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Approximation in weighted spaces of vector functions
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ABSTRACT. In this paper, we present the duality theory for general weighted space of vector functions. We mention
that a characterization of the dual of a weighted space of vector functions in the particular case V ⊂ C+(X) is
mentioned by J. B. Prolla in [6]. Also, we extend de Branges lemma in this new setting for convex cones of a weighted
spaces of vector functions (Theorem 4.2). Using this theorem, we find various approximations results for weighted
spaces of vector functions: Theorems 4.2-4.6 as well as Corollary 4.3. We mention also that a brief version of this paper,
in the particular case V ⊂ C+(X), is presented in [3], Chapter 2, subparagraph 2.5.
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1. INTRODUCTION

The weighted spaces of scalar functions was introduced and studied by L. Nachbin in [4] (see
also [5]). We recall that if V is a Nachbin family of upper semi-continuous functions on the
locally compact spaces X , then the weighted space associated to V , denoted by CV0(X), is the
set of all continuous functions f onX such that the function f ·v vanishes at infinity. Any weight
v ∈ V generate a seminorm pv : CV0(X)→ R+ defined by pv(f) = sup {v(x) · |f(x)| : x ∈ X}.
The locally convex topology defined by this family of seminorms is denoted by ωV and it will
be called the weighted topology on CV0(X). For some specific families of weights V , some
different classes of continuous functions on a locally compact space are obtained, namely the
functions with compact support, bounded functions, the functions vanishing at infinity, the
rapidly decreasing functions at infinity and so on. A characterization of the dual space of the
locally convex spaces (CV0(X), ωV ) was obtained by W. H. Summers in [7]. More precisely,
he showed that if V ≤ C+(X) then, the dual space [CV0(X)]∗ is isomorphic with the space
V ·Mb(X), where Mb(X) is the space of all bounded Radon measure on X . A similar result
for weighted spaces of vector functions, in the particular case V ⊂ C+(X), is mentioned by
J. B. Prolla in [6]. In Theorem 3.1 of this paper, we obtain a characterization of the dual of a
weighted space of vector functions in the general case of the upper semi-continuous weights.
The key to getting this result is a new result of Measure Theory, namely Proposition 2.1, in
which it is proved that if U : K(X,E) → R is a p−Radon measure, then there exists a smallest
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positive Radon measure on X , denoted by |U |, such that

|U(f)| ≤
∫
p ◦ fd |U | ,∀f ∈ K(X,E).

Using two fundamental tools in functional analysis: Hahn-Banach and Krein –Milman theo-
rems, in 1959, Louis de Branges [1] give a nice proof of Stone-Weierstrass theorem on algebras
of real continuous functions on a compact Hausdorff space. Some generalizations of de Branges
lemma for weighted space of scalar functions was obtained in [2]. In the last part of this paper,
we present a generalization of de Branges lemma for a convex cone in a weighted spaces of
vector functions (Theorem 4.2). Using this theorem, we obtain various approximations results
for weighted spaces of vector functions: Theorems 4.2-4.6 as well as Corollary 4.3.

2. WEIGHTED SPACES OF VECTOR FUNCTIONS

Let X be a locally compact Hausdorff space, let E be a locally convex complete space en-
dowed with a family P of seminorms of E. We denote by C(X,E) the set of all continuous
functions f : X → E and by C0(X,E) respectively K(X,E), the set of continuous functions
vanishing at infinity, respectively having compact support. We recall that a function f : X → E
vanishes at infinity if lim

x→∞
f(x) = 0, i.e., for any p ∈ P and any ε > 0, there exists a compact

subset Kε,p of X such that
p[f(x)] < ε, ∀x ∈ X\Kε,p.

Further, we shall denote by F0(X,E) the set of all functions f : X → E vanishing at infinity.

Definition 2.1. A family V of upper semi-continuous, non-negative functions on X such that for any
v1, v2 ∈ V and any λ ∈ R, λ > 0 there exists w ∈ V such that

vi(x) ≤ λ · w(x), ∀x ∈ X, i = 1, 2

will be called a Nachbin family on X . Any element of V will be called a weight.

If V is a Nachbin family of weights on X , we denote by

CV0(X,E) = {f ∈ C(X,E); v · f ∈ C0(X,E), ∀v ∈ V } .
We endow this linear space with so called the weighted topology ωV,P, given by the family of
seminorms ‖·‖v,p or ‖·‖pv defined by

‖f‖pv = ‖f‖v,p = sup {v(x) · p[f(x)], ∀x ∈ X} , ∀f ∈ CV0(X,E).

