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Abstract 

In this study, a non-analog Monte Carlo method is developed to simulate the albedo and transmission factor 
of an infinite non-multiplying slab medium subjected to a direction-dependent one-speed neutron beam on 
the left side. In order to obtain more precise results different variance reduction techniques such as forced 
collision, implicit capture, and Russian-Roulette are taken into consideration. For different incident 
directions of the neutrons and in the case of both isotropic and linear anisotropic scatterings, the albedo 
and transmission factor are estimated from the Monte Carlo and compared with the results obtained from 
the 𝐻𝑁=7 deterministic method. It is seen that in most cases, the results of both Monte Carlo and 𝐻𝑁=7 
methods are comparable with each other. In some cases, it is also observed that the deterministic method 
falls short in predicting the albedo and transmission factor, whereas, in contrast, the results of the Monte 
Carlo are physically meaningful. 
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Lineer-anizotropik saçılma ile slab albedo problemi için bir Analog 
Olmayan Monte Carlo simülasyon yöntemi  
 

 

Özet 

Bu çalışmada, sol taraftan bir anizotropik ve tek hızlı nötron demetine maruz kalan sonsuz çoğaltıcı 
olmayan bir levha ortamının albedo ve iletim faktörünü simüle etmek için analog olmayan bir Monte Carlo 
yöntemi geliştirilmiştir. Daha yüksek hassasiyete sahip sonuçlar elde etmek için, simülasyon sırasında zorla 
çarpışma, örtük yakalama ve Russian-Roulette gibi farklı varyans azaltma teknikleri kullanılmıştır. 
Nötronların farklı geliş yönleri için, hem izotropik hem de lineer anizotropik saçılımlar durumunda, albedo 
ve iletim faktörü Monte Carlo'dan tahmin edilip ve 𝐻𝑁=7 deterministik yönteminden elde edilen sonuçlarla 

karşılaştırılmıştır. Çoğu durumda Monte Carlo ve 𝐻𝑁=7  Metotlarının sonuçlarının birbiriyle karşılaştırılabilir 
olduğu görülmektedir. Bazı durumlarda, deterministik yöntemin albedo ve iletim faktörünü tahmin etmede 
yetersiz kaldığı, buna karşın Monte Carlo'nun sonuçlarının fiziksel olarak anlamlı olduğu görülmektedir.  
 
Anahtar Kelimeler: Anizotropik saçılma, Nötron transport, Monte Carlo, Albedo, İletim faktörü. 
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1. INTRODUCTION 

In nuclear reactors, the behavior of the neutron is described by the integro-differential neutron transport 

equation. To learn the neutronic behavior of the systems such as scalar flux, reaction rate, reactor power, 

etc. we need to solve either the time-dependent or steady-state forms of the neutron transport equations. 

Unfortunately, except for some simple cases, the neutron transport equations cannot be solved analytically. 

The main reason is the high number of variables. It is a seven-dimensional problem: three dimensions in 

space (𝑥, 𝑦, 𝑧), two in direction (𝜇 = cos𝜃 , 𝜑), one in energy (𝐸) and one in time (𝑡). Both deterministic 

and stochastic (i.e., Monte Carlo) solution methods are being used to solve and simulate the neutron 

transport equations, respectively [1-4]. 

Deterministic solution methods, by discretizing energy, space, and time variables, using the appropriate 

approximations for the angular dependency, and finally by applying the boundary and initial conditions, a 

group of mathematical equations are formed and solved numerically. In addition to numerical solutions 

error, thus obtained results contain truncation and discretizing errors as well. Deterministic methods are 

faster, but fall short in addressing the nuclear systems with complex geometries, strong anisotropy of 

neutron scattering, and complicated neutron energy spectrums [1,4]. 

Monte Carlo method is a stochastic simulation method that is used to solve deterministic problems using 

randomly generated numbers between zero and one. In Monte Carlo method, without dealing with the 

integro-differential equations and also without using different approximations, the neutron motions and 

interaction types are sampled randomly and used to simulate the neutronic behavior of the system. This 

solution method can be easily applied on the problems with complex geometry and continuous energy. One 

of the most restriction in utilizing these methods is the significant Central Processing Unit (CPU) time-cost 

and uncertainty of the results. Nowadays, advances in computational capabilities render Monte Carlo 

methodology feasible. The imposed variances can be reduced by increasing the particle numbers in the 

simulation. However, the technical difficulties in using a large number of histories led to the development 

and use of several variance reduction techniques [4-9]. 

In the slab albedo problem, a one-speed non-multiplying slab of the thickness of 𝜏 𝑐𝑚, extended from 𝑧 =
−𝑎  to 𝑧 = 𝑎  and surrounded by the vacuum, is taken into account. Schematic representation of the problem 

is presented in Figure 1. The angular dependent neutron beam incident on the left side of the slab and on 

the other surface there is no neutron entrance. Moreover, the neutron scattering is assumed to be linearly 

anisotropic [10-13]. 

