

Research Article

Infimal generators and monotone sublinear operators

SEMËN S. KUTATELADZE*

ABSTRACT. We provide a version of Korovkin-type theorems for monotone sublinear operators in vector lattices and discuss the possibilities of further extensions and generalizations.

Keywords: Supremal generator, Korovkin-type theorem, sublinear operator.

2020 Mathematics Subject Classification: 41A36, 46N99.

Dedicated to Professor Francesco Altomare, on occasion of his 70th birthday, with esteem and friendship.

1. INTRODUCTION

S. G. Gal and C. P. Niculescu recently proved a Korovkin-type theorem for monotone sublinear operators in spaces of continuous functions in *N*-dimensions [1, Theorem 2]. As the test functions they use the coordinate projections and the sum of their squares whose span is a classical supremal generator in C(Q) with Q a compact subset of the *N*-dimensional Euclidean space \mathbb{R}^N . In this short note, we extend this theorem to order convergence.

2. THE MAIN RESULT

We will proceed with a vector sublattice X of a Dedekind complete vector lattice Y. Recall that a subset H of X is a supremal generator of X_+ with respect to Y provided that $x = \sup_Y \{h \in H : h \le x\}$ for all $x \in X_+$, where as usual $X_+ = \{x \in X : x \ge 0\}$. Using the reverse order, we define an infimal generator of X_+ with respect to Y for convenience. We let $L_+(X,Y)$ stand for the set of positive linear operators from X to Y. Assume that Id_Y is the identity operator on Y. Then, the order interval $[0, Id_Y]$ is the set of multipliers of Y.

Theorem 2.1. Let H be a convex cone in X. Then, the following are equivalent:

- (1) *H* is an infimal generator of X_+ with respect to *Y*;
- (2) there is a multiplier $\lambda \in [0, \operatorname{Id}_Y]$ such that $o-\limsup_{\alpha \in A} P_\alpha(x) = \lambda x$ for all $x \in X_+$ and every net $(P_\alpha)_{\alpha \in A}$ of monotone sublinear operators from X to Y such that $o-\limsup_{\alpha} P_{\alpha \in A}(h) \leq h$ for all $h \in H$;
- (3) *H* is cofinal and if $T \in L_+(X, Y)$ such that $Th \leq h$ for all $h \in H$; then *T* is a multiplier in *Y*.

Proof. (1) \rightarrow (2): Clearly, $P(x) := o - \limsup_{\alpha \in A} P_{\alpha}(x)$ exists for every $x \in X$. So, $P : X \rightarrow Y$ is a monotone sublinear operator and $P(x) = \sup\{Tx : T \in \partial(P)\}$, where $\partial(P)$ is the subdifferential of P.

Take $T \in \partial(P)$, $x \in X_+$, and $h \ge x, h \in H$. Since *H* is an infimal generator of X_+ with respect to *Y* and $Th \le P(h) \le h$; therefore, $Tx \le x$ by the operator principle of preservation of

Received: 15.11.2020; Accepted: 18.01.2021; Published Online: 01.03.2021

^{*}Corresponding author: Semën S. Kutateladze; sskut@math.nsc.ru

DOI: 10.33205/cma.826134

inequalities [2, Theorem 2.1]. Consequently, $T \in [0, Id_Y]$ and so $P(x) = \lambda x$ for all $x \in X_+$ since the pointwise supremum of multipliers is a multiplier itself.

 $(2) \rightarrow (3)$: This is obvious.

(3) \rightarrow (1): Let $q_H(x) := \inf\{h \in H : h \ge x\}$. Then, q_H is a monotone sublinear operator on X and $\partial(q_H) = \{T \in L_+(X, Y) : (\forall h \in H) Th \le h\}$. By (3), q_H is a multiplier itself.

 \Box

3. Comments and Extensions

In this section, we will discuss applications and extensions of Theorem 2.1 using the terminology and techniques of vector lattices, subdifferential calculus, and Boolean-valued analysis as presented in [3] and [4].

The ideas behind the main theorem make it possible to abstract the effects of monotone sublinear approximations along all lines thoroughly presented in [5]. For instance, if H is a finite-dimensional subspace of X, then X is a vector lattice of bounded elements. Moreover, H is coinitial to X (in fact, a supremal generator as well) and we have an analog of Theorem 2.1 for relatively uniform convergence to the embedding of X to Y. This yields uniform approximation by monotone sublinear operators in spaces of bounded continuous functions on compact subsets of finite-dimensional Euclidean space.

Many opportunities are open by Boolean valued analysis for Korovkin-type results in the realm of ordered modules over the ring of orthomorphisms of a Dedekind complete vector lattice *Y*. We can consider approximation of the embedding by monotone module-sublinear operators along the lines of Theorem 2.1. The rest of the matter is that the modular situation can be lifted to the Boolean valued universe $\mathbb{V}^{\mathbb{B}}$ over the base \mathbb{B} of *Y* (i.e., the set of band projections in *Y*). Since by transfer Theorem 2.1 and its analogs are valid inside $\mathbb{V}^{\mathbb{B}}$, we can use their Boolean valued interpretations which yield, for instance, some Korovkin-type theorems for approximation of extensional continuous vector-valued functions on the so-called procompact spaces which are usually noncompact (for instance, the order intervals between two Lebesgue measurable functions).

We will not dwell on all these new model-theoretic opportunities since the possibilities of their application for the needs of the working mathematician seem dim these days.

References

- S. G. Gal, C. P. Niculescu: A nonlinear extension of Korovkin's theorem, Mediterranean Journal of Mathematics, 17 (5) (2020), Art. no. 145, 14 pages.
- [2] S. Kutateladze, A. Rubinov: Minkowski duality and its applications, Russian Math. Surveys, 27 (3) (1972), no. 3, 137–191.
- [3] A. Kusraev, S. Kutateladze: Subdifferentials: Theory and Applications, Kluwer, Dordrecht (1995).
- [4] A. Kusraev, S. Kutateladze: Boolean Valued Analysis, Kluwer, Dordrecht (1999).
- [5] F. Altomare, M. Campiti: Korovkin-type Approximation Theory and Its Applications, De Gruyter, Berlin and New York (1994).

SEMËN S. KUTATELADZE SOBOLEV INSTITUTE OF MATHEMATICS KOPTYUG AVENUE NO 4, 630090, NOVOSIBIRSK, RUSSIA ORCID: 0000-0002-5306-2788 *E-mail address*: sskut@math.nsc.ru