A base of neighborhoods of the origin in CV0(X,E) is the family (Bv,p)v∈V,p∈P given by

Bv,p =
{
f ∈ CV0(X,E); ‖f‖v,p ≤ 1

}
.

Further, the space CV0(X,E) endowed with the weighted topology ωV,P will be called the
weighted space of vector functions. As in the scalar case, one can see that K(X,E) is a dense
subset of CV0(X,E) with respect to the weighted topology ωV,P. For any p ∈ P and any f ∈
K(X,E), we denote

‖f‖p = sup
x∈X

p[f(x)].

Obviously, ‖f‖p < ∞ since p : E → R+ is a continuous function on the locally compact space
E and f(X) = f(Kf ) ∪ {0} is a compact subset of E, where Kf denotes the support of f . If

we endow K(X,E) with the family of seminorms
(
‖·‖p

)
p∈P

, then K(X,E) becomes a locally

convex space and we shall denote by τP the topology given by these seminorms
(
‖·‖p

)
p∈P

.
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Definition 2.2. A linear map U : K(X,E) → R is called a p−Radon measure, where p ∈ P, if for
any compact subset K ⊂ X there exists a positive number αK such that for any f ∈ K(X,E), f = 0
on X\K, we have

|U(f)| ≤ αK · ‖f‖p .
If αK does not depend of the compact K, then U is called a p− bounded Radon measure. The smallest
α ∈ R+, such that |U(f)| ≤ α · ‖f‖p will be denoted by ‖U‖p.

Proposition 2.1. If U : K(X,E) → R is a p−Radon measure, then there exists a smallest positive
Radon measure on X , denoted by |U |, such that

|U(f)| ≤
∫
p ◦ fd |U | , ∀f ∈ K(X,E).

Moreover, for any function ϕ ∈ K(X,R) , the map ϕU : K(X,E)→ R given by

ϕU(ψ) = U(ϕ · ψ), ∀ψ ∈ K(X,E)

is a p− bounded Radon measure and we have
a) ‖ϕU‖p = |ϕU | (1) and generally ‖U‖p = |U | (1) if U is p− bounded,
b) |ϕU | = |ϕ| · |U | , ‖ϕU‖p = |ϕU | (1) = (|ϕ| · |U |) (1) =

∫
|ϕ| d |U |.

Proof. Passing to a factorization, we may suppose that p is a norm on X . We consider a rela-
tively compact open subset D of the locally compact space X and for any ϕ ∈ K(X,R), ϕ ≥ 0
and suppϕ ⊂ D, we put by definition

|U | (ϕ) = sup {U(ψ); ψ ∈ K(X,E), p ◦ ψ ≤ ϕ} = sup {|U(ψ)| ;ψ ∈ K(X,E), p ◦ ψ ≤ ϕ} .
Since D is compact and ψ(x) = 0, if ϕ(x) = 0, we deduce that ψ = 0 outside D and therefore
there exists α ∈ R+ such that |U(ψ)| ≤ α · ‖ψ‖p ≤ α · ‖ϕ‖, where ‖ϕ‖ is the uniform norm of ϕ
on X . Hence |U | (ϕ) ≤ α · ‖ϕ‖ for all ϕ ∈ K(X,R), ϕ ≥ 0 and suppϕ ⊂ D. We show now that
for any ϕi ∈ K(X,R), ϕi ≥ 0, suppϕi ⊂ D, i = 1, 2, we have

|U | (ϕ1 + ϕ2) = |U | (ϕ1) + |U | (ϕ2).

The inequality |U | (ϕ1 + ϕ2) ≥ |U | (ϕ1) + |U | (ϕ2) follows just from the definition. Let ψ ∈
K(X,E), p(ψ) ≤ ϕ1 + ϕ2. For any n ∈ N∗, we consider the functions ψi ∈ K(X,E) given by

ψi =
ϕi

ϕ1 + ϕ2 + 1
n

· ψ, i = 1, 2.