 
Figure 1. Schematic representation of the non-multiplying infinite slab media. 
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     𝜓(𝑧 = −𝑎, 𝜇 > 0) =  𝜇𝛽                                                                                                                                  (1)      
 

     𝜓(𝑧 = 𝑎, 𝜇 < 0) =  0.0                                                                                                                                     (2)      
 

where 𝜇 is direction cosine and is equal to Ω⃗⃗ . �̂�, Ω⃗⃗  is the neutron direction, 𝜓(𝑧, 𝜇) = ∫ 𝜓(𝑧, Ω) 𝑑𝜑
2𝜋

0
 

represents the azimuthally integrated angular flux and 𝛽 is an integer constant. 

The one speed, steady-state and azimuthally integrated neutron transport equation for a homogeneous non-

multiplying slab media with linear anisotropic scattering is expressed as follows:  

 

     𝜇
𝜕𝜓(𝑧, 𝜇)

𝜕𝑧
+ 𝛴𝑡  𝜓(𝑧, 𝜇) =

𝛴𝑠0
2
∫ [1 + 3𝑓1𝑃1(𝜇

′)𝑃1(𝜇)] 𝜓(𝑧, 𝜇′) 𝑑𝜇′
1

−1

                                                 (3)      

 

where Σ𝑡 is the neutron total macroscopic cross section, Σ𝑠0 is the total scattering cross section which is 

also referred to as zeroth moment of the scattering kernel, 𝑓1 is equal to Σ𝑠1/Σ𝑠0 and is named as mean 

scattering cosine, Σ𝑠1is the first moment of the scattering kernel that can take both positive and negative 

values, and 𝑃1(𝜇) = 𝜇 is the first order Legendre polynomial. The mean number of secondary neutrons per 

collision is denoted by 𝑐 and expressed as the ratio of  Σ𝑠0 to Σ𝑡 [14,15].  

The scattering kernel that is used in azimuthally integrated neutron transport equation of one-dimensional 

problems is as follows. 

 

    𝛴𝑠(𝜇′ → 𝜇) =∑
2𝑙 + 1

2
  𝛴𝑠𝑙𝑃𝑙(𝜇′)

∞

𝑙=0

𝑃𝑙(𝜇)                                                                                                   (4)      

 

𝛴𝑠(𝜇′ → 𝜇) describes the probability that a neutron with initial direction cosine of 𝜇′ undergoes scattering 

event and takes a new direction with direction cosine of 𝜇. 

Different types of deterministic solution methods were presented to solve the azimuthally integrated neutron 

transport equations with linearly anisotropic scattering in slab geometry [10-13]. 

For one-speed problems, the Legendre polynomial expansion of the scattering kernel in general form is 

expressed as shown in Eq. (5), which describes the probability that a neutron with an initial direction of Ω⃗⃗ ′ 

is scattered into a new direction of Ω⃗⃗  [14-18]. 

 

     𝛴𝑠(�⃗� 
′ → �⃗� ) =

1

2𝜋
𝛴𝑠(�⃗� 

′. �⃗� ) =∑
2𝑙 + 1

4𝜋
  𝛴𝑠𝑙  𝑃𝑙(�⃗�

 ′. �⃗� )

∞

𝑙=0

                                                                        (5)      

 

It is a well-known fact that the scattering is rotationally invariant in one-dimensional problems, that is, the 

probability that a neutron be scattered from direction Ω⃗⃗ ′ to a new direction Ω⃗⃗   only depends on the scattering 

angle 𝛩𝑏 between Ω⃗⃗  and Ω⃗⃗ ′. Therefore, the Σ𝑠(Ω⃗⃗ 
′. Ω⃗⃗ ) can be expressed as follows:  

 

     𝛴𝑠(𝜇𝑏) =  ∑
2𝑙 + 1

2
  𝛴𝑠𝑙  𝑃𝑙(𝜇𝑏)  

∞

𝑙=0

                                                                                                                  (6)     
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where 𝜇𝑏 is called the scattering cosine. 

 

     �⃗� ′. �⃗� = 𝜇𝑏 = 𝑐𝑜𝑠(𝛩𝑏)                                                                                                                                      (7)      
 

In this manuscript, a novel non-analog Monte Carlo methodology is provided to estimate the albedo and 

transmission factor of the slab media with linear anisotropic scattering. The obtained results are compared 

with the results obtained from the 𝐻𝑁 deterministic method. 

2. NON-ANALOG MONTE CARLO METHOD 

To start the Monte Carlo simulation, it is assumed that 𝑁𝑛 number of neutrons of the weight of 𝑤0 = 1 

incident on the left surface of the slab at 𝑧0 = −𝑎 𝑐𝑚. In order to sample the incident neutrons directions, 

the incoming current boundary condition on the left boundary is taken into consideration. 

