)

s+k
on both sides of (18) and using Lemma 2.5, Lemma 2.2 and Property 2.2, we

have (
ρDα,β

s+k
u

)
(t) = ρJ β(1−α)

s+k

(
ρDγ

s+k
u

)
(t)

= ψ(t)−

(
ρJ 1−β(1−α)

s+k
ψ

)
(sk)

Γ(β(1− α))

(
tρ − sρk
ρ

)β(1−α)−1

= ψ(t),

that is, (12) holds.
Also, we have easily for u ∈ C(Ĩk, E),

u(t) = gk(t, u(t−k )), t ∈ Ĩk, k = 1, . . . ,m.

This completes the proof.



A. Salim, et al., Adv. Theory Nonlinear Anal. Appl. 4 (2020), 332�348. 341

As a consequence of Theorem 3.1, we have the following result:

Lemma 3.1. Let γ = α+ β − αβ where 0 < α < 1, 0 ≤ β ≤ 1, and k = 0, . . . ,m, let f : Ik × E × E → E,
be a function such that f(·, u(·), w(·)) ∈ C(Ik, E), for any u,w ∈ PCγ,ρ(J). If u ∈ PCγγ,ρ(J), then u satis�es
the problem (1)− (3) if and only if u is the �xed point of the operator Ψ : PCγ,ρ(J)→ PCγ,ρ(J) de�ned by

Ψu(t) =


φk

Γ(γ)

(
tρ−sρk
ρ

)γ−1
+
(
ρJ α

s+k
h
)

(t), t ∈ Ik, k = 0, . . . ,m,

gk(t, u(t)), t ∈ Ĩk, k = 1, . . . ,m.

(21)

where h ∈ C(Ik, E), k = 0, . . . ,m is a function satisfying the functional equation

h(t) = f(t, u(t), h(t)).

Also, by Lemma 2.1, Ψu ∈ PCγ,ρ(J).

The following hypotheses will be used in the sequel:

(Ax1 ) The function t 7→ f(t, u, w) is measurable on Ik, k = 0, . . . ,m, for each u,w ∈ E, and the functions
u 7→ f(t, u, w) and w 7→ f(t, u, w) are continuous on E for a.e. t ∈ Ik, k = 0, . . . ,m, and

f(·, u(·), w(·)) ∈ Cβ(1−α)
γ,ρ (Ik) for any u,w ∈ PCγ,ρ(J).

(Ax2 ) There exists a continuous function p : [a, b] −→ [0,∞) such that

‖f(t, u, w)‖ ≤ p(t), for a.e. t ∈ Ik, k = 0, . . . ,m, and for each u,w ∈ E.

(Ax3 ) For each bounded set B ⊂ E and for each t ∈ Ik, k = 0, . . . ,m, we have

µ(f(t, B, (ρDα,β
s+k
B))) ≤ p(t)µ(B),

where ρDα,β
s+k
B = {ρDα,β

s+k
w : w ∈ B}.

(Ax4 ) The functions gk ∈ C(Ĩk, E), k = 1, . . . ,m, and there exists l∗ > 0 such that

‖gk(t, u)‖ ≤ l∗‖u‖ for each u ∈ E, k = 1, . . . ,m.

(Ax5 ) For each bounded set B ⊂ E and for each t ∈ Ĩk, k = 1, . . . ,m, we have

µ(gk(t, B)) ≤ l∗µ(B), k = 1, . . . ,m.

Set p∗ = sup
t∈[a,b]

p(t).

We are now in a position to state and prove our existence result for the problem (1)−(3) based on Mönch's
�xed point theorem.

Theorem 3.2. Assume (Ax1)�(Ax5) hold. If

L := max
{
l∗, p

∗Γ(γ)
Γ(α+γ)

(
bρ−aρ
ρ

)α}
< 1, (22)

then the problem (1)−(3) has at least one solution in PCγ,ρ(J).
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Proof. Consider the operator Ψ : PCγ,ρ(J)→ PCγ,ρ(J) de�ned in (21) and the ball BR := B(0, R) = {w ∈
PCγ,ρ(J) : ‖w‖PCγ,ρ ≤ R}, such that

R ≥ φ∗

(1− l∗)Γ(γ)
+

p∗

(1− l∗)Γ(α+ 1)

(
bρ − aρ

ρ

)1−γ+α

.