Obviously, we have successively

p(ψi) = ϕi ·
p(ψ)

ϕ1 + ϕ2 + 1
n

≤ ϕi, i = 1, 2,

ψ − (ψ1 + ψ2) =
1

n
· ψ

ϕ1 + ϕ2 + 1
n

,

p (ψ − (ψ1 + ψ2)) ≤ 1

n
· p
(

ψ

ϕ1 + ϕ2 + 1
n

)
,

supp

(
ψ

ϕ1 + ϕ2 + 1
n

)
⊂ D, p

(
ψ

ϕ1 + ϕ2 + 1
n

)
≤ 1,

∣∣∣∣U ( ψ

ϕ1 + ϕ2 + 1
n

)∣∣∣∣ ≤ α,
|U(ψ)− U(ψ1)− U(ψ2)| ≤ α

n
, U(ψ) ≤ U(ψ1) + U(ψ2) +

α

n
,

U(ψ) ≤ |U | (ϕ1) + |U | (ϕ2) +
α

n
, ∀n ∈ N∗,

U(ψ) ≤ |U | (ϕ1) + |U | (ϕ2), |U | (ϕ1 + ϕ2) = sup {U(ψ); ψ ∈ K(X,E), p(ψ) ≤ ϕ1 + ϕ2} ,
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|U | (ϕ1 + ϕ2) ≤ |U | (ϕ1) + |U | (ϕ2), |U | (ϕ1 + ϕ2) = |U | (ϕ1) + |U | (ϕ2).

Obviously, we have
|U | (λ · ϕ) = λ · |U | (ϕ), ∀λ ∈ R+

and the map |U | : K+(X,R) → R+ is a positive Radon measure on X. Just from the definition,
we have

|U(ψ)| ≤ |U | (p(ψ)) , ∀ψ ∈ K(X,E).

On the other hand, taking a positive Radon measure µ on X such that |U(ψ)| ≤
∫
p(ψ)dµ then

for any ϕ ∈ K(X,R), ϕ ≥ 0, we have∫
ϕdµ ≥

∫
p(ψ)dµ, ∀ψ ∈ K(X,E), p(ψ) ≤ ϕ,∫

ϕdµ ≥ |U(ψ)| , ∀ψ ∈ K(X,E), p(ψ) ≤ ϕ,∫
ϕdµ ≥ |U | (ϕ), |U | ≤ µ on K+(X,R).

a) For any ϕ ∈ K(X,R), the map ϕU : K(X,E)→ R defined by ϕU(ψ) = U(ϕ · ψ) is linear and
we have

|ϕU(ψ)| ≤ αK · ‖ϕ · ψ‖p ≤ αK · ‖ϕ‖ · ‖ψ‖p ,
where K = suppϕ and therefore ϕU is a p− bounded Radon measure on K(X,E). Further, we
have

|ϕU | (1) =

∫
1d |ϕU |

= sup

{∫
hd |ϕU | ; 0 ≤ h ≤ 1, h ∈ K(X,R)

}
= sup {(ϕU) (ψ); ψ ∈ K(X,R), p(ψ) ≤ 1}
= ‖ϕU‖p

(In fact, for any p− bounded Radon measure U ′ : K(X,E) → R we have, using the definition
of |U ′|:

‖U ′‖p = |U ′| (1) =

∫
X

d |U ′|),

b) The inequality |ϕU | ≤ |ϕ| · |U | follows immediately. Indeed, if h ∈ K(X,R), h ≥ 0 then,

|ϕU | (h) = sup {U(ϕ · ψ); p(ψ) ≤ h}
≤ sup {|U | (p(ϕ · ψ) ; p(ψ) ≤ h}
= sup {(|ϕ| · |U |) (p(ψ)) ; p(ψ) ≤ h}
= (|ϕ| · |U |) (h).

Hence |ϕU | (h) ≤ |ϕ| · |U | (h) for any h ∈ K(X,R), h ≥ 0. For the converse inequality, we
restrict ourself to the case ϕ ≥ 0. Let us consider ψ ∈ K(X,E) such that p(ψ) ≤ h · ϕ and for
any n ∈ N∗, we consider the function fn ∈ K(X,E) defined by

fn =
ψ

ϕ+ 1
n

.

Obviously, p(fn) ≤ h and therefore

|ϕU | (h) ≥ U(ϕ · fn), p(ϕ · fn) ≤ h · ϕ, p (ψ − ϕ · fn) ≤ 1

n
· p(h).
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Since ψ = 0 outside K = suppϕ, we have

ψ − ϕ · fn = 0 on X\K, p (ψ − ϕ · fn) ≤ 1

n
· ‖h‖ , |U (ψ − ϕ · fn)| ≤ αK ·

1

n
· ‖h‖

and therefore

|ϕU | (h) ≥ U(ϕ · fn) ≥ U(ψ)− αK · ‖h‖ ·
1

n
, |ϕU | (h) ≥ U(ψ).

