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Optimization problems have numerous real-life applications in science and engineering. The 

engineering design problems are usually subject to various constraints. Although many state-of-

the-art metaheuristic optimization algorithms have been developed during the last decades, 

these algorithms require additional constraint-handling mechanisms to cope with constrained 

optimization problems. Therefore, selecting a suitable constraint-handling mechanism requires 

extensive trial-and-error experiments, which is time-consuming and demanding. In this study, a 

comparative analysis of the eight constraint handling mechanisms is carried out, guiding 

decision-makers in their optimization practices. The constraint-handling techniques are used 

along with the Whale Optimization Algorithm (WOA), and 19 real-life mechanical design 

problems, which are also part of the CEC2020 benchmark suite, are tested in the experimental 

analysis. The nonparametric statistical analysis incorporating Nemenyi and Holm post-hoc 

procedures shows that the inverse tangent constraint-handling and eclectic penalty methods 

exhibit high performance in real-life mechanical design problems.   

 

MÜHENDİSLİK TASARIM PROBLEMLERİNİ ÇÖZMEK İÇİN KISIT-YÖNETİMİ 
MEKANİZMALARININ KARŞILAŞTIRMALI BİR ANALİZİ 

Anahtar Kelimeler Öz 

Kısıt-yönetimi Mekanizmaları, 

Kısıtlı Optimizasyon, 

Metasezgisel Optimizasyon, 

Balina Optimizasyon 

Algoritması 

Optimizasyon problemlerinin bilim ve mühendislikte çok sayıda gerçek yaşam uygulaması 

vardır. Mühendislik tasarım problemleri genellikle çeşitli kısıtlamalara tabidir. Son on yılda 

birçok modern meta-sezgisel optimizasyon algoritması geliştirilmiş olsa da bu algoritmalar, 

kısıtlı optimizasyon problemleriyle başa çıkmak için ek kısıt-yönetimi mekanizmaları 

gerektirir. Bu nedenle, uygun bir kısıt-yönetimi mekanizmasının seçilmesi, zaman alıcı ve 

zorlu olan kapsamlı deneme yanılma deneyleri gerektirir. Bu çalışmada, karar vericilere 

optimizasyon uygulamalarında yol gösterecek şekilde sekiz kısıt-yönetimi mekanizmasının 

karşılaştırmalı bir analizi gerçekleştirilmiştir. Kısıt-yönetimi teknikleri, Balina Optimizasyon 

Algoritmasıyla (BOA) birlikte kullanılmış ve deneysel analizde yine CEC2020 kıyaslama 

paketinin bir parçası olan 19 gerçek hayat mekanik tasarım problemi test edilmiştir. 

Nemenyi ve Holm post-hoc prosedürlerini içeren nonparametrik istatistiksel analiz, ters 

tanjant kısıt-yönetimi ve eklektik ceza yöntemlerinin gerçek hayattaki mekanik tasarım 

problemlerinde yüksek performans sergilediğini göstermektedir. 
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1. Introduction 

                                                           
*Sorumlu yazar; e-posta : ilker.golcuk@bakircay.edu.tr 
 

Optimization problems are ubiquitous in many fields 
of science and engineering. The main characteristic 
of engineering optimization problems is that 
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different types of constraints are involved. The 
presence of the constraints makes challenging 
optimization problems even more complicated. The 
field of swarm intelligence provides a vast array of 
bio-inspired metaheuristic optimization algorithms 
to tackle with real-life optimization problems. 
Regrettably, these metaheuristic algorithms are 
almost always designed for unconstrained 
optimization tasks. When solving constrained 
optimization problems, additional constraint-
handling mechanisms need to be adopted. Therefore, 
the selection of a suitable constraint-handling 
technique is a critical issue that necessitates careful 
analysis.   

The individual solutions in a metaheuristic algorithm 
are divided into two categories: feasible and 
infeasible solutions. Feasible individuals refer to the 
solutions that satisfy all the constraints, while 
infeasible individuals fail to satisfy any constraints. 
The challenge in the constrained optimization 
problems is dealing with infeasible individuals 
throughout the search process (Mallipeddi & 
Suganthan, 2010).  Because infeasible solutions may 
have potentially valuable information about the 
fitness landscape, continuing the search process by 
discarding infeasible solutions is not an effective 
strategy. Therefore, many different approaches have 
been proposed to deal with exploiting useful 
information from infeasible solutions. These 
approaches are known as constraint-handling 
mechanisms (Mezura-Montes & Coello Coello, 2011).  

In the literature, different constraint handling 
methods have been proposed. Michalewicz and 
Schoenauer (1996) categorized constraint-handling 
mechanisms into four groups as follows: 1) penalty-
function based methods, 2) separating feasible and 
infeasible solutions, 3) feasibility-preservation 
based methods, and 4) hybrid methods. In addition 
to these categories, constrained optimization 
problems are represented as a multi-objective 
optimization problem (Deb, 2000). However, multi-
objective optimization is computationally expensive 
in comparison with the other counterparts. Other 
hybrid approaches can be found in (Coello Coello, 
2002; Mezura-Montes & Coello Coello, 2011).  

The salient deficiency of the constraint-handling 
techniques is that decision-makers should perform 
many trial-and-error experiments to decide on a 
particular constraint-handling technique. The No 
Free Lunch (NFL) theorem (Wolpert & Macready, 
1997) states that there is no constraint-handling 
technique that outperforms all the other 

counterparts on every problem instance. Therefore, 
numerous trial-and-error experiments need to be 
carried out, which becomes time-consuming and 
impractical. Reported results on the performance of 
the constraint-handling mechanisms become highly 
supportive in selecting the right technique for a 
given problem. However, there is a research gap in 
the literature that very few works report the relative 
performance of the constraint-handling techniques.  