 

    𝐽𝑖𝑛(−𝑎) = ∫𝜇

1

0

 𝜓(−𝑎, 𝜇) 𝑑𝜇 =
1

(𝛽 + 2)
                                                                                                         (8)    

 

Thus,  (𝛽 + 2) 𝜇 𝜓(−𝑎, 𝜇) can be considered as the probability density function for the incident neutrons’ 

directions. By calculating the cumulative distribution function and using the inverse transform method the 

incident direction of the neutrons is sampled as follows: 

 

    𝜇0 = 𝜉
1

𝛽+2                                                                                                                                                               (9)     
 

 where 𝜉 represents a uniformly distributed random number between zero and one.  

The azimuthal angle of the incident neutron is randomly sampled as: 

 

    𝜑0 = 2𝜋𝜉                                                                                                                                                             (10)     
 

Due to the inability of using a large number of histories in the Monte Carlo simulations, killing a neutron 

due to leakage imposes an additional variance on the simulation results. To overcome this problem, the 

forced collision variance reduction technique is implemented: 𝑒Σ𝑡 𝑑𝑠 fraction of the neutron weight is killed 

due to leakage and the remaining weight is forced to do a collision after traveling a path length of 

𝑑 (𝜖[0 , 𝑑𝑠]). Here 𝑑𝑠 is the minimum distance to surface in the neutron direction. This method causes 

neutron to live longer and subsequently have more chance to score, that is, the forced collision technique 

increases sampling of collisions in specified regions. 

 

    𝑤𝑙𝑒𝑎𝑘 = 𝑤0 𝑒
𝛴𝑡 𝑑𝑠                                                                                                                                                (11)     

 

    𝑤𝑖𝑛𝑡 = 𝑤0(1 −  𝑒
𝛴𝑡 𝑑𝑠)                                                                                                                                      (12)    

 

    𝑑 = −
1

𝛴𝑡
𝑙𝑛[ 1 − 𝜉(1 − 𝑒−𝛴𝑡𝑑𝑠)]                                                                                                                   (13)    

 

The new position of the neutron is calculated as: 

 

https://www.powerthesaurus.org/more_chance/synonyms
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    𝑧 = 𝑧0 + 𝑑𝜇0                                                                                                                                                        (14)    
 

In order to minimize the imposed variance due to absorption of a neutron, implicit capture variance 

reduction technique is implemented. Therefore, Σ𝑎/Σt fraction of the 𝑤𝑖𝑛𝑡 is killed due to absorption and 

the remaining weight undergoes a scattering event.  

To sample the new direction of the scattered neutron, first the scattering cosine and its corresponding 

azimuthal angle are sampled. To sample the scattering cosine the given expression for Σ𝑠(𝜇𝑏) in Eq. (6) is 

used. Since the ∫ Σ𝑠(𝜇𝑏)
1

−1
𝑑𝜇𝑏 is equal to Σ𝑠0, therefore, Σ𝑠(𝜇𝑏)/Σ𝑠0 can be taken as the probability density 

function for the 𝜇𝑏. 

 

    𝑃𝑑𝑓(𝜇𝑏) =
𝛴𝑠(𝜇𝑏)

𝛴𝑠0
=
1

2
+
3

2
 𝑓1𝜇𝑏 +⋯+

2𝑁 + 1

2
 
𝛴𝑠𝑁
𝛴𝑠0

 𝑃𝑁(𝜇𝑏) + ⋯                                                    (15)     

 

The given expression in Eq.(15) is always a positive quantity. In the case of the linearly anisotropic 

scattering, the two first terms of the series expansion are taken into account. in this case, for 1 < |3𝑓1| ≤ 3  

the 𝑃𝑑𝑓(𝜇𝑏) may become negative, which is an unacceptable condition for the density function, therefore, 

it cannot be used as a probability density function to sample the scattering cosine. To overcome this 

difficulty, a sampling method for selecting the scattering angle from the linearly anisotropic distribution 

function was developed by Coveyou [19-21]. According to this method, the corresponding probability 

density function for the positive 𝑓1 values is expressed in the form of: 

 

    𝑃𝑑𝑓(𝜇𝑏) =

{
 
 

 
 1

2
 (1 + 3 𝑓1𝜇𝑏 )                                                             , 𝑖𝑓 3𝑓1 ≤ 1 

 
3

2
(1 − 𝑓1) (

1 + 𝜇𝑏
2

) +
1

2
(3𝑓1 − 1)𝛿(𝜇𝑏 − 1)      , 1 < 3𝑓1 ≤ 3

                                    (16)     

 

The density function corresponding to negative 𝑓1 values is obtained by changing the signs of the 𝑓1 and 𝜇𝑏 

in Eq. (16). 

In this manuscript, we deal with positive 𝑓1 values. Also, we follow a different sampling method from 

Coveyou’s method. In our case, the probability density function is re-written as follows. 