For any u ∈ BR, and each t ∈ Ik, k = 0, . . . ,m, we have

‖Ψu(t)‖ ≤ ‖φk‖
Γ(γ)

(
tρ − sρk
ρ

)γ−1

+
(
ρJ α

s+k
‖h(s)‖

)
(t)

≤ φ∗

Γ(γ)

(
tρ − sρk
ρ

)γ−1

+ p∗
(
ρJ α

s+k
(1)
)

(t).

By Lemma 2.3, we have∥∥∥∥∥
(
tρ − sρk
ρ

)1−γ
Ψu(t)

∥∥∥∥∥ ≤ φ∗

Γ(γ)
+

p∗

Γ(α+ 1)

(
tρ − sρk
ρ

)1−γ+α

≤ φ∗

Γ(γ)
+

p∗

Γ(α+ 1)

(
bρ − aρ

ρ

)1−γ+α

.

And for t ∈ Ĩk, k = 1, . . . ,m, we have

‖(Ψu)(t)‖ ≤ l∗‖u(t)‖ ≤ l∗R.

Hence,

‖Ψu‖PCγ,ρ ≤ l
∗R+

φ∗

Γ(γ)
+

p∗

Γ(α+ 1)

(
bρ − aρ

ρ

)1−γ+α

≤ R.

This proves that Ψ transforms the ball BR into itself. We shall show that the operator Ψ : BR → BR satis�es
all the assumptions of Theorem 2.4. The rest of the proof will be given in several steps.
Step 1: Ψ : BR → BR is continuous. Let {un} be a sequence such that un → u in PCγ,ρ(J). Then for each
t ∈ Ik, k = 0, . . . ,m, we have,∥∥∥∥ ((Ψun)(t)− (Ψu)(t))

(
tρ−sρk
ρ

)1−γ
∥∥∥∥ ≤ ( tρ−sρkρ

)1−γ (
ρJ α

s+k
‖hn(s)− h(s)‖

)
(t),

where hn, h ∈ C(Ik, E); k = 0, . . . ,m, such that

hn(t) = f(t, un(t), hn(t)),

h(t) = f(t, u(t), h(t)).

For each t ∈ Ĩk, k = 1, . . . ,m, we have,

‖((Ψun)(t)− (Ψu)(t))‖ ≤ ‖(gk(t, un(t))− gk(t, u(t)))‖ .

Since un → u, then we get hn(t) → h(t) as n → ∞ for each t ∈ (a, b], and since f and gk are continuous,
then we have

‖Ψun −Ψu‖PCγ,ρ → 0 as n→∞.

Step 2: Ψ(BR) is bounded and equicontinuous.
Since Ψ(BR) ⊂ BR and BR is bounded, then Ψ(BR) is bounded.



A. Salim, et al., Adv. Theory Nonlinear Anal. Appl. 4 (2020), 332�348. 343

Next, let ε1, ε2 ∈ Ik, k = 0, . . . ,m, ε1 < ε2, and let u ∈ BR. Then∥∥∥∥( ερ1−sρkρ

)1−γ
(Ψu)(ε1)−

(
ερ2−s

ρ
k

ρ

)1−γ
(Ψu)(ε2)

∥∥∥∥
≤
∥∥∥∥( ερ1−sρkρ

)1−γ (
ρJα
s+k
h(τ)

)
(ε1)−

(
ερ2−s

ρ
k

ρ

)1−γ (
ρJα
s+k
h(τ)

)
(ε2)

∥∥∥∥
≤
(
ερ2−s

ρ
k

ρ

)1−γ (
ρJα
ε+1
‖h(τ)‖

)
(ε2) + 1

Γ(α)

∫ ε1
sk

∥∥τρ−1H(τ)h(τ)
∥∥ dτ,

where H(τ) =

[(
ερ1−s

ρ
k

ρ

)1−γ ( ερ1−τρ
ρ

)α−1
−
(
ερ2−s

ρ
k

ρ

)1−γ ( ερ2−τρ
ρ

)α−1
]
.