In this study, a comprehensive evaluation of the 
state-of-the-art constraint-handling techniques is 
carried out. To this end, a recently introduced high-
performing bio-inspired metaheuristic algorithm, 
Whale Optimization Algorithm (WOA) (Mirjalili & 
Lewis, 2016), is utilized as an optimization engine. 
The WOA algorithm with eight constraint handling 
techniques is used to solve real-life mechanical 
design/engineering problems. Accordingly, a total of 
19 non-convex and constrained problems of the 
Congress on Evolutionary Computation 2020 
(CEC2020) test suite (Kumar, Wu, Ali, Mallipeddi, 
Suganthan, Das, 2020a) are used to evaluate the 
performance of the constraint-handling techniques. 
Furthermore, nonparametric statistical tests are 
used to verify significant differences among 
constraint-handling techniques. This paper 
contributes to the literature in the following ways: 

• A comprehensive evaluation of eight constraint-
handling techniques on the real-life constrained 
optimization problems of the CEC2020 problems 
is provided. 

• Performance analysis of the WOA algorithm with 
different constraint-handling techniques is 
carried out.  

• The statistical analysis sheds light on the relative 
performance of the constraint-handling 
techniques so that the results can be used to 
select a suitable constraint-handling technique in 
future studies.  

The organization of the paper is as follows: Section 2 
presents the basics of WOA. Section 3 gives the 
definitions of constrained optimization problems 
and state-of-the-art constraint-handling techniques. 
Section 4 is devoted to the experimental study and 
statistical analysis. Finally, concluding remarks and 
discussion is given in Section 5.  

 

2. Whale Optimization Algorithm 

The Whale Optimization Algorithm (WOA) (Mirjalili 
& Lewis, 2016) is a recently developed metaheuristic 
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algorithm inspired byhumpback whales' hunting 
practice. 

The two fundamental actions of the search 
procedure of WOA are shrinking encircling and 
spiral updating. Decreasing initial step-size 
gradually, search agents move towards the 
incumbent solution in the shrinking encircling phase. 
The shrinking encircling is represented as follows: 

𝐷 = |𝐶 ⋅ 𝑋∗(𝑡) − 𝑋(𝑡)| (1) 

𝑋(𝑡 + 1) = 𝑋∗(𝑡) − 𝐴 ⋅ 𝐷 (2) 

where 𝐶 and 𝐴 are the coordinate vectors, 
𝑋∗(𝑡)represents the position vector of the incumbent 
solution, and 𝑋(𝑡) denotes the position vector at 
iteration t  and   is the component-wise 

multiplication. The coefficients 𝐶 and 𝐴 are 
determined as: 

𝐴 = 2 ⋅ 𝑎 ⋅ 𝑟 − 𝑎 (3) 

𝐶 = 2 ⋅ 𝑟 (4) 

The coordinate vector 𝑎 is linearly decreased from 2 

to 0 by applying the formulation of 𝑎(𝑡) = 2 − (𝑡 −

1) ⋅ (2/𝑚𝑎𝑥𝐼𝑡𝑒𝑟), in which the maximum number of 

generations is denoted by maxIter .  

On the other hand, the helix-shaped movement of 
whales is modeled as bubble-net attacking. The 
mathematical definition of the bubble-net attacking 
is presented as:  

𝑋(𝑡 + 1) = 𝐷′ ⋅ 𝑒𝑏𝑙 ⋅ cos(2𝜋𝑙) + 𝑋∗(𝑡) (5) 

where 𝐷′ = |𝑋∗(𝑡) − 𝑋(𝑡)| shows the distance 
between the search agent and the incumbent 
solution, and b and l are being a constant and a 

random number between [−1,1], respectively.  

The spiral updating is another crucial search 
procedure of the WOA. The whales move towards the 
incumbent solution within a dwindling circle and a 
spiral-shaped path simultaneously. To represent this 
movement, it is presumed that the whales choose 
between either the shrinking encircling or bubble-
net attacking with equal chances. These two 
mechanisms are illustrated in Figure 1.  

 

  
a)Shrinking Encircling b)Spiral Updating 

 

Figure 1. Bubble-net Search Mechanism 

Mathematically speaking, the exploitation phase of 
the WOA is represented as: 

*

*
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X
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where p  is a racndom number in [0,1].   

Instead of moving towards the incumbent solution in 
the exploration stage, the solution vector is updated 
by approaching a randomly chosen solution. 
Exploration mechanism is expressed by: 

𝐷 = |𝐶 ⋅ 𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝑋(𝑡)|  (7) 

𝑋(𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝐴 ⋅ 𝐷  (8) 

where Xrand is the position vector of a randomly 
chosen whale. The flowchart of the WOA algorithm is 
given in Figure 2. 

The WOA algorithm begins with the generation of 
initial population, which encompasses of number of 
solutions. The initial solutions are randomly 
generated based on uniform distribution, where 
each dimension of the solution lies within the lower 
and upper bounds of the decision variables. Then, the 
step-size coefficients are prepared as given in Eqs. 3-
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4. As mentioned before, each whale either selects 
shrinking encircling or bubble-net attacking. The 
movement of each whale is performed based on the 
value of a random number p and the step size 
coefficient A. The necessary equations are shown in 
Figure 2.  

The steps of WOA are applied for the unconstrained 
optimization problems. When the constraints are 
defined in the model, constraint-handling 
techniquesmanage constraints in different ways. In 
the next section, constraint-handling mechanisms 
are introduced. 