 

𝑃𝑑𝑓(𝜇𝑏) =

{
 
 

 
 
1

2
 (1 − 3 𝑓1 )  + 3𝑓1  (

1 + 𝜇𝑏
2

)                                       ,3𝑓1 ≤ 1         
 

3

2
(1 − 𝑓1) (

1 + 𝜇𝑏
2

) + (1 −
3

2
(1 − 𝑓1))𝛿(𝜇𝑏 − 1)   , 1 < 3𝑓1 ≤ 3

                                 (17)    

 

For the cases that 3𝑓1 ≤ 1, a uniformly distributed random number 𝜉 (∈ [0,1]) is generated. If the 𝜉 be less 

than 3𝑓1 then the 𝑃𝑑𝑓(𝜇𝑏) is taken equal to (
1+𝜇𝑏

2
) and used to sample 𝜇𝑏.  Otherwise,  𝑃𝑑𝑓(𝜇𝑏) is taken 

equal to 
1

2
 .  

 

    𝑃𝑑𝑓(𝜇𝑏) =
1 + 𝜇𝑏
2

      →     𝜇𝑏 = −1 + 2√𝜉                                                                                              (18)     

 

    𝑃𝑑𝑓(𝜇𝑏) =
1 

2
            →     𝜇𝑏 = −1+ 2𝜉                                                                                                     (19)     
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In contrast, for the case that 1 < 3𝑓1 ≤ 3, a uniformly distributed random number 𝜉(∈ [0,1]) is generated. 

If the 𝜉 be less than 
3

2
(1 − 𝑓1) then the 𝑃𝑑𝑓(𝜇𝑏) is taken equal to (

1+𝜇𝑏

2
) . Otherwise,  𝑃𝑑𝑓(𝜇𝑏) is taken 

equal to 𝛿(𝜇𝑏 − 1) and subsequently 𝜇𝑏 becomes equal to +1,  that is, neutron does not change its direction.  

The corresponding azimuthal angle for the scattering cosine is sampled randomly as follows: 

 

    𝛷𝑏 = 2𝜋𝜉                                                                                                                                                             (20)     
 

As shown in Figure 2, 𝛷𝑏 and 𝛩𝑏 are the azimuthal and polar angles of the scattered neutron with respect 

to its initial direction. These angles are used to obtain the actual direction of the scattered neutron.  

 
Figure 2. Schematic representation of scattering cosine. 

 

For a particle with initially direction of  Ω⃗⃗ 0 = (√1 − 𝜇0
2 cos(𝜑0) , √1 − 𝜇0

2 sin(𝜑0) , 𝜇0) that is scattered 

by angles Θb and 𝛷𝑏 with respect to the initial direction. The new direction is given by [22,23]: 

 

    𝜇 = 𝜇0𝜇𝑏 −√1− 𝜇0
2 √1 − 𝜇𝑏

2 𝑐𝑜𝑠(𝛷𝑏)                                                                                                      (21)     

 

   𝑐𝑜𝑠(𝜑 ) =
1

√1 − 𝜇 
2
 [√1 − 𝜇0

2  × 𝜇𝑏 𝑐𝑜𝑠(𝜑0) + √1 − 𝜇𝑏
2

× [𝜇0 𝑐𝑜𝑠(𝛷𝑏) 𝑐𝑜𝑠(𝜑0) − 𝑠𝑖𝑛(𝛷𝑏) 𝑠𝑖𝑛(𝜑0)]  ]                                                                (22)     

 

    𝑠𝑖𝑛(𝜑 ) =
1

√1 − 𝜇 
2
 [√1 − 𝜇0

2  × 𝜇𝑏 𝑠𝑖𝑛(𝜑0) + √1 − 𝜇𝑏
2

× [𝜇0 𝑐𝑜𝑠(𝛷𝑏) 𝑠𝑖𝑛(𝜑0) + 𝑠𝑖𝑛(𝛷𝑏) 𝑐𝑜𝑠(𝜑0)]  ]                                                                (23)     

 

In this case, first of all, the 𝜇 value is obtained from the Eq. (21), then by using this value the best azimuthal 

angle that satisfies both Eqs. (22) and (23) are calculated. 

To track the transport of the scattered neutron, 𝑧0 , 𝑤0, 𝜇0 and 𝜑0 values are updated to 𝑧 (Σ𝑠/Σt)𝑤𝑖𝑛𝑡, 𝜇 

and 𝜑 respectively. The transport of each neutron is monitored until it is killed by Russian-Roulette method. 