Then by Lemma 2.3, we have ∥∥∥∥( ερ1−sρkρ

)1−γ
(Ψu)(ε1)−

(
ερ2−s

ρ
k

ρ

)1−γ
(Ψu)(ε2)

∥∥∥∥
≤ p∗

Γ(1+α)

(
ερ2−s

ρ
k

ρ

)1−γ ( ερ2−ερ1
ρ

)α
+ p∗

∫ ε1
sk

∥∥∥H(τ) τ
ρ−1

Γ(α)

∥∥∥( τρ−sρkρ

)γ−1
dτ,

and for each t ∈ Ĩk, k = 1, . . . ,m, we have

‖(Ψu)(ε1)− (Ψu)(ε2)‖ ≤ ‖(gk(ε1, u(ε1)))− (gk(ε2, u(ε2)))‖ .

As ε1 → ε2, the right-hand side of the above inequality tends to zero. Hence, Ψ(BR) is bounded and
equicontinuous.
Step 3: The implication (9) of Theorem 2.4 holds.
Now let D be an equicontinuous subset of BR such that D ⊂ Ψ(D) ∪ {0}, therefore the function t −→
d(t) = µ(D(t)) are continuous on J . By (Ax3), (Ax5) and the properties of the measure µ, for each
t ∈ Ik, k = 0, . . . ,m, we have(

tρ−sρk
ρ

)1−γ
d(t) ≤ µ

((
tρ−sρk
ρ

)1−γ
(ΨD)(t) ∪ {0}

)
≤ µ

((
tρ−sρk
ρ

)1−γ
(ΨD)(t)

)
≤

(
tρ−sρk
ρ

)1−γ (
ρJ α

s+k
p(s)µ(D(s))

)
(t)

≤ p∗
(
bρ−aρ
ρ

)1−γ (
ρJ α

s+k
d(s)

)
(t)

≤
[
p∗Γ(γ)
Γ(α+γ)

(
bρ−aρ
ρ

)α]
‖d‖PCγ,ρ .

And for each t ∈ Ĩk, k = 1, . . . ,m, we have

d(t) ≤ µ (gk(t,D(t))) ≤ l∗d(t).

Thus for each t ∈ (a, b], we have

‖d‖PCγ,ρ ≤ L‖d‖PCγ,ρ .

From (22), we get ‖d‖PCγ,ρ = 0, that is, d(t) = µ(D(t)) = 0, for each t ∈ (a, b], and then D(t) is relatively
compact in E. In view of the Ascoli-Arzela Theorem, D is relatively compact in BR. Applying now Theorem
2.4, we conclude that Ψ has a �xed point u∗ ∈ PCγ,ρ(J), which is solution of the problem (1)-(3).
Step 4: We show that such a �xed point u∗ ∈ PCγ,ρ(J) is actually in PCγγ,ρ(J).
Since u∗ is the unique �xed point of operator Ψ in PCγ,ρ(J), then for each t ∈ J, we have

Ψu∗(t) =


φk

Γ(γ)

(
tρ−sρk
ρ

)γ−1
+
(
ρJ α

s+k
h
)

(t), t ∈ Ik, k = 0, . . . ,m,

gk(t, u
∗(t)), t ∈ Ĩk, k = 1, . . . ,m.
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where h ∈ C(Ik, E); k = 0, . . . ,m, such that

h(t) = f(t, u∗(t), h(t)).

For t ∈ Ik; k = 0, . . . ,m, applying ρDγ
s+k

to both sides and by Lemma 2.3 and Lemma 2.6, we have

ρDγ
s+k
u∗(t) =

(
ρDγ

s+k

ρJ α
s+k
f(s, u∗(s), h(s))

)
(t)

=

(
ρDβ(1−α)

s+k
f(s, u∗(s), h(s))

)
(t).