 
Figure 2. Flowchart of the WOA 

3. Constraint-Handling Mechanisms 

The constrained optimization problem is formalized 
as follows: 

 
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There are m p  constraints in which ig denotes i-

th inequality constraint and 
jh represents j-th 

equality constraint. Here, 𝑥 ∈ 𝑆denotes nDim 
dimensional solution vector.  

The set S comprises of box constraints that specify 

admissible intervals of each dimension. The lower 
and upper box constraints for each component of the 

solution vector are specified as 𝑙𝑏 and 𝑢𝑏, 
respectively. A solution vector 𝑥 ∈ 𝑆is termed 
feasible if all constraints are satisfied 

simultaneously. The feasible set F  is given by: 

 : : ( ) 0 ( ) 0, ,i jS g h i j     F x x x
 

(10) 

where all m p  constraints are satisfied by the 

solutions in the feasible set.  

The measure of infeasibility is calculated when the 
constraints are violated. The constraint violation of a 
candidate solution is calculated as:  

 
   
   

max 0, ( ) , 1,

max 0, ( ) , 1,

i

i

i

g i m
G x

h i m m p

  
 

    

x

x
 (11) 

where  is the tolerance parameter given by 410  

and the  iG x  is the constraint violation of the i-th 

constraint. 

 

3.1 Static Penalty Method  

In the static penalty methods, the penalized cost 
function is given as follows (Homaifar, Qi, & Lai, 
1994): 

     
1

min
m p

i i
x

i

f rG




 x x x

 

(12) 

where ir is the penalty factor of the i-th constraint 

and 𝑓(𝑥) is the objective function value. Here, the 

coefficients ir do not change throughout iterations.  

 

3.2 Dynamic Penalty Method 

In the dynamic penalty method, penalty coefficient is 

given by  ir ct


 where c and  are constants. 

The penalized cost function is given by (Joines & 
Houck, 1994):  
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where 𝜙(𝑥) is the penalized cost function.  

To increase the performance of the dynamic penalty 
method, normalization of the objective function 
value and the constraint violations can be performed 
as follows (Simon, 2013): 

       
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   (14) 

 

3.3 Dynamic Penalty MethodCombined with 
Superiority of Feasible Points 

In the dynamic penalty method combined with the 
superiority of feasible points, it is ensured that all of 
the feasible solutions have a lower cost than the 
infeasible points. Therefore, the penalized cost is 
rewritten as (Simon, 2013):  

 
 

     

, if

, if

f x

f c iter M x



 

 
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F

F

x
x

x x

 (15) 

 

3.4 Exponential Dynamic Penalty Method 

The exponential dynamic penalty function is given as 
(Carlson & Shonkwiler, 1998):  

      expf M T x x x
 

(16) 

where T is a monotonically nonincreasing function 

of the iteration. Generally, the variable T is taken as 

1 iter .  

Because 𝑓(𝑥) can also become negative, the 
following modification is used instead, 

      

     

exp

min
x

f M T

f f f

  
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x x x

x x x
 (17) 
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where  is used to adjust the relative weight of the 

constraint violation.  

 

3.5 Exponential Dynamic Penalty Method with 
the Superiority of Feasible Solutions 

The superiority of the feasible solutions can be 
integrated into the exponential dynamic penalty 
method as follows(Simon, 2013): 

 
 

    
, if

exp , if

f x

f M T x




 
 

  

F

F

x
x

x x
 (18) 

3.6 Adaptive Penalty Weights 

The adaptive penalty weights method adjusts 
penalty weights by getting information from the 
population of individuals during the search process. 
Penalty weights are set as follows (Hadj-Alouane & 
Bean, 1997): 

 

 

 

 

1

2

, if g is feasible for k generations

1 , if thereis no feasible solution for k generations

, otherwise

i best

i i

i

r iter

r iter r iter

r iter







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


 (19)

where ,k 1, and 2  are user-defined parameters. 

 

3.7 Eclectic Penalty Method 

The eclectic penalty method enforces the superiority 
of feasible solutions. The penalized cost is given as 
(Morales & Quezada, 1998): 

 

 
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, if

1 , if

f x

s
L x

m p
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

  
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F

F

x

x x  (20) 

where L is a large constant, 𝑠(𝑥)is the number of 
constraints that are satisfied by x .  

 

3.8 Inverse Tangent Constraint Handling 

Inverse tangent constraint handling (ITCH) method 
is reduced original constrained optimization 
problem to unconstrained optimization problem as 
follows (Kim, Maruta, & Sugie, 2010) : 

𝜙(𝑥) = {
arctan[𝑓(𝑥)] −

𝜋

2
, if 𝑥 ∈ ℱ

max𝑖(0, 𝐺𝑖(𝑥)), if 𝑥 ∉ ℱ
 (21) 

where arctan is the inverse tangent function.  

If the solution is feasible, then the inverse tangent 
function maps the solution to[−∞, 0]. Otherwise, 
penalty functions map to positive values, which 
guarantees that feasible solutions are superior to 
infeasible solutions.  