But
(ϕ |U |) (h) = |U | (ϕ · h) = sup {U(ψ); ψ ∈ K(X,E), p(ψ) ≤ h · ϕ} .

From the preceding two lines, we get |ϕU | (h) ≥ (ϕ |U |) (h) and finally |ϕU | = |ϕ| · |U |. �

Proposition 2.2. Let U : K(X,E) → E be a p−Radonn measure, f : X → R be an integrable
function with respect to the positive Radon measure |U | (i.e., f ∈ L1 (|U |)) and let(ϕn)n be a sequence
in K(X,R) such that lim

n→∞
ϕn(x) = f(x),|U | −a.e. on X and such that

lim
n→∞

∫
|f − ϕn| d |U | = 0.

Then, the sequence of p− bounded Radon measures (ϕnU)n is convergent to a p− bounded Radon
measure (depending of f only), denoted by fU , i.e., lim

n→∞
‖fU − ϕnU‖p = 0. Moreover, we have

|fU | = |f | · |U | .

Proof. Since lim
n→∞

∫
|f − ϕn| d |U | = 0, we deduce that lim

n,m→∞

∫
|ϕn − ϕm| d |U | = 0 and there-

fore, using Proposition 2.1, we have

lim
n,m→∞

‖ϕnU − ϕmU‖p = lim
n,m→∞

∫
|ϕn − ϕm| d |U | = 0.

Hence for any ψ ∈ K(X,E), the sequence (ϕnU(ψ))n of real numbers is convergent to a number
denoted fU(ψ) and for any ε > 0, there exists nε ∈ N∗ such that

|ϕnU(ψ)− ϕmU(ψ)| ≤ ‖ϕnU − ϕmU‖p · ‖ψ‖p ≤ ε · ‖ψ‖p , ∀n,m ≥ nε,

|fU(ψ)− ϕmU(ψ)| ≤ ε · ‖ψ‖p , ∀m ≥ nε,

|fU(ψ)| ≤ |ϕmU(ψ)|+ ε · ‖ψ‖p ≤
(
‖ϕmU‖p + ε

)
· ‖ψ‖p .

Hence fU is a p− bounded Radon measure on K(X,E), lim
m→∞

‖fU − ϕmU‖p = 0 (Particularly

if f = 0 |U | a.e., from the relation lim
n→∞

∫
|f − ϕn| d |U | = 0, we deduce lim

n→∞

∫
|ϕn| d |U | = 0 and

therefore lim
n→∞

‖ϕnU‖p = lim
n→∞

∫
|ϕn| d |U | = 0, lim

n→∞
(ϕnU) (ψ) = 0, ∀ψ ∈ K(X,E). This shows

that the element fU , previously defined, depends only on f, does not depend on the choice of
the sequence (ϕn)n tending to f ). Let now h ∈ K(X,R), 0 ≤ h ≤ 1 and let ψ ∈ K(X,E) be such
that p(ψ) ≤ h. We have

|fU(ψ)− ϕnU(ψ)| ≤ ‖fU − ϕnU‖p · ‖ψ‖p ≤ ‖fU − ϕnU‖ , ∀n ∈ N,

(ϕnU) (ψ)− ‖fU − ϕnU‖p ≤ fU(ψ) ≤ ϕnU(ψ) + ‖fU − ϕnU‖p ,
|ϕnU | (h)− ‖fU − ϕnU‖p ≤ |fU | (h) ≤ |ϕnU | (h) + ‖fU − ϕnU‖p .

Using Proposition 2.1 b), we deduce that

|ϕn| · |U | (h)− ‖fU − ϕnU‖p ≤ |fU | (h) ≤ |ϕn| · |U | (h) + ‖fU − ϕnU‖p
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|ϕn| · hd |U | − ‖fU − ϕnU‖p ≤ |fU | (h) ≤

∫
|ϕn| · hd |U |+ ‖fU − ϕnU‖p .

Passing to the limit on n, we get∫
|f | · hd |U | ≤ |fU | (h) ≤

∫
|f | · hd |U | ,

|fU | (h) =

∫
|f | · hd |U | = |f | · |U | (h).

