
Proceedings of International Mathematical Sciences

ISSN:2717-6355, URL:https://dergipark.org.tr/tr/pub/pims

Volume II Issue 2 (2020), Pages 103-128. Doi: 10.47086/pims.827108

DIOPHANTINE ATTACK ON PRIME POWER WITH MODULUS

N = prq

SAIDU ISAH ABUBAKAR*, ZAID IBRAHIM**, SADIQ SHEHU *** AND AHMAD

RUFAI****
*DEPARTMENT OF MATHEMATICS, SOKOTO STATE UNIVERSITY , SOKOTO,

NIGERIA. ORCID NUMBER:0000-0002-0201-0064:

**DEPARTMENT OF MATHEMATICS, SOKOTO STATE UNIVERSITY , SOKOTO,
NIGERIA. ORCID NUMBER:0000-0002-0251-6495:

***DEPARTMENT OF MATHEMATICS, SOKOTO STATE UNIVERSITY , SOKOTO,

NIGERIA. ORCID NUMBER: 0000-0001-5908-7452:
****DEPARTMENT OF MATHEMATICS, SOKOTO STATE UNIVERSITY , SOKOTO,

NIGERIA. ORCID NUMBER:0000-0003-3223-9924:

Abstract. The importance of keeping information secret cannot be overem-

phasized especially in today,s digital world where eavesdroppers are rampant

in our chanels of communication. This made the use of strong encryption
schemes inevitable in order to safeguard the security of our system. RSA

cryptosystem and its variants have been designed to provide confidentiality

and integrity of data in our medium of communication. This paper reports
new short decryption exponent attack on prime power with modulus N = prq

for r ≥ 2 using continued fraction method which makes it vulnerable to Dio-

phantine attack and breaks the security of the cryptosystem by factoring the
modulus into its prime factors since the hardness relies on the integer factor-

ization problem. The paper also shows that if the short decryption exponent

d < 1√
2

√
N − 2

2r+1
r+1 N

r
r+1 , then one of the convergents k

d
can be found from

the continued fraction expansion of e

N−
⌈
2
2r+1
r+1 N

r
r+1

⌉ which leads to the suc-

cessful factorization of prime power modulus N = prq in polynomial time. The
second part of the paper presents new findings on simultaneous factorization

of t prime power with moduli Ns = prsqs for s = 1, . . . , t using simultaneous
Diophantine approximations and lattice basis reduction methods which pro-

duces the prime factors of the form (ps, qs) for s = 1, . . . , t in polynomial time

where solutions of four system of equations of the form esd − ksφ(Ns) = 1,
esds − kφ(Ns) = 1, esd− ksφ(Ns) = zs and esds − kφ(Ns) = zs are provided.
Our results increases the short decryption exponent bounds of some reported

works.
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1. INTRODUCTION

The RSA cryptosystem invented by Rivest, Shamir and Adleman is considered
to be the most widely used public key cryptosystem in today’s digital world, [1].
Since then it has being extensively used for many applications in government as
well as commercial domains which include e-banking, secure telephone, smart cards
and communications in different types of Networks [2].

The security of this cryptosystem relies on the integer factorization problem.
This cryptosystem has also many variants for computational efficiency. In this
paper, we will focus on one of the variants known as prime power RSA with modulus
N = prq for r ≥ 2. Fujioka et al. was the first to use the modulus N = p2q for
digital signature whose computational speed is faster than the original RSA scheme,
as reported in [3]. Also in 1998, Okamoto et al. proposed a public key cryptography
scheme whose security is considered to be as difficult as factoring an RSA modulus
of the form N = p2q, as reported [4].

This paper focuses on the first variant given as ed ≡ 1 (mod pr−1(p− 1)(q− 1))
Using the first prime power RSA variant, Takagi in 1999 proposed a fast CRT-RSA
variant with modulus N = prq which is considered to be less vulnerable to attacks

than the original RSA scheme, [5]. Takagi (1999) showed that when d < N
1

2(r+1)

for r ≥ 2, the modulus N = prq can be factored efficiently using lattice based
technique. May (2004), reported an improvement on the bound of Takagi, where
he showed that the modulus N = prq is insecure if the short secret exponent

d < N
max{ r

(r+1)2
,
(r−1)2

(r+1)2
}

using generalized Coppersmith’s method, as reported by
[6]. Also, Sarkar (2014) reported the used of small secret exponent attack on prime
power RSA with modulus N = p2q where he proved that the cryptosystem is
insecure if the decryption exponent bound d < N0.395, [7]. Furthermore, Lu et. al

(2015) improved May’s bound to d < N
r(r−1)

(r+1)2 by method of lattice construction,
[8]. In another result, Sarkar (2016) reported an improved bound of Lu et al. for
2 ≤ r ≤ 4, [9].