  

 

 

4. Experimental Study 

In this section, constraint-handling mechanisms are 
used to solve constrained optimization problems 
within WOA. To this end, an extensive computational 
study has been conducted on mechanical design 
problems, which are also part of the Congress on 
Evolutionary Computation 2020 (CEC2020) test 
suite (Kumar et al., 2020a). The following problems 
have been tackled: weight minimization of a speed 
reducer(Chew & Zheng, 2012), optimal design of 
industrial refrigeration system(Andrei & Andrei, 
2013), tension/compression spring 
design(Belegundu & Arora, 1985), pressure vessel 
design(Sandgren, 1988), welded beam 
design(Ragsdell & Phillips, 1976),three-bar truss 
design problem(Nowacki, 1973),  multiple disk 
clutch brake design problem(Steven, 2002), 
planetary gear train design optimization 
problem(Sandgren, 1990), step-cone pulley 
problem(Rao, 1996), robot gripper 
problem(Osyczka, Krenich, & Karas, 1999), hydro-
static, thrust bearing design problem(Siddall, 1982), 
four-stage gear box problem(Yokota, Taguchi, & Gen, 
1998), 10-Bar truss optimization with frequency 
constraints(Grandhi, 1993), rolling element 
bearing(Gupta, Tiwari, & Nair, 2007), gas 
transmission compressor design(Beightler & 
Phillips, 1976), tension/compression string design 
problem (case 2)(Arora, 2004), gear train design 
problem(Sandgren, 1990), Himmelblau's 
function(Himmelblau, 2018), and topology 
optimization(Sigmund, 2001). The mathematical 
formulations of the problems can be found in (Kumar 
et al., 2020a, 2020b). The constrained optimization 
problems handled within the scope of the present 
work have a varying number of dimensions (nDim), 
inequality constraints (nInequal) and equality 
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constraints (nEqual). The problem properties are 
summarized in Table 1.  

 

Table 1 

Details of the Problems 

No Constrained Optimization Problems 
Properties 

nDim nInequal nEqual 

F01 Weight Minimization of a Speed Reducer 7 11 0 

F02 Optimal Design of Industrial refrigeration System 14 15 0 

F03 Tension/compression spring design (case 1) 3 3 0 

F04 Pressure vessel design 4 4 0 

F05 Welded beam design 4 5 0 

F06 Three-bar truss design problem 2 3 0 

F07 Multiple disk clutch brake design problem 5 7 0 

F08 Planetary gear train design optimization problem 9 10 1 

F09 Step-cone pulley problem 5 8 3 

F10 Robot gripper problem 7 7 0 

F11 Hydro-static thrust bearing design problem 4 7 0 

F12 Four-stage gear box problem 22 86 0 

F13 10-bar truss design 10 3 0 

F14 Rolling element bearing 10 9 0 

F15 Gas Transmission Compressor Design (GTCD) 4 1 0 

F16 Tension/compression spring design (case 2) 3 8 0 

F17 Gear train design Problem 4 1 1 

F18 Himmelblau’s Function 5 6 0 

F19 Topology Optimization 30 30 0 

 

In the experimental study, population size and the 
maximum number of iterations are 30 and 500, 
respectively. On the other hand, the default 
parameters of the constraint-handling methods have 
been adopted. The penalty factor of the static penalty 
is set to 1e5. In dynamic penalty, c and  are set to 

10 and 2, respectively. The  parameter of the 

exponential dynamic penalty methods is set to 10. In 

the adaptive penalty method, 1 2, ,k   parameters 

are set to 4, 3, and nDim, respectively. Finally, L 
parameter of the eclectic penalty method is set to 
1e6.  

 

4.1 Test Results for Engineering Design 
Problems 

In this section, test results for the engineering design 
problems are given. All the constraint-handling 
methods have been run in the same conditions. The 
WOA algorithm has been run for 30 replications. The 
best, mean, standard deviation and worst objective 
function values are tabulated for each constraint-
handling technique. Furthermore, the feasibility of 

the solution over 30 runs has been indicated. 
Feasible solutions are used when collecting statistics 
over replications. If any feasible solution cannot be 
produced over 30 replications, then the “Feasible” 
property is set to 0. Table 1 shows the results of the 
constraint-handling techniques. For the sake of 
increasing readability, the static penalty (SP), 
dynamic penalty (DP), dynamic penalty method 
combined with superiority of feasible points (DPSF), 
exponential dynamic penalty method (EDP), 
exponential dynamic penalty method with the 
superiority of feasible solutions (EDPSF), adaptive 
penalty weights (AP), eclectic penalty method (EP), 
and inverse tangent constraint handling (ITCH) are 
placed into the columns with the given abbreviation 
in the parentheses. Each row represents the problem 
and collected statistics about each constraint-
handling technique. Tables2-4 show the test results 
of the constraint handling techniques. The best-
performing constraint handling techniques in terms 
of the best and mean metrics are highlighted in Table 
2. In Table 3, standard deviation (std_dev) values and 
the worst results are given. The feasibility of the 
solutions is given in Table 4. According to Table 4, the 
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symbol  represents the situation that any feasible 
solution cannot be obtained during the replications, 
while  indicates that the constraint handling 

technique has managed to find at least one solution 
that satisfies all of the constraints. 

 

  

Table 2 
The Best and Mean Results 

Problem Perf.  

Constraint handling techniques 

SP DP DPSF EDP EDPSF AP EP ITCH 

F01 
Best 2.998E+03 3.016E+03 3.014E+03 3.014E+03 3.017E+03 3.011E+03 2.998E+03 2.996E+03 

Mean 3.044E+03 3.064E+03 3.116E+03 3.034E+03 3.058E+03 3.059E+03 3.102E+03 3.011E+03 

F02 
Best 6.322E-01 3.203E+01 3.928E-01 3.835E-03 1.382E-01 7.228E-01 2.148E+03 2.109E-01 

Mean 8.567E+02 1.431E+05 1.391E+04 8.967E-03 1.284E+02 9.885E+03 2.148E+03 6.111E+03 

F03 
Best 1.268E-02 1.300E-02 1.289E-02 1.320E-02 1.283E-02 1.296E-02 1.267E-02 1.269E-02 