The last equality holds for 0 ≤ h ≤ 1 and therefore for all h ∈ K(X,R), h ≥ 0, i.e.,

|fU | = |f | · |U | .
�

3. ON THE DUAL OF WEIGHTED SPACES OF VECTOR FUNCTIONS

Let E,P, X and V as in the preceding section. For any p ∈ P and v ∈ V , let

Bv,p = {f ∈ CV0(X,E); pv(f) ≤ 1} ,
where pv(f) = sup {v(x) · p[f(x)]; ∀x ∈ X} = ‖f‖v,p , ∀f ∈ CV0(X,E). The linear vector
space CV0(X,E) endowed with the family (pv)p∈P, v∈V of seminorms is a locally convex space
whose fundamental system of neighborhoods of the origin is just the family (Bv,p)v∈V, p∈P. We
recall that we have denoted by ωV,P the weighted topology on CV0(X,E) given by the family
of seminorms (pv)p∈P, v∈V . It is no lost of generality if we suppose that for any real number
α, α > 0, we have α · p ∈ P, α · v ∈ V for any p ∈ P and any v ∈ V . So the dual of the locally
convex space (CV0(X,E), ωV,P) is the set

⋃
v∈V,p∈PB

0
v,p, where

B0
v,p = {T : CV0(X,E)→ R; T linear, T (f) ≤ 1, ∀f ∈ Bv,p} .

If we denote by [CV0(X,E)]
∗ this dual, then for any subset M of CV0(X,E) (respectively of

[CV0(X,E)]
∗), we denote by M0 the polar of M i.e.,

M0 = {T ∈ [CV0(X,E)]∗; T (m) ≤ 1, ∀m ∈M}
respectively

M0 = {f ∈ CV0(X,E); m(f) ≤ 1, ∀m ∈M} .
The map onCV0(X,E)×[CV0(X,E)]∗ → R, (f, T )→ 〈f, T 〉 = T (f) is a natural duality between
the linear space CV0(X,E) and [CV0(X,E)]∗. The smallest topology on [CV0(X,E)]

∗ making
continuous the maps

T → 〈f, T 〉 : [CV0(X,E)]∗ → R, ∀f ∈ CV0(X,R)

is the weak topology on [CV0(X,E)]
∗. It is known (Alaoglu’s Theorem) that for any (p, v) ∈ P×

V , the set B0
p,v is a weakly compact subset of [CV0(X,E)]

∗. We know also that the topological
space [CV0(X,E)]

∗ is a Hausdorff one with respect to this weak topology. Moreover, since
K(X,E) is a dense subset of CV0(X,E) with respect to the weighted topology ωV,P, we deduce
that
1) any continuous linear functional L : CV0(X,E)→ R is completely determined by its restric-
tion to K(X,E),
2) the smallest topology on [CV0(X,E)]

∗ making continuous all linear functionals

T → 〈f, T 〉 : [CV0(X,E)]∗ → R, ∀f ∈ K(X,R)

is also a Hausdorff one and therefore its restriction to B0
p,v coincides with the restriction to B0

p,v

of the weak topology on [CV0(X,E)]
∗.
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We conclude that any element of the dual of the locally convex space (K(X,E), ωV,P |K(X,E) )
may be uniquely extended to an element of [CV0(X,E)]∗. The following assertion characterizes
the elements of [CV0(X,E)]

∗ in terms of Radon measures on K(X,E). With the above notations,
we have

Theorem 3.1. For any (p, v) ∈ P× V , we have
a) The restriction of any element T ∈ B0

p,v to K(X,E) is a p−Radon measure on K(X,E) such that the
function 1

v is integrable with respect to the positive Radon measure |T | on X .
Moreover, the following relation holds:∫

1

v
d |T | = ‖T‖p,v = sup {T (f); f ∈ Bp,v} ,

b) For any p−Radon measure U on K(X,E) such that the function 1
v is |U | − integrable, there exists

T ∈ B0
p,v such that U is the restriction of T to K(X,E).