For the second variant of prime power modulus N = prq, Itoh et al. (2008)
showed that the prime factors of the prime power RSA modulus N = prq can be

found in polyomial time if the bound d < 2−
√
2

r+1 , [10].

Also, Blomer and May (2004) reported generalized Wiener’s attack using com-
bination of continued fraction and lattice basis reduction techniques which showed
that RSA modulus N = pq is insecure when there exist some unknown inte-
gers x, y, z such that equation ex − yφ(N) = z is satisfied where x < 1

3N
1
4 and

|z| < exN
−3
4 , [11]. In his work, Hinek (2007) proved that k instances of RSA mod-

uli Ni can be factored if d < Nγ for γ = k
2(k+1) − ε where ε is a small constant

determine based on the size of max{Ni}, as reported in [12].
In another development, Nitaj et al. (2014) presented two scenarios which

showed that k instances of RSA moduli Ni = piqi can be factored simultaneously in
polynomial time using simultaneous Diophantine approximation and LLL algorithm
, [13]. In the first scenario, they showed that if the equation eix−yiφ(Ni) is satisfied

where x < N δ, yi < N δ, |zi| < pi−qi
3(pi+qi)

yiN
1
4 for δ = k

2(k+1) , N = min{Ni} then k

RSA moduli can be factored simultaneously. For the second scenario, they proved
that k instances of RSA public key pairs (Ni, ei) satisfying eidi − yφ(Ni) = zi
for unknown integers xi, y, zi where x < Nδ, yi < Nδ, |zi| < pi−qi

3(pi+qi)
yiN

1
4 for
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δ = k(2α−1)
2(k+1) , N = min{Ni} and min{ei} = Nα. They used simultaneous Dio-

phantine approximations and lattice basis reduction techniques and finally use the
Coppersmith’s method to compute prime factors pi and qi of RSA moduli Ni in
polynomial time.

Furthermore, Shehu and Ariffin (2017) also presented a polynomial time attack
on j instances of prime power RSA with modulus Ni = pri qi using a good approxi-
mation of φ(N) in which they proved that for j, r ≥ 2 and given public key pairs
(Ni, ei) and N = min{Ni}, then equation eid− kiφ(Ni) = 1 can be satisfied only if

the unknown integer d < Nδ and j integers ki < Nδ where δ = j−γj
j+1 for 0 ≤ γ < 1,

as reported in [14]. Also using equation eidi−kφ(Ni) = 1, Shehu and Ariffin (2014)
showed that j prime power RSA modulus Ni = pri qi can be simultaneously factored
if the j integers di < Nδ and integer k < Nδ, N = min{Ni}, and min{ei} = Nβ

where δ = j(β−γ)
j+1 for γ < β < 1, [14].

The findings of this paper is reported in two parts. In the first part, we work
on the first variant of prime power modulus with equation of the form ed ≡ 1
(mod pr−1(p − 1)(q − 1)) using continued fraction method. Firstly, we construct

a lemma which gives approximation of φ(N) given by φ(N) > N−
⌈
2

2r+1
r+1 N

r
r+1

⌉
and

formulate a theorem which shows that if the secret exponent d < 1√
2

√
N − 2

2r+1
r+1 N

r
r+1 ,

then one of the convergents k
d can be found from the continued fraction expansion of

e

N−
⌈
2

2r+1
r+1 N

r
r+1

⌉ which leads to the factorization of prime power modulus N = prq

in polynomial time for r ≥ 2. The paper also gives numerical example to justify
how Theorem 3.2 works.

The second part of this paper presents cryptanalysis attacks of factoring t in-
stances of prime power moduli Ns = prsqs in which we show that the moduli can
be factored simultaneously using simultaneous Diophantine approximations and
lattice basis reduction techniques. We present four new attacks using system of
equations of the form esd − ksφ(Ns) = 1, esds − kφ(Ns) = 1, esd − ksφ(Ns) = zs
and esds − kφ(Ns) = zs for s = 1, . . . , t, for r ≥ 2 where the parameters d, ds,
k, ks, and zs are unknown positive integers. In all the presented attacks, we have
improved decryption exponent bound of some reported attacks.

The rest of the paper is organize as follows. In Section 2, we present review of
some basic definitions of the terms used such as continued fraction, lattice basis
reduction and some theorems that are related to our attacks. In Section 3 , we
present the proofs of our main results with lemma and theorems and their respective
numerical examples and finally in Section 4, we conclude the paper.

2. PRELIMINARIES

In this section, we present some basic definitions on continued fraction, lattice
basis reduction and some theorems on continued fraction, LLL and simultaneous
Diophantine approximations.

Definition 2.1. ( Continued fraction)The continued fraction of a real number x is
an expression of the form
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x = a0 +
1

a1 + 1
a2+

1
a3+...