Mean 1.424E-02 1.406E-02 1.404E-02 1.465E-02 1.376E-02 1.414E-02 1.318E-02 1.313E-02 

F04 
Best 4.747E+02 7.200E+03 6.210E+03 4.757E+02 6.521E+03 4.803E+02 6.483E+03 6.133E+03 

Mean 4.927E+02 8.137E+03 7.851E+03 5.055E+02 7.799E+03 8.553E+02 7.016E+03 7.011E+03 

F05 
Best 1.773E+00 1.701E+00 1.907E+00 1.046E-01 1.859E+00 2.001E+00 1.672E+00 1.684E+00 

Mean 2.003E+00 2.172E+00 2.367E+00 2.354E-01 2.338E+00 2.001E+00 1.964E+00 1.912E+00 

F06 
Best 2.640E+02 2.639E+02 2.640E+02 2.520E+00 2.639E+02 1.488E+00 2.639E+02 2.639E+02 

Mean 2.651E+02 2.647E+02 2.648E+02 2.771E+01 2.647E+02 7.708E+00 2.639E+02 2.639E+02 

F07 
Best 2.378E-01 2.363E-01 2.362E-01 2.377E-01 2.366E-01 1.262E-01 2.352E-01 2.352E-01 

Mean 2.450E-01 2.421E-01 2.426E-01 2.442E-01 2.457E-01 1.345E-01 2.353E-01 2.353E-01 

F08 
Best 5.273E-01 5.273E-01 5.258E-01 5.273E-01 5.269E-01 5.300E-01 5.258E-01 5.258E-01 

Mean 5.493E-01 5.667E-01 5.570E-01 5.423E-01 5.664E-01 5.722E-01 5.305E-01 5.298E-01 

F09 
Best 8.524E+00 1.654E+01 1.640E+01 8.524E+00 8.692E+00 1.672E+01 1.035E+01 1.647E+01 

Mean 1.017E+01 1.676E+01 1.661E+01 1.004E+01 1.012E+01 1.672E+01 1.899E+01 1.661E+01 

F10 
Best 3.471E+00 3.622E+00 3.476E+00 3.288E+00 3.321E+00 3.839E+00 3.442E+00 3.438E+00 

Mean 6.060E+00 5.730E+00 5.748E+00 4.032E+00 8.164E+00 5.419E+00 4.950E+00 4.828E+00 

F11 
Best 3.961E+03 2.599E+03 2.685E+03 -1.419E+27 -3.877E+29 2.535E+03 1.867E+03 1.861E+03 

Mean 3.961E+03 3.922E+03 3.994E+03 -1.006E+26 -3.842E+28 3.738E+03 2.668E+03 2.649E+03 

F12 
Best 3.592E+00 8.875E+00 5.987E+01 0.000E+00 0.000E+00 3.224E+00 2.148E+01 6.967E+01 

Mean 6.202E+00 3.797E+01 5.987E+01 0.000E+00 0.000E+00 3.332E+00 6.164E+01 6.967E+01 

F13 
Best 5.615E+02 5.594E+02 5.557E+02 5.652E+02 5.533E+02 2.028E+01 5.551E+02 5.646E+02 

Mean 6.040E+02 6.084E+02 6.018E+02 6.102E+02 6.086E+02 1.164E+02 5.940E+02 6.018E+02 

F14 
Best 1.727E+04 1.716E+04 1.710E+04 1.717E+04 1.712E+04 1.711E+04 1.700E+04 1.698E+04 

Mean 1.833E+04 1.903E+04 1.844E+04 1.826E+04 1.852E+04 1.869E+04 1.738E+04 1.709E+04 

F15 
Best 2.968E+06 2.971E+06 2.968E+06 2.976E+06 2.972E+06 1.330E+06 2.965E+06 2.965E+06 

Mean 3.034E+06 3.023E+06 3.040E+06 3.033E+06 3.024E+06 1.780E+06 2.967E+06 2.969E+06 

F16 
Best 2.645E-01 2.647E-01 2.669E+00 9.258E-04 2.720E+00 1.448E-02 2.659E+00 2.659E+00 

Mean 2.877E-01 3.073E-01 3.076E+00 3.127E-03 3.075E+00 1.451E-01 2.919E+00 2.866E+00 

F17 
Best 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.611E-20 

Mean 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3.289E-17 

F18 
Best -3.034E+04 -3.022E+04 -2.959E+04 -2.230E+04 -2.984E+04 -3.050E+04 -3.055E+04 -3.051E+04 

Mean -2.997E+04 -2.988E+04 -2.853E+04 -2.230E+04 -2.861E+04 -2.990E+04 -3.023E+04 -3.027E+04 

F19 
Best 2.640E+00 2.640E+00 2.640E+00 2.639E+00 2.640E+00 2.640E+00 2.639E+00 2.639E+00 

Mean 2.654E+00 2.671E+00 2.672E+00 2.674E+00 2.663E+00 2.668E+00 2.639E+00 2.639E+00 
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Table 3 

Standard Deviation Values and The Worst Results 

Problem Perf.  