Proof. a) Let T ∈ B0
p,v and let K be a compact subset of X . Since v : X → [0,∞) is an upper

semi-continuous function, its upper bound αK on K is finite. Let ϕ ∈ K(X,E) such that ϕ = 0
on X\K. We have

sup {v(x) · p(ϕ(x)) : x ∈ X} ≤ αK · sup {p(ϕ(x)) : x ∈ X} = αK · ‖ϕ‖p ,

ϕ

αK · ‖ϕ‖p
∈ Bp,v,

∣∣∣∣∣T
(

ϕ

αK · ‖ϕ‖p

)∣∣∣∣∣ ≤ 1, |T (ϕ)| ≤ αK · ‖ϕ‖p ,

i.e., the restriction of T to K(X,E), denoted also by T , is a p−Radon measure. We have

‖T‖p,v = sup {T (f), f ∈ CV0(X,E), pv(f) ≤ 1}
= sup {T (f), f ∈ K(X,E), pv(f) ≤ 1}

= sup

{
T (f), f ∈ K(X,E), p(f) ≤ 1

v

}
=

∫
1

v
d |T | .

b) Let U be a p−Radon measure on K(X,E) such that the function 1
v is |U | − integrable. Then,

we have

∞ >

∫
1

v
d |U | = sup

{∫
ϕd |U | ; ϕ ∈ K(X,R), 0 ≤ ϕ ≤ 1

v

}
= sup
ϕ≤ 1

v

{U(ψ); ψ ∈ K(X,E), p(ψ) ≤ ϕ}

= sup

{
U(ψ); ψ ∈ K(X,E), p(ψ) ≤ 1

v

}
= sup {U(ψ); ψ ∈ K(X,E), v(x) · p(ϕ(x)) ≤ 1}
= ‖U‖p,v .

�

Remark 3.1. From the above considerations, we deduce that:
The elements T ∈ B0

p,v are p−Radon measure on K(X,E) such that the function 1
v is |T | − integrable

and ‖T‖p,v =
∫

1
vd |T | ≤ 1.
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Proposition 3.3. Let T be a p− Radon measure, T ∈ B0
p,v . If f ∈ CV0(X,E), then

|T (f)| ≤
∫
p(f)d |T | .

Proof. Let (ψn)n be a sequence in K(X,E) such that lim
n→∞

‖f − ψn‖p,v = 0. We know that

|T (ψn)| ≤
∫
p(ψn)d |T | and T (f) = lim

n→∞
T (ψn). On the other hand

p(f − ψn) ≤
‖f − ψn‖p,v

v
on X,∫

p(f − ψn)d |T | ≤ ‖f − ψn‖p,v ·
∫

1

v
d |T | ≤ ‖f − ψn‖p,v∫

|p(f)− p(ψn)| d |T | ≤
∫
p(f − ψn)d |T | ≤ ‖f − ψn‖p,v ,∫

p(f)d |T | = lim
n→∞

∫
p(ψn)d |T | .

Hence
|T (f)| = lim

n→∞
|T (ψn)| ≤ lim

n→∞

∫
p(ψn)d |T | =

∫
p(f)d |T | .

�

Corollary 3.1. If T ∈ B0
p,v and f ∈ CV0(X,E) is such that f = 0 on supp |T |, then T (f) = 0.

4. LEMMA DE BRANGES AND APPROXIMATION RESULTS

In this section, we preserve all notations used in the preceding paragraphs. For any subset
A ⊂ CV0(X,E), we denote by A0 the polar of A, i.e.,

A0 = {T ∈ [CV0(X,E)]∗; T (a) ≤ 1, ∀a ∈ A} .
If C is a convex cone of the real vector space CV0(X,E) then, one can see that

C0 = {T ∈ [CV0(X,E)]∗; T (c) ≤ 0, ∀c ∈ C} .

Theorem 4.2. Let C be a convex cone in CV0(X,E), p ∈ P, v ∈ V and let L ∈ B0
p,v ∩ C0, L 6= 0 be

an extreme point of the convex and compact subset B0
p,v ∩ C0. If h ∈ C(X, [0, 1]) is such for any c ∈ C,

we have h · c |σ(|L|) ∈ C |σ(|L|) and (1− h) · c |σ(|L|) ∈ C |σ(|L|) , then h is constant on σ(|L|)− the
support of the positive Radon measure |L| on X.

Proof. Since L 6= 0 and L is an extreme point of the subsetB0
p,v∩C0, we have ‖L‖p,v =

∫
1
vd |L| .

If h is an arbitrary element inC(X, [0, 1]), then the map hL : K(X,E) → R, given by hL(ψ) =
L(h · ψ), is a p−Radon measure on K(X,E). It is not so difficult to show, using the definition,
that |hL| = |h| · |L|. Obviously, the function 1

v is |h| · |L| − integrable and using Remark 3.1 and
the relations

‖hL‖p,v =

∫
1

v
d |hL| =

∫
h

v
d |L| ≤

∫
1

v
d |L| ≤ 1,

we get hL ∈ B0
p,v . Analogously, the map (1 − h)L : K(X,E) → R given by (1 − h)L(ψ) =

L((1− h) · (ψ)) is a p−Radon measure and

‖(1− h)L‖p,v =

∫
1− h
v

d |L| ≤
∫

1

v
d |L| = 1, (1− h)L ∈ B0

p,v.