In the Russian-Roulette method, a threshold weight and a survival weight which are designated by  𝑤rr and 

𝑤sur, respectively, are selected. For the cases that the scattered neutron weight is less than the threshold 

weight (𝑤0 < 𝑤rr) a random number is generated; if this random number be less than the 𝑃𝑠𝑢𝑟(= 𝑤0/𝑤𝑠𝑢𝑟) 
the particle with the new weight of 𝑤0(= 𝑤𝑠𝑢𝑟) is survived; otherwise, the neutron is killed and transport 

of the other neutrons is simulated. In this manuscript, the threshold and survival weight are set to 
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0.25 𝑤𝑎𝑣𝑖𝑛𝑐  and 0.5𝑤𝑎𝑣𝑖𝑛𝑐 , where the 𝑤𝑎𝑣𝑖𝑛𝑐  denotes the average weight of the incident neutron and is equal 

to unity. 

Albedo is defined as the reflection probability of the incident neutron and denoted by 𝛼. The transmission 

factor is defined as the transmission probability of the incident neutrons that leak out the scattering region 

at 𝑧 = 𝑎 and denoted by κ.  These quantities are tallied as follows. 

 

    𝛼 =
∑ 𝑤0𝑖  𝑒

𝛴𝑡 𝑑𝑠𝑖
𝑁𝐿𝑙
𝑖=1

𝑁𝑛 × 1
                                                                                                                                          (24)     

 

    𝜅 =
∑ 𝑤0𝑗  𝑒

𝛴𝑡 𝑑𝑠𝑗
𝑁𝐿𝑟
𝑗=1

𝑁𝑛 × 1
                                                                                                                                         (25)     

 

where 𝑖 and 𝑗 count the number of leakage events that occur at the left and right boundaries of the slab 

media, respectively.   

The absorption probability of the incident neutrons is also scored as follows: 

 

    𝑃𝑎 =
∑ 𝑤0𝑘 (

𝛴𝑎
𝛴𝑡
 )

𝑁𝑖𝑛𝑡
𝑘=1

𝑁𝑛 × 1
                                                                                                                                        (26)     

 

where 𝑘 specifies the number of interactions.  

3.  RESULTS AND DİSCUSSİONS 

In order to test the validity of the proposed Monte Carlo method, the uncollided and once-collided partial 

currents at the boundaries are obtained from both Monte Carlo and successive approximation methods and 

their ratio to the total inlet current are compared with each other. The obtained results for the uncollided 

and once-collided angular fluxes from the successive approximation method are as follows. 

 

    𝜓(0)(𝑧, 𝜇 > 0) = 𝜇𝛽𝑒
−𝛴𝑡
𝜇
(𝑧+𝑎)

      

    𝜓(0)(𝑧, 𝜇 < 0) = 0.0     

    𝜓(1)(𝑧, 𝜇 > 0) = 𝑒
−𝛴𝑡
𝜇
𝑧
[
𝛴𝑠0
2

∫𝐴(𝑧′)𝑒
𝛴𝑡
𝜇
𝑧′
𝑑𝑧′

𝑧

−𝑎

] + 𝑒
−𝛴𝑡
𝜇
𝑧
[
3𝛴𝑠1
2

∫𝐵(𝑧′) 𝑒
𝛴𝑡
𝜇
𝑧′
𝑑𝑧′

𝑧

−𝑎

]      

    𝜓(1)(𝑧, 𝜇 < 0) = 𝑒
−𝛴𝑡
𝜇
𝑧
[
𝛴𝑠0
2
∫𝐴(𝑧′)𝑒

𝛴𝑡
𝜇
𝑧′
𝑑𝑧′

𝑧

𝑎

] + 𝑒
−𝛴𝑡
𝜇
𝑧
[
3𝛴𝑠1
2

∫𝐵(𝑧′) 𝑒
𝛴𝑡
𝜇
𝑧′
𝑑𝑧′

𝑧

𝑎

]     

where 

    𝐴(𝑧) = ∫𝜓(0)(𝑧, 𝜇′) 𝑑𝜇′

0

−1

+∫𝜓(0)(𝑧, 𝜇′) 𝑑𝜇′

1

0

     

    𝐵(𝑧) = ∫𝜇′𝜓(0)(𝑧, 𝜇′) 𝑑𝜇′

0

−1

+∫𝜇′𝜓(0)(𝑧, 𝜇′) 𝑑𝜇′

1

0
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In this manuscript, in order to compare our results with the results presented in the literature the total neutron 

cross section is taken equal to 1.0 𝑐𝑚−1[10].  To implement the provided Monte Carlo simulation the 

scattering and absorption cross sections are required. Using the mean number of secondary neutrons per 

collision(𝑐) which is used as an input parameter in the reference article [10], these cross sections are 

obtained as Σs0 = cΣt and Σa = Σt − Σs0. 

The number of incident neutrons in the Monte Carlo simulation is set to 2.0𝐸 + 6. In order to compare the 

Monte Carlo and successive approximation methods, for different selected parameters, the ratios of the 

partial currents at boundaries to inlet current are presented in Tables 1 and 2.  It is seen that the results are 

in good agreement with each other. 