Constraint handling techniques 

SP DP DPSF EDP EDPSF AP EP ITCH 

F01 
Std_Dev 2.942E+01 3.480E+01 1.851E+02 2.319E+01 3.972E+01 3.213E+01 2.449E+02 2.398E+01 

Worst 3.113E+03 3.146E+03 4.003E+03 3.091E+03 3.176E+03 3.137E+03 4.216E+03 3.130E+03 

F02 
Std_Dev 1.915E+03 5.109E+05 5.617E+04 1.008E-02 4.311E+02 4.063E+04 0.000E+00 1.876E+04 

Worst 7.917E+03 2.751E+06 2.907E+05 5.440E-02 2.108E+03 1.960E+05 2.148E+03 8.536E+04 

F03 
Std_Dev 1.210E-03 1.020E-03 9.590E-04 1.230E-03 6.819E-04 8.915E-04 5.539E-04 4.416E-04 

Worst 1.879E-02 1.725E-02 1.637E-02 1.863E-02 1.550E-02 1.664E-02 1.456E-02 1.419E-02 

F04 
Std_Dev 1.876E+01 8.191E+02 1.580E+03 3.664E+01 1.255E+03 9.326E+02 4.805E+02 6.755E+02 

Worst 5.692E+02 8.718E+03 1.266E+04 6.052E+02 1.229E+04 5.529E+03 8.990E+03 9.361E+03 

F05 
Std_Dev 1.965E-01 3.618E-01 3.970E-01 9.745E-02 3.970E-01 0.000E+00 2.482E-01 2.145E-01 

Worst 2.248E+00 2.805E+00 3.474E+00 5.904E-01 3.387E+00 2.001E+00 2.651E+00 2.523E+00 

F06 
Std_Dev 6.599E-01 6.984E-01 8.567E-01 1.992E+01 6.961E-01 5.265E+00 5.177E-02 7.372E-02 

Worst 2.659E+02 2.660E+02 2.674E+02 7.279E+01 2.665E+02 1.852E+01 2.641E+02 2.643E+02 

F07 
Std_Dev 6.499E-03 3.285E-03 4.326E-03 5.782E-03 7.448E-03 5.716E-03 8.324E-05 4.607E-05 

Worst 2.639E-01 2.494E-01 2.534E-01 2.591E-01 2.657E-01 1.500E-01 2.357E-01 2.355E-01 

F08 
Std_Dev 2.341E-02 4.822E-02 5.903E-02 1.926E-02 4.970E-02 4.944E-02 6.410E-03 3.352E-03 

Worst 6.283E-01 7.258E-01 8.471E-01 5.888E-01 7.327E-01 7.698E-01 5.567E-01 5.371E-01 

F09 
Std_Dev 1.044E+00 2.051E-01 7.461E-02 9.379E-01 9.384E-01 0.000E+00 3.649E+00 7.345E-02 

Worst 1.282E+01 1.730E+01 1.688E+01 1.181E+01 1.222E+01 1.672E+01 2.416E+01 1.692E+01 

F10 
Std_Dev 2.814E+00 1.971E+00 2.413E+00 4.868E-01 1.327E+01 1.244E+00 8.028E-01 8.164E-01 

Worst 1.976E+01 1.224E+01 1.694E+01 4.802E+00 7.703E+01 1.004E+01 7.114E+00 6.785E+00 

F11 
Std_Dev 0.000E+00 1.277E+03 8.385E+02 2.974E+26 1.023E+29 1.156E+03 4.241E+02 4.886E+02 

Worst 3.961E+03 6.916E+03 5.867E+03 -1.748E+21 -1.854E+19 6.268E+03 4.183E+03 3.784E+03 

F12 
Std_Dev 2.548E+00 2.482E+01 0.000E+00 0.000E+00 0.000E+00 1.006E-01 3.778E+01 0.000E+00 

Worst 1.528E+01 1.007E+02 5.987E+01 0.000E+00 0.000E+00 3.539E+00 2.035E+02 6.967E+01 

F13 
Std_Dev 2.717E+01 3.346E+01 2.939E+01 2.465E+01 3.635E+01 1.396E+02 2.480E+01 3.124E+01 

Worst 6.658E+02 6.895E+02 6.737E+02 6.617E+02 6.843E+02 5.590E+02 6.424E+02 7.111E+02 

F14 
Std_Dev 1.222E+03 1.484E+03 1.685E+03 1.278E+03 2.052E+03 1.398E+03 8.794E+02 1.859E+02 

Worst 2.202E+04 2.290E+04 2.400E+04 2.328E+04 2.439E+04 2.239E+04 2.147E+04 1.775E+04 

F15 
Std_Dev 5.223E+04 5.124E+04 5.120E+04 4.438E+04 4.424E+04 2.523E+05 2.549E+03 9.205E+03 

Worst 3.145E+06 3.183E+06 3.165E+06 3.141E+06 3.113E+06 2.312E+06 2.978E+06 3.005E+06 

F16 
Std_Dev 3.588E-02 1.460E-01 2.575E-01 1.608E-03 2.283E-01 1.386E-01 1.569E-01 1.399E-01 

Worst 3.674E-01 1.060E+00 3.728E+00 7.505E-03 3.680E+00 5.661E-01 3.302E+00 3.191E+00 

F17 
Std_Dev 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3.484E-17 

Worst 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.080E-16 

F18 
Std_Dev 2.388E+02 2.029E+02 7.175E+02 9.776E-02 1.108E+03 4.182E+02 1.539E+02 1.369E+02 

Worst -2.955E+04 -2.960E+04 -2.691E+04 -2.230E+04 -2.558E+04 -2.908E+04 -2.984E+04 -3.001E+04 

F19 
Std_Dev 1.845E-02 3.560E-02 4.185E-02 5.585E-02 2.741E-02 3.407E-02 4.186E-06 5.328E-06 

Worst 2.717E+00 2.769E+00 2.790E+00 2.910E+00 2.754E+00 2.769E+00 2.639E+00 2.639E+00 
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Table 4 
Feasibility of the Solutions 

Problem 

Constraint handling techniques 

SP DP DPSF EDP EDPSF AP EP ITCH 

F01    
 

    

F02    
 

    

F03    
 

    

F04  
    

 
  

F05      
 

  