If we denote α = ‖hL‖p,v =
∫
h
v d |L| , β= ‖(1− h)L‖p,v =

∫
1−h
v d |L|, we have α + β =∫

1
vd |L| = 1. We remark also that the function 1

v is strictly positive on X. If α = 0, then
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h = 0 |L| a.e. on σ(|L|). Since the function h is continuous, it results that h = 0 on σ(|L|),
i.e., h is constant on σ(|L|). Analogously, if β = 0, we obtain h = 1 on σ(|L|), i.e., h is constant
on σ(|L|). We suppose further α 6= 0, β 6= 0 and we denote

L1 =
1

α
· hL, L2 =

1

β
· (1− h)L.

Obviously, ‖Li‖p,v = 1, i = 1, 2 and α · L1 + β · L2 = L. We show now that Li ∈ C0, i = 1, 2,
if for any c ∈ C there exist c1, c2 ∈ C such that h · c = c1, (1 − h) · c = c2 on σ(|L|). Since the
functions h · c, (1 − h) · c, c1, c2 belong to CV0(X,E) and h · c = c1 on σ(|L|), respectively
(1− h) · c = c2 on σ(|L|), using Corollary 3.1, we get

L(h · c) = L(c1) ≤ 0, L((1− h) · c) = L(c2) ≤ 0,

L1(c) =
1

α
· L(h · c) =

1

α
· L(c1) ≤ 0, L2(c) =

1

β
· L((1− h) · c) =

1

β
· L(c2) ≤ 0.

Hence L1, L2 belong to the setB0
p,v∩C0 and since L = α ·L1+β ·L2, we get L1 = L2 = L. Hence

|L1| = |L|, i.e., the measures h
α · |L| and |L| coincide and therefore h

α = 1 almost everywhere on
σ(|L|). But h is continuous and hence h = α on σ(|L|). �

Definition 4.3. A subset M ⊂ C(X, [0, 1]) is called complemented, if for any h ∈ M, the function
1−h belongs to M. If C ⊂ CV0(X,E) is a convex cone and M ⊂ C(X, [0, 1]) is a complemented family,
then a subset S ⊂ X is called antialgebraic with respect to the pair (M,C) (or simpler (M,C)−
antialgebraic), if any h ∈ M such that the restriction to S of the functions h · c and (1 − h) · c belong
to the restriction of C to S (i.e., h · c |S ∈ C |S , (1 − h) · c |S ∈ C |S ) for any c ∈ C, is a constant
function on S.

We can reformulate de Branges lemma (Theorem 4.2) as follows:

Corollary 4.2. For any extreme point L of B0
p,v ∩C0, the support σ(|L|) of the positive Radon measure

|L| on X is an antialgebraic subset with respect to the pair (C(X, [0, 1]),C). Further, we denote by S
the family of all subsets of X antialgebraic with respect to the pair (M,C).

The following assertions are almost obvious.
i) {x} ∈ S, ∀x ∈ X ,
ii) S1, S2 ∈ S, S1 ∩ S2 6= φ⇒ S1 ∪ S2 ∈ S,
iii) S ∈ S⇒ S̄ ∈ S,
iv) For any upper directed family (Sα)α∈I from S, we have

⋃
α∈I

Sα ∈ S.

If for any x ∈ X , we denote by Sx = ∪{S; S ∈ S, x ∈ S}, then we have

Sx = Sx ∈ S, Sx ∩ Sy = φ if Sx 6= Sy.

The family (Sx)x∈X is a partition of X and for any S ∈ S there exists x ∈ X such that S ⊂ Sx.
For the general theory of duality, we have for any convex cone C, C ⊂ CV0(X,E), the closure
C̄ in CV0(X,E) with respect to the weighted topology ωP,V coincides with the bipolar of C i.e.,
C̄ = C00. In the our special case, we have the following general approximation theorem.