Since γ ≥ α, by (Ax1 ), the right hand side is in Cγ,ρ(Ik) and thus ρDγ
s+k
u∗ ∈ Cγ,ρ(Ik) which implies that

u∗ ∈ Cγγ,ρ(Ik). And since gk ∈ C(Ĩk, E); k = 1, . . . ,m, then u∗ ∈ PCγγ,ρ(J). As a consequence of Steps 1
to 4 together with Theorem 3.2, we can conclude that the problem (1) − (3) has at least one solution in
PCγ,ρ(J).

Our second existence result for the problem (1)-(3) is based on Darbo's �xed point theorem.

Theorem 3.3. Assume (Ax1)�(Ax5) hold. If

L := max
{
l∗, p

∗Γ(γ)
Γ(α+γ)

(
bρ−aρ
ρ

)α}
< 1,

then the problem (1)−(3) has at least one solution in PCγ,ρ(J).

Proof. Consider the operator Ψ de�ned in (21). We know that Ψ : BR −→ BR is bounded and continuous
and that Ψ(BR) is equicontinuous. We need to prove that the operator Ψ is an L-contraction.
Let D ⊂ BR and t ∈ Ik, k = 0, . . . ,m. Then we have

µ

((
tρ−sρk
ρ

)1−γ
(ΨD)(t)

)
= µ

((
tρ−sρk
ρ

)1−γ
(Ψu)(t) : u ∈ D

)
≤

(
bρ−aρ
ρ

)1−γ {(
ρJ α

s+k
p∗µ(u(s))

)
(t), u ∈ D

}
.

By Lemma 2.3, we have for t ∈ Ik, k = 0, . . . ,m,

µ

((
tρ − sρk
ρ

)1−γ
(ΨD)(t)

)
≤

[
p∗Γ(γ)

Γ(α+ γ)

(
bρ − aρ

ρ

)α]
µPCγ,ρ(D).

And for each t ∈ Ĩk, k = 1, . . . ,m, we have

µ ((ΨD)(t)) ≤ µ (gk(t,D(t))) ≤ l∗µ (D(t)) .

Hence, for each t ∈ (a, b], we have
µPCγ,ρ(ΨD) ≤ LµPCγ,ρ(D).

So, by (22), the operator Ψ is an L-contraction. As consequence of Theorem 2.5 and using Step 4 of the last
result, we deduce that Ψ has a �xed point which is a solution of the problem (1)-(3)

4. Ulam-Hyers-Rassias (U-H-R) Stability

First, we are concerned with the Ulam-Hyers-Rassias (U-H-R) stability of our problem (1)−(3).

Theorem 4.1. Assume that in addition to (Ax1)�(Ax5) and (22), the following hypotheses hold.
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(Ax6) There exist a nondecreasing function ϑ : (a, b] −→ [0,∞) and λϑ > 0 such that for each t ∈ Ik, k =
0, . . . ,m, we have

(ρJ α
s+k
ϑ)(t) ≤ λϑϑ(t).

(Ax7) There exists a continuous function χ :

m⋃
k=1

[sk, tk+1] −→ [0,∞) such that for each t ∈ Ik, k = 0, . . . ,m,

we have
p(t) ≤ χ(t)ϑ(t).

Then problem (1)�(3) is U-H-R stable with respect to (ϑ, τ).

Proof. Consider the operator Ψ de�ned in (21). Let u ∈ PCγ,ρ(J) be a solution of inequality (11), and let
us assume that w is the unique solution of the problem

(
ρDα,β

s+k
w

)
(t) = f

(
t, w(t),

(
ρDα,β

s+k
w

)
(t)

)
; t ∈ Ik, k = 0, . . . ,m,

w(t) = gk(t, w(t−k )); t ∈ Ĩk, k = 1, . . . ,m,(
ρJ 1−γ

s+k
w

)
(s+
k ) =

(
ρJ 1−γ

s+k
u

)
(s+
k ) = φk, k = 0, . . . ,m.