F06         

F07    
 

    

F08  
  

 
    

F09  
  

  
 

 
 

F10    
  

   

F11         

F12   
    

 
 

F13    
 

    

F14    
 

 
 

  

F15  
  

 
    

F16   
 

 
    

F17    
 

    

F18    
 

    

F19    
 

    

 

 

According to the results, all the constraint-handling 
techniques have found feasible solutions for the 
weight minimization of a speed reducer (F01) 
problem. ITCH has been found to be superior in 
terms of the best and mean results. In the optimal 
design of industrial refrigeration system (F02) 
problem, EDPSF has performed superior concerning 
the best and mean results. Also, EDP has not achieved 
to find a feasible solution over the replications. In the 
tension/compression spring design (case 1) (F03), EP 
has found the best solution, while ITCH has the best 
mean result. The ITCH has outperformed all the 
other algorithms in the pressure vessel design (F04), 
multiple disk clutch brake design problem (F07), 
planetary gear train design optimization problem 
(F08), hydro-static thrust bearing design problem 
(F11), and rolling element bearing (F14) in terms of 
the best and mean results. In the welded beam design 
(F05), EP has returned the best solution, and ITCH has 
produced the best mean value. The EDP algorithm 
has not found any feasible solution for the F05.  On the 

other hand, concerning the best and mean values for 
the three-bar truss design problem (F06), the best 
performing constraint-handling techniques are ITCH 
and EP, respectively. For the step-cone pulley 
problem (F09), DP and ITCH have exhibited high 
performance, whereas SP, EDP, EDPSF, and EP have 
not found any feasible solution throughout 
replications. In the robot gripper problem (F10), EDP 
has become the best performing constraint-handling 
technique. In the four-stage gearbox problem (F12), 
DPSF has performed the best and becomes one of the 
two constraint handling techniques with the ITCH 
that has achieved feasible solutions. In the 10-bar 
truss design (F13) problem, EDPSP has yielded the 
best feasible result, and EP has exhibited the highest 
performance in terms of the mean results. In the gas 
transmission compressor design (GTCD), EP has 
exhibited the best performance in terms of the best 
and mean results. In the tension/compression spring 
design (case 2) (F16) and Himmelblau’s function 
(F18), the best and mean results have been achieved 
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by EP and ITCH, respectively. In the gear train design 
problem (F17), almost all the constraint handling 
techniques have performed equally well, the ITCH 
being slightly worse than the others. Finally, in the 
topology optimization (F19), ITCH has exhibited the 
best performance while the EP has accomplished the 
best mean scores.  

Another critical performance indicator is the 
standard deviation. The standard deviation shows 
the algorithms' robustness—the smaller the 

standard deviation, the more robust the constraint 
handling technique. Figure3 shows the boxplots of 
the constraint handling techniques for the most 
commonly studied problems in the literature, which 
are weight minimization of a speed reducer (F01), 
tension/compression spring design (case 1) (F03), 
and planetary gear train design optimization 
problem (F08).  

 

 

    

  
a) F01 b) F03 

 
c) F08 

Figure 3. Box plots of the constraint-handling techniques 

 

As shown in Figure3, ITCH has a considerably low 
standard deviation, which indicates the technique's 
robustness. Besides its high performance in terms of 
objective function value, ITCH has been found to be 
the most robust constraint-handling technique in the 
vast majority of the test instances. The ITCH 
algorithm has outperformed other constraint-

handling techniques in 42.10% of instances in terms 
of the best results. Furthermore, the ITCH has 
dominated other algorithms in 57.89% of the test 
instances concerning the mean results. In the next 
section, nonparametric statistical analysis is used to 
verify the superiority of the algorithms.   
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4.2 Statistical verification 

In the experimental analysis, the performances of the 
algorithms are tested by using statistical hypothesis 
tests. However, parametric tests require the 
satisfaction of assumptions such as independence, 
normality, and homoscedasticity. Because these 
assumptions cannot be satisfied in most of the cases, 
nonparametric statistical tests are recommended. To 
this end, pairwise comparisons are conducted 
between the algorithms. While comparing the 
different techniques in a pairwise manner, the 
probability of making false discoveries might not be 
controlled, which is also known as “losing control on 
the family-wise error rates” (Derrac, García, Molina, 
& Herrera, 2011). Multiple comparison tests (1 ×

𝑁or 𝑁 × 𝑁) are recommended in the literature 
(Gölcük & Ozsoydan, 2020).  

Therefore, this work adopts the Friedman test with 
multiple comparisons (𝑁 × 𝑁) in order to discover 
statistically significant differences among 
constraint-handling techniques. When the null 
hypothesis of the Friedman test is rejected, the next 
step is devoted to post-hoc analysis, which serves as 
finding out the individual differences between 
constraint-handling techniques. Accordingly, this 
work utilizes Nemenyi and Holm tests in the post-
hoc analysis. The Friedman test results, along with 
the average ranks, are given in Table 5.  