Theorem 4.3. If C ⊂ CV0(X,E) is a convex cone, then the closure of C in (CV0(X,E), ωP,V ) is
given by

C =
{
f ∈ CV0(X,E); f |σ(|L|) ∈ C |σ(|L|) , ∀L ∈ Ext

(
B0
p,v ∩ C0

)
, ∀v ∈ V, ∀p ∈ P

}
.
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Proof. We show only that for any function g ∈ CV0(X,E)\C̄ there exist p ∈ P, v ∈ V and
L ∈ Ext

(
B0
p,v ∩ C0

)
such that g |σ(|L|) /∈ C |σ(µ) . Indeed, using Hahn-Banach separation

theorem, there exists T ∈ [CV0(X,E)]∗ such that T ∈ C0 and T (g) > 0. Let p ∈ P and v ∈ V
be such that |T (f)| ≤ ‖f‖p,v , ∀f ∈ CV0(X,E) i.e., |T |

(
1
v

)
≤ 1. Hence T ∈ B0

p,v ∩ C0. Since
B0
p,v ∩ C0 is a compact convex subset of [CV0(X,E)]∗ with respect to the weak topology and

T (g) > 0, it follows from Krein-Milman theorem that there exists L ∈ Ext
(
B0
p,v ∩ C0

)
such

that L(g) > 0. Since L ∈ C0, we deduce that
∫
ϕd |L| ≤ 0 for any ϕ ∈ C |σ (|L|) . Hence

g
∣∣∣σ(|L|) /∈ C |σ(|L|) . �

Let now M ⊂ C(X, [0, 1]) be a complemented family and for any x ∈ X let Sx be the greatest
(M,C)− antialgebraic subset of X containing x.

Theorem 4.4. If C ⊂ CV0(X,E) is a convex cone, then the closure of C in (CV0(X,E), ωP,V ) is
given by

C =
{
f ∈ CV0(X,E); f |Sx ∈ C |Sx , ∀x ∈ X

}
.

Proof. For any p ∈ P,v ∈ V and any extreme point L of the compact convex subset B0
p,v ∩ C0,

the support σ (|L|) is a (M,C)− antialgebraic subset of X . If we choose a point x ∈ σ (|L|), then
σ (|L|) ⊂ Sx, and therefore if f |Sx ∈ C |Sx , we have also f |σ(L) ∈ C |σ(L) . Further, we may
use Theorem 4.3. �

Theorem 4.5. If M ⊂ C(X, [0, 1]) is a complemented family and the convex cone C ⊂ CV0(X,E) is
stable with respect to the multiplication of M (i.e., c ·m ∈ C,∀c ∈ C,m ∈ M), then we have

C =
{
f ∈ CV0(X,E); f | [x]M ∈ C | [x]M , ∀x ∈ X

}
,

where for any x ∈ X we denote [x]M = {y ∈ X; m(y) = m(x), ∀m ∈ M}.

Proof. Using just the definitions and previous notations, we deduce that for any x ∈ X we have
[x]M = Sx. Further, we use Theorem 4.4. �

The following assertion needs to define so called “section in C” by the points of X , namely
to consider the following convex cone C(x) in E given by

C(x) = {c(x); c ∈ C}

and also its closure C(x) in E. Certainly the starting convex cone C in CV0(X,E) may be a
linear subspace and in this case C(x) is a linear subspace in E.

Theorem 4.6. If M ⊂ C(X, [0, 1]) is a complemented family and the convex cone C ⊂ CV0(X,E) is
stable with respect to the multiplication with elements of M and M separates the points of X , i.e., for any
x, y ∈ X there exists m ∈ M such that m(x) 6= m(y), then we have

C =
{
f ∈ CV0(X,E); f(x) ∈ C(x), ∀x ∈ X

}
.

Indeed, in this case, for any x ∈ X , we have [x]M = {x} and we close the proof applying
Theorem 4.5.

Corollary 4.3. If M ⊂ C(X, [0, 1]) is a complemented family, separating the points of X and W ⊂
CV0(X,E) is a linear subspace which is stable with respect to the multiplication with elements of M
and for any x ∈ X the section W(x) is a dense subset of the locally convex space (E,P), then

W = CV0(X,E).
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Remark 4.2. For the scalar case E = R, the density of W(x) in R is automatically fulfilled unless the
case where W(x) = {0} for the points x of a closed subset F ⊂ X. In this case, we have

W = {f ∈ CV0(X); f = 0 on F} .
Even this assertion may be drown from Theorem 4.6 as a particular case where there exists F ⊂ X such
that the section of C by x is trivial for all x ∈ F i.e., C(x) = {0E} , ∀x ∈ F . Anyway Theorem 4.6 may
be used in different manners to obtain density results.
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