By Lemma 3.1, we obtain for each t ∈ (a, b]

w(t) =


φk

Γ(γ)

(
tρ−sρk
ρ

)γ−1
+
(
ρJ α

s+k
h
)

(t) if t ∈ Ik, k = 0, . . . ,m,

gk(t, w(t)) if t ∈ Ĩk, k = 1, . . . ,m,

where h ∈ C(Ik, E), k = 0, . . . ,m, is a function satisfying the functional equation

h(t) = f(t, w(t), h(t)).

Since u is a solution of the inequality (11), by Remark 2.1, we have
(
ρDα,β

s+k
u

)
(t) = f

(
t, u(t),

(
ρDα,β

s+k
u

)
(t)

)
+ σ(t), t ∈ Ik, k = 0, . . . ,m,

u(t) = gk(t, u(t)) + σk, t ∈ Ĩk, k = 1, . . . ,m.
(23)

Clearly, the solution of (23) is given by

u(t) =


φk

Γ(γ)

(
tρ−sρk
ρ

)γ−1
+
(
ρJ α

s+k
g
)

(t) +
(
ρJ α

s+k
σ
)

(t), t ∈ Ik, k = 1, . . . ,m,

gk(t, u(t)) + σk, t ∈ Ĩk, k = 1, . . . ,m,

where g : Ik → E, k = 0, . . . ,m, is a function satisfying the functional equation

g(t) = f(t, u(t), g(t)).

Hence, for each t ∈ Ik, k = 0, . . . ,m, we have

‖u(t)− w(t)‖ ≤
(
ρJ αa+‖g(s)− h(s)‖

)
(t) +

(
ρJ αa+‖σ(s)‖

)
≤ ελϑϑ(t) +

∫ t
a s

ρ−1
(
tρ−sρ
ρ

)α−1
2χ(t)ϑ(t)

Γ(γ) ds

≤ ελϑϑ(t) + 2χ∗
(
ρJ αa+ϑ

)
(t)

≤ (ε+ 2χ∗)λϑϑ(t)

≤ (1 + 2χ∗

ε )λϑε(τ + ϑ(t)),
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where

χ∗ = max
k=0,...,m

{
sup

t∈[sk,tk+1]
χ(t)

}
.

For each t ∈ Ĩk, k = 1, . . . ,m, we have

‖u(t)− w(t)‖ ≤ ‖gk(t, u(t))− gk(t, w(t))‖+ ‖σk‖
≤ l∗‖u(t)− w(t)‖+ ετ,

and then by (22),
‖u(t)− w(t)‖ ≤ ετ

1−l∗ ≤
ε

1−l∗ (τ + ϑ(t)).

Then for each t ∈ (a, b], we have
‖u(t)− w(t)‖ ≤ aϑε(τ + ϑ(t)),

where

aϑ = max

{
(1 +

2χ∗

ε
)λϑ,

1

1− l∗

}
.

Hence, problem (1)�(3) is U-H-R stable with respect to (ϑ, τ).

5. Example

Let

E = l1 =

{
v = (v1, v2, . . . , vn, . . .),

∞∑
n=1

|vn| <∞

}
be the Banach space with the norm

‖v‖ =
∞∑
n=1

|vn|.

Consider the following initial value problem with non-instantaneous impulses(
1D

1
2
,0

s+k
u

)
(t) = f

(
t, u(t),

(
1D

1
2
,0

s+k
u

)
(t)

)
, t ∈ (1, 2] ∪ (e, 3], k ∈ {0, 1} (24)

u(t) = g(t, u(t)), t ∈ (2, e], (25)(
1J

1
2

1+
u

)
(1+) = 0, (26)

where
a = t0 = s0 = 1 < t1 = 2 < s1 = e < t2 = 3 = b,

u = (u1, u2, . . . , un, . . .),

f = (f1, f2, . . . , fn, . . .),

1D
1
2
,0

s+k
u = (1D

1
2
,0

s+k
u1, . . . ,

1D
1
2
,0

s+k
u2, . . . ,

1D
1
2
,0

s+k
un, . . .),

g = (g1, g2, . . . , gn, . . .),

fn(t, un(t),

(
1D

1
2
,0

s+k
un

)
(t)) =

(2t3 + 5e−2)|un(t)|

183e−t+3(1 + ‖u(t)‖+ ‖
(

1D
1
2
,0

s+k
u

)
(t)‖)