 

Table 1. Ratio of the partial currents to inlet current for  𝛴𝑡 = 1.0 𝑐𝑚
−1, 𝛽 = 0.0, 𝑓1 = 0.1, 𝜏 = 1.0 𝑐𝑚 . 

 Monte Carlo  Method Successive approximation method 

   𝐽−(0)(−𝑎)  

𝐽+(0)(−𝑎)
 0.0 0.0 

  𝐽+
(0)
(𝑎) 

𝐽+(0)(−𝑎)
 0.2194642 0.2193840 

    𝐽−(1)(−𝑎)   

   𝐽+(0)(−𝑎)  
 0.0174553 0.0174908 

     𝐽+
(1)
(𝑎)    

   𝐽+(0)(−𝑎)   
 0.0131680 0.0131473 

 

Table 2. Ratio of the partial currents to inlet current for 𝛴𝑡 = 1.0 𝑐𝑚
−1, 𝛽 = 1.0, 𝑓1 = 0.1 , 𝜏 = 2.0 𝑐𝑚 . 

 Monte Carlo  Method Successive approximation method 

   𝐽−(0)(−𝑎)  

𝐽+(0)(−𝑎)
 0.0 0.0 

  𝐽+
(0)
(𝑎) 

𝐽+(0)(−𝑎)
 0.0750605 0.0750684 

    𝐽−(1)(−𝑎)   

   𝐽+(0)(−𝑎)  
 0.0161776 0.0161959 

     𝐽+
(1)
(𝑎)    

   𝐽+(0)(−𝑎)   
 0.0063186 0.0063312 

   
For different input parameters, the mean value of all scattering cosines that are sampled during the Monte 

Carlo simulation is shown in Table 3. It is observed that, the mean value of the sampled scattering cosines 

becomes almost equal to mean scattering cosine (𝑓1) value. Also it is seen that by increasing the slab 

thickness the results become more accurate. 

 

Table 3. Average value for the all scattering cosines sampled during the Monte Carlo simulation. 
 𝜏 0.1 𝑐𝑚 0.5 𝑐𝑚 1.0 𝑐𝑚 2.0 𝑐𝑚 

𝛽 = 0.0, 𝑐 = 0.8 , 𝑓1 = 0.00 < 𝜇𝑏 > -0.000696 -0.000651 -0.000578 -0.000164 

𝛽 = 1.0, 𝑐 = 0.1, 𝑓1 = 0.10 < 𝜇𝑏 > 0.097965 0.100966 0.099243 0.099892 

𝛽 = 3.0, 𝑐 = 0.8 , 𝑓1 = 0.50 < 𝜇𝑏 > 0.49941 0.500270 0.499993 0.499996 
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For different types of inlet current, different 𝑓1 values, and different thicknesses the albedo and transmission 

factor are obtained from the Monte Carlo and compared with the results calculated from the 𝐻𝑁 

deterministic method presented by S. Bulut and M. Ç. Güleçyüz [10]. The 𝐻𝑁 solution method depends on 

the use of the angular distributions of the method of elementary solutions; where the orthogonality relations 

of the singular eigenfunctions together with the values of the angular distributions at the boundaries of the 

given medium lead to the solution of the problem.  

   
3.1. Case 1: Direction-independent inlet 

In this test case the 𝛽 value is taken zero, that is, the incident neutron does not have any directional 

preference. Tables 4 and 5 represent the comparison between the deterministic and Monte Carlo methods. 

For the constant 𝑓1 values, it is seen that by increasing the thickness the albedo increases and transmission 

factor decreases, where the results of both methods show the same performance. 

On the other hand, it is known that by increasing the mean scattering cosine value, the forward scattering 

contribution increases; leading to a reduction in albedo and an increase in the transmission factor. As seen 

in both Tables, the Monte Carlo results satisfy this condition. But the 𝐻𝑁 deterministic method cannot 

satisfy this physical property generally, where as shown in Table 4, for the case 𝜏 = 1.0 𝑐𝑚, by increasing 

the 𝑓1 value the transmission factor goes up and then decreases. 

In addition, it is observed that by increasing the 𝑐 value, both the albedo and transmission factor experience 

an increase.  

  
Table 4. Comparison of Monte Carlo and deterministic methods for β = 0.0  and. c = 0.1 . 

𝒇𝟏 Method 𝝉 = 𝟎. 𝟏 𝒄𝒎 𝝉 = 𝟎. 𝟓 𝒄𝒎 𝝉 = 𝟏. 𝟎 𝒄𝒎 𝝉 = 𝟐. 𝟎 𝒄𝒎 

𝜶 𝜿 𝜶 𝜿 𝜶 𝜿 𝜶 𝜿 

0.0 Monte 

Carlo 

0.007184 0.839513 0.017830 0.457757 0.020850 0.231683 0.021716 0.065773 

𝐻𝑁=7 

method 

0.007182 0.839537 0.017770 0.437934 0.020747 0.231808 0.021624 0.065840 

0.1 Monte 

Carlo 

0.006552 0.840201 0.015878 0.459721 0.018514 0.233548 0.019272 0.0666778 

𝐻𝑁=7 

method 

0.006556 0.840028 0.015973 0.459480 0.018056 0.268279 0.019297 0.066656 

0.5 Monte 

Carlo 

0.003807 0.843025 0.008787 0.466894 0.010064 0.240746 0.010387 0.070729 

𝐻𝑁=7 

method 

0.004041 0.842978 0.008691 0.466414 0.009595 0.240028 0.009769 0.070218 

 

Table 5. Comparison of Monte Carlo and deterministic methods for β = 0.0  and  c = 0.8 . 