 

Table 5 
Average Ranks and Obtained p-values of (Friedman 
Tests) 

algorithms overall avg. ranks 

EDP 6.2895 
AP 5.5000 
SP 5.1842 

DP 5.0526 
EDPSF 4.7632 
DPSF 4.1579 
EP 2.7368 
ITCH 2.3158 

p-values (adj. ties) 0.000 

decision on H0 reject H0 

 

In Table 5, constraint-handling techniques are sorted 
in descending order concerning the average ranks. 
According to Table 5, ITCH is the best performing 
constraint-handling technique with an average rank 
of 2.3158. The second-ranked constraint-handling 
technique is EP, with an average rank of 2.7368. The 
EP is followed by DPSF, EDPSF, DP, SP, AP, and EDP. 
According to the Friedman test, the p-value is found 
as 0.000 so that the null-hypothesis is rejected. It is 
inferred that at least one pair of constraint-handling 
techniques are significantly different from each 
other. Nemenyi and Holm tests have been carried out 
to discover the pairwise differences between 
constraint-handling techniques, as given in Table 6.  
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Table 6 
Statistical Comparison of Constraint-Handling Techniques  

comparisons z-score unadjusted Nemenyi Holm 

ITCH vs EDP 5     0 (+)     0 (+)     0 (+) 

EP vs EDP 4.47     0 (+)     0 (+)     0 (+) 

ITCH vs AP 4.007     0 (+) 0.002 (+) 0.002 (+) 

ITCH vs SP 3.609     0 (+) 0.009 (+) 0.008 (+) 

EP vs AP 3.477 0.001 (+) 0.014 (+) 0.012 (+) 

ITCH vs DP 3.444 0.001 (+) 0.016 (+) 0.013 (+) 

ITCH vs EDPSF 3.08 0.002 (+) 0.058 (~) 0.046 (+) 

EP vs SP 3.08 0.002 (+) 0.058 (~) 0.046 (+) 

EP vs DP 2.914 0.004 (+)   0.1 (~) 0.071 (~) 

DPSF vs EDP 2.682 0.007 (+) 0.205 (~) 0.139 (~) 

EP vs EDPSF 2.55 0.011 (+) 0.302 (~) 0.194 (~) 

ITCH vs DPSF 2.318  0.02 (+) 0.573 (~) 0.348 (~) 

EDPSF vs EDP 1.921 0.055 (~)     1 (~) 0.877 (~) 

EP vs DPSF 1.788 0.074 (~)     1 (~)     1 (~) 

DPSF vs AP 1.689 0.091 (~)     1 (~)     1 (~) 

DP vs EDP 1.556  0.12 (~)     1 (~)     1 (~) 

SP vs EDP 1.391 0.164 (~)     1 (~)     1 (~) 

DPSF vs SP 1.291 0.197 (~)     1 (~)     1 (~) 

DPSF vs DP 1.126  0.26 (~)     1 (~)     1 (~) 

AP vs EDP 0.993 0.321 (~)     1 (~)     1 (~) 

EDPSF vs AP 0.927 0.354 (~)     1 (~)     1 (~) 

DPSF vs EDPSF 0.762 0.446 (~)     1 (~)     1 (~) 

DP vs AP 0.563 0.573 (~)     1 (~)     1 (~) 

ITCH vs EP 0.53 0.596 (~)     1 (~)     1 (~) 

EDPSF vs SP 0.53 0.596 (~)     1 (~)     1 (~) 

SP vs AP 0.397 0.691 (~)     1 (~)     1 (~) 

EDPSF vs DP 0.364 0.716 (~)     1 (~)     1 (~) 

DP vs SP 0.166 0.868 (~)     1 (~)     1 (~) 

 
In Table 6, z-scores, unadjusted p-values, Nemenyi, 
and Holm test results are tabulated. According to 
Nemenyi and Holm tests, the ITCH outranks EDP, AP, 
SP, DP, and EDPSF at the significance level of 5%. 
Furthermore, according to the Holm test, significant 
differences are detected between the EP and the 
EDP, AP, and SP. Note that EP is the second-best 
constraint handling technique in terms of average 
rankings. The comparison between EP and ITCH 
indicates that they perform equally well, and the 
statistical difference cannot be observed. Apart from 
ITCH and EP, the rest of the constraint handling 
techniques exhibit equal performance, and the 
statistical difference cannot be verified. For the 
statistical significance level of 10%, the statistical 
difference between EP and DP can be confirmed.  

The post-hoc analysis clearly shows that ITCH has 
superior performance compared toits counterparts 
for solving CEC2020 engineering design problems.   

 

5. Discussion and conclusion 

In this study, research and publication ethics were 
followed. In this paper, the static penalty, dynamic 
penalty, dynamic penalty method combined with 
superiority of feasible points, exponential dynamic 
penalty method, exponential dynamic penalty 
method with the superiority of feasible solutions, 
adaptive weights, eclectic penalty method, and 
inverse tangent constraint handling methods are 
used to solve real-life mechanical 
design/engineering problems. The considered 
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problems are part of the CEC2020 constrained 
optimization test suite. These employed constraint-
handling techniques are used within WOA, proving 
its ability to solve real-life optimization problems 
with high success.  

The results show that inverse tangent constraint 
handling is the best performing constraint handling 
technique. In 42.10% of instances,the best results 
belong to the inverse tangent constraint handling 
technique. Furthermore, this constraint handling 
technique has achieved the best-mean results in 
57.89% of the test instances. On the other hand, the 
second-best constraint handling technique is eclectic 
penalty method with the average rank of 2.7368. 
Nonparametric statistical analysis with Nemenyi and 
Holm post-hoc tests show that inverse tangent 
constraint handling outranks all other counterparts, 
excepting two methods: eclectic penalty and 
dynamic penalty method combined with superiority 
of feasible points. The results frankly show that 
inverse tangent can be the choice of the general-
purpose constraint-handling mechanisms in many 
situations.  

The produced results may lead to new studies in 
various research directions. In future studies, the 
ensemble of constraint-handling techniques can be 
used to solve real-life optimization problems. Also, 
hyper-heuristics can be used to select constraint-
handling techniques autonomously. Finally, the 
other bio-inspired algorithms can be integrated into 
the research mentioned aboveto solvethe wide-
variety of real-life constrained optimization 
problems.  
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