,

with t ∈ (1, 2] ∪ (e, 3], k ∈ {0, 1}, n ∈ N, and

gn(t, un(t)) =
|un(t)|

105e−t+5 + 1
, t ∈ (2, e], n ∈ N.
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We have
Cβ(1−α)
γ,ρ ((1, 2]) = C0

1
2
,1

((1, 2]) =
{
h : (1, 2]→ E : (

√
t− 1)h ∈ C([1, 2], E)

}
,

and
Cβ(1−α)
γ,ρ ((e, 3]) = C0

1
2
,1

((e, 3]) =
{
h : (e, 3]→ E : (

√
t− e)h ∈ C([e, 3], E)

}
,

with γ = α = 1
2 , ρ = 1, β = 0 and k ∈ {0, 1}. Clearly, the continuous function f ∈ C0

1
2
,1

((1, 2])∪C0
1
2
,1

((e, 3]).

Hence the condition (Ax1) is satis�ed.
For each u,w ∈ E and t ∈ (1, 2] ∪ (e, 3],

‖f(t, u, w)‖ ≤ 2t3 + 5e−2

183e−t+3
.

Hence condition (Ax2) is satis�ed with

p(t) =
2t3 + 5e−2

183e−t+3
,

and

p∗ =
54 + 5e−2

183
.

And for each u ∈ E and t ∈ (2, e] we have

‖g(t, u)‖ ≤ ‖u‖
105e5−e + 1

,

and so the condition (Ax4) is satis�ed with l∗ = 1
105e5−e+1

.
The condition (22) of Theorem 3.2 is satis�ed, for

L := max

{
l∗,

p∗Γ(γ)

Γ(α+ γ)

(
bρ − aρ

ρ

)α}
≈ 0.7489295248 < 1.

Let Ω be a bounded set in E where 1D
1
2
,0

s+k
Ω =

{
1D

1
2
,0

s+k
v : v ∈ Ω

}
, k ∈ {0, 1}. Then by the properties of the

Kuratowski measure of noncompactness, for each u ∈ Ω and t ∈ (1, 2] ∪ (e, 3], we have

µ

(
f(t,Ω, 1D

1
2
,0

s+k
Ω)

)
≤ p(t)µ(Ω),

and for each t ∈ (2, e],
µ (g(t,Ω)) ≤ l∗µ(Ω).

Hence conditions (Ax3) and (Ax5) are satis�ed. Then the problem (24)−(26) has at least one solution in
PC 1

2
,1([1, 3]).

Also, hypothesis (Ax8 ) is satis�ed with τ = 1 and

ϑ(t) =


1√
t−sk

, t ∈ (1, 2] ∪ (e, 3],

1, t ∈ (2, e],

and λϑ =
√
π. Indeed, for each t ∈ (1, 2], we get

(1J
1
2

1+
ϑ)(t) =

√
π ≤

√
π√

t− 1
,

and for each t ∈ (e, 3], we get

(1J
1
2

e+
ϑ)(t) =

√
π ≤

√
π√

t− e
.
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Let the function χ : [1, 2] ∪ [e, 3] −→ [0,∞) be de�ned by

χ(t) =
(2t3 + 5e−2)

√
t− sk

183e−t+3
, k ∈ {0, 1}.

Then, for each t ∈ (1, 2] ∪ (e, 3], we have
p(t) = χ(t)ϑ(t),

with χ∗ = p∗. Hence, the condition (Ax9) is satis�ed. Consequently, Theorem 4.1 implies that the problem
(24)�(26) is U-H-R stable.
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