𝒇𝟏 Method 
𝝉 = 𝟎. 𝟏 𝒄𝒎 𝝉 = 𝟎. 𝟓 𝒄𝒎 𝝉 = 𝟏. 𝟎 𝒄𝒎 𝝉 = 𝟐. 𝟎 𝒄𝒎 

𝜶 𝜿 𝜶 𝜿 𝜶 𝜿 𝜶 𝜿 

0.0 

Monte  

Carlo 
0.064994  0.896493 0.205770  0.621731 0.280209  0.416248 0.328250  0.197271 

𝐻𝑁=7 

method 
0.064925 0.896574 0.205616 0.621975 0.280152 0.416245 0.327951 0.197270 

0.1 

Monte  

Carlo 
0.059861  0.901529 0.190666  0.636773 0.261523  0.434061 0.308712  0.212082 

𝐻𝑁=7 

method 
0.059874 0.901624 0.190654 0.636790 0.261711 0.433792 0.309080 0.212005 

0.5 
Monte  

Carlo 
0.036724  0.924655 0.121410  0.706122 0.172801  0.521132 0.212524  0.294540 
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𝐻𝑁=7 

method 
0.039096 0.922396 0.123621 0.703233 0.173106 0.518755 0.211456 0.293647 

 

3.2. Case 2: Direction-dependent inlet I 

In this test case,  𝛽 value is taken equal to one, that is, the angular flux boundary condition due to incoming 

neutrons becomes equal to 𝜓(−𝑎, 𝜇 > 0) =  𝜇 . The albedo and transmission factor resulted from the 

Monte Carlo method for  𝑐 = 0.1 and 𝑐 = 0.8 are given in Tables 6 and 7, respectively, and compared with 

the results obtained from the  𝐻𝑁=7 deterministic method. 

It is seen that the results are in good agreement. But for the case 𝜏 = 1.0 𝑐𝑚 and 𝑐 = 0.1 , as shown in 

Table 6, by increasing the 𝑓1 value the transmission factor obtained from 𝐻𝑁=7 method goes up and then 

decreases whereas we observe a logical increase in the Monte Carlo results.  

  
Table 6. Comparison of Monte Carlo and deterministic methods for β = 1.0  and  c = 0.1 . 

𝒇𝟏 Method 
𝝉 = 𝟎. 𝟏 𝒄𝒎 𝝉 = 𝟎. 𝟓 𝒄𝒎 𝝉 = 𝟏. 𝟎 𝒄𝒎 𝝉 = 𝟐. 𝟎 𝒄𝒎 

𝜶 𝜿 𝜶 𝜿 𝜶 𝜿 𝜶 𝜿 

0.0 

Monte 

Carlo 
0.005843 0.868926 0.015785  0.509205 0.018950  0.270416 0.019927  0.080970 

𝐻𝑁=7 

method 
0.005848 0.868836 0.015727 0.509319 0.018855 0.270514 0.019849 0.081037 

0.1 

Monte 

Carlo 
0.005181  0.869655 0.013734  0.511156 0.016468  0.272425 0.017333  0.082007 

𝐻𝑁=7 

method 
0.005211 0.869280 0.013833 0.510934 0.016179 0.284335 0.017342 0.081973 

0.5 

Monte 

Carlo 
0.0027459  0.872340 0.006972  0.518952 0.008219  0.280663 0.008562 0.086964 

𝐻𝑁=7 
method 

0.002650 0.872475 0.006158 0.518446 0.006924 0.279635 0.007079 0.086095 

 

Table 7. Comparison of Monte Carlo and deterministic methods for  β = 1.0  and  c = 0.8 . 

𝒇𝟏 Method 
𝝉 = 𝟎. 𝟏 𝒄𝒎 𝝉 = 𝟎. 𝟓 𝒄𝒎 𝝉 = 𝟏. 𝟎 𝒄𝒎 𝝉 = 𝟐. 𝟎 𝒄𝒎 

𝜶 𝜿 𝜶 𝜿 𝜶 𝜿 𝜶 𝜿 

0.0 

Monte 

Carlo 
0.052922  0.915698 0.183236 0.6602346 0.258764  0.451589 0.309459  0.218208 

𝐻𝑁=7 
method 

0.080289  0.902352  0.183145  0.660511  0.258691  0.451620  0.309551  0.218042 

0.1 

Monte 

Carlo 
0.047691 0.920650 0.167552  0.676176 0.238683  0.470466 0.289054  0.234098 

𝐻𝑁=7 

method 
0.047750  0.920789  0.167461  0.676060  0.239103  0.470341  0.289368  0.234003 

0.5 

Monte 

Carlo 
0.026928  0.941748 0.099528  0.746841 0.148704  0.563601 0.190718  0.324647 

𝐻𝑁=7 

method 
0.026608  0.941926  0.097190  0.745789  0.144947  0.560960  0.185259  0.319629 

     
3.3. Case 3: Direction-dependent inlet II 

In this test case, β value is taken equal to three. The results are presented in Tables 8 and 9. It is observed 

that the results of both methods are close to each other. But as shown in bold in Table 9, in the case of 

isotropic scattering and 𝜏 = 0.1  𝑐𝑚, the calculated transmission factor from the 𝐻7 method is equal to 

0.993709 where by increasing the 𝑓1 value it experience a decrease and then goes up. In contrast the 
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corresponding result in the Monte Carlo method is obtained equal to 0.927789 where by increasing the 𝑓1 

value the transmission factor increases.  

 

Table 8. Comparison of Monte Carlo and deterministic methods for β = 3.0  and c= 0.1 

𝒇𝟏 Method 
𝝉 = 𝟎. 𝟏 𝒄𝒎 𝝉 = 𝟎. 𝟓 𝒄𝒎 𝝉 = 𝟏. 𝟎 𝒄𝒎 𝝉 = 𝟐. 𝟎 𝒄𝒎 

𝜶 𝜿 𝜶 𝜿 𝜶 𝜿 𝜶 𝜿 

0.0 

Monte 

Carlo 
0.004994 0.887883 0.014155  0.553539 0.017367  0.309422 0.018466  0.098940 

𝐻𝑁=7 

method 
0.004988 0.887634 0.014115 0.553506 0.017296 0.309458 0.018390 0.098890 

0.1 

Monte 

Carlo 
0.004335 0.888510 0.012068  0.555518 0.014815  0.311538 0.015706 0.100110 

𝐻𝑁=7 

method 
0.004353 0.887972 0.012147 0.555132 0.014563 0.311705 0.015728 0.100041 

0.5 

Monte 

Carlo 
0.0021180  0.891006 0.005578  0.563558 0.006727 0.320598 0.007067 0.106049 

𝐻𝑁=7 
method 

0.0017653 0.891570 0.004178 0.563240 0.004727  0.319439  0.004835  0.104768 

 

Table 9.  Comparison of Monte Carlo and deterministic methods for β = 3.0  and  c = 0.8 

𝒇𝟏 Method 
𝝉 = 𝟎. 𝟏  𝒄𝒎 𝝉 = 𝟎. 𝟓 𝒄𝒎 𝝉 = 𝟏. 𝟎 𝒄𝒎 𝝉 = 𝟐. 𝟎 𝒄𝒎 

𝜶 𝜿 𝜶 𝜿 𝜶 𝜿 𝜶 𝜿 

0.0 

Monte 

Carlo 
0.045200  0.927789 0.165102  0.692578 0.240004  0.485261 0.293050   0.240200 

𝐻𝑁=7 
method 

0.042604  0.993709  0.164980  0.692655  0.239889  0.485157  0.293087  0.240092 

0.1 

Monte 

Carlo 
0.039965   0.932963 0.148645  0.708985 0.219498  0.504614 0.271900  0.257293 

𝐻𝑁=7 

method 
0.040014  0.933062  0.148720  0.708792  0.219289  0.504927  0.271676  0.257259 

0.5 

Monte 

Carlo 
0.020807  0.952535 0.082267  0.779291 0.128642  0.602215 0.170715  0.356147 

𝐻𝑁=7 

method 
0.018643  0.954429  0.075862  0.781155  0.120234  0.600592  0.161206  0.348426 

  

4. CONCLUSIONS 

A rigorous non-analog Monte Carlo method is proposed to simulate the albedo and transmission factor of 

an infinite non-multiplying slab medium. Using the corresponding expression for the inlet current, a new 

probability density function is generated to sample the direction of the incident neutrons. To minimize the 

imposed variances due to either complete leak or complete absorption of a neutron, forced collision and 

implicit capture variance reduction techniques are employed. Furthermore, the Russian-Roulette technique 

is used to reduce simulation time. For neutron scattering, sampling is performed on the scattering cosine to 

determine the new direction of the scattered neutron. The validity of the proposed method is confirmed 

through comparison with solutions for the uncollided and once-collided angular fluxes resulted from the 

successive approximation method. The Monte Carlo results are also compared with the results of the 𝐻𝑁=7 

deterministic method, and it is observed that the results of the Monte Carlo are physically meaningful.   
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