This expression is often used in the form x = [a0, a1, a2, . . . , ]. Any rational
number a

b can be expressed as a finite continued fraction x = [a0, a1, a2....am]. For

i ≥ 0, we define the ith convergent of the continued fraction [a0, a1, a2, . . . , ] to be
[a0, a1, a2, . . . , ai]. Each convergent is a rational number.

Definition 2.2. Let ~b1, · · · ~bm ∈ Rn. The vectors b′is are said to be linearly depen-
dent if there exist x1, . . . , xm ∈ R, which are not all zero and such that

m∑
i

xibi = 0.

Otherwise, they are said to be linearly independent.

Definition 2.3. (Lenstra et al. 1982) Let n be a positive integer. A subset L of an
n-dimensional real vector space Rn is called a lattice if there exists a basis b1 . . . bn
on Rn suchthat L =

∑n
i=1Zbi =

∑n
i=1 ribi : ri ∈ Z, 1 ≤ i ≤ n.

In this situation, we say that b1 · · · bn are basis for L or that they span L, [15].

Definition 2.4. (LLL Reduction) [16] Let B = 〈b1 · · · bn〉 be a basis for a lattice L
and let B∗ = 〈b∗1 · · · b∗n〉 be the associated Gram- Schmidt orthogonal basis. Let

µi,j =
〈bi, b∗j 〉
〈b∗j , b∗j 〉

for 1 ≤ j < i.

The basis B is said to be LLL reduce if it satisfies the following two conditions:

(1) µi,j ≤ 1
2 , for 1 ≤ j < i ≤ n.

(2) 3
4 ||b
∗
i−1||2 ≤ ||b∗i + µi,i−1b

∗
i−1||2 for 1 ≤ i ≤ n. Equivalently, it can be

written as

||b∗i ||2 ≥ (
3

4
− µ2

i,i−1)||b∗i−1||2.

Theorem 2.1. If p1
q1
, p2q2 , . . . ,

pk
qk
, . . . are convergents of the simple continued frac-

tion [a1, a2, . . . , ak, . . .], then the numerators and denominators of these convergents
satisfy the following recursive relations:

p1 = a1, p2 = a2a1 + 1, pk = akpk−1 + pk−2,

q1 = 1, q2 = a2, qk = akqk−1 + qk−2,

for k ≥ 3, [17].

Theorem 2.2. Let α be an arbitrary real number. If the rational number p
q satisfies∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
,

then p
q must be a convergent of α.

Theorem 2.3. Let L be a lattice basis of dimension n having a basis v1 · · · vn.The
LLL algorithm produces a reduced basis b1 · · · bn satisfying the following condition

||b1|| ≤ ||b2|| ≤ · · · ≤ ||bj || ≤ 2
n(n−1)

4(n+1−j) det(L)
1

n+1−j

for all 1 ≤ j ≤ n, [15].
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Theorem 2.4. (Simultaneous Diophantine Approximations, [13]) Given any ra-
tional numbers of the form α1, . . . , αn and 0 < ε < 1, there is a polynomial time
algorithm to compute integers p1, . . . , pn and a positive integer q such that

max
i
|qαi − pi| < ε and q ≤ 2

n(n−3)
4 .3n.ε−n.

3. MAIN RESULTS

This section has two parts. The first part reports short decryption exponent
attack on prime power modulus N = prq using continued fraction method which
leads to the successful factorization of the modulus in polynomial time. In the
second part of the paper, we present cryptanalysis attacks using simultaneous Dio-
phantine approximations and lattice basis reduction methods in factoring t prime
power modulus Ns = prsqs using system of equations of the form esd−ksφ(Ns) = 1,
esds− kφ(Ns) = 1, esd− ksφ(Ns) = zs and esds− kφ(Ns) = zs for s = 1, . . . , t, for
r ≥ 2 where parameters d, ds, k, ks and zs are unknown positive integers.

3.1. Cryptanalytic Attack Through Analyzing Approximation of φ(N)

given by N −
⌈
2

2r+1
r+1 N

r
r+1

⌉
.

This section presents a lemma which shows that if q < p < 2q and the prime

power modulus N = prq, then φ(N) > N −
⌈
2

2r+1
r+1 N

r
r+1

⌉
where p and q are

distinct prime factors of the modulus N = prq, for r ≥ 2. The section also proves
a theorem which shows that the prime factors p and q can be recovered efficiently

if d < 1√
2

√
N − 2

2r+1
r+1 N

r
r+1 .

Lemma 3.1. Let p and q be prime numbers where p < q < 2p and N = prq for

r ≥ 2. If e < φ(N) and N
1

r+1 < p < 2
1

r+1N
1

r+1 , then φ(N) > N −
⌈
2

2r+1
r+1 N

r
r+1

⌉
.

Proof. Let N = prq and the condition q < p < 2p holds, then multiplying by pr

yields N
1

r+1 < p < 2
1

r+1N
1

r+1 .
Using φ(N) = pr−1(p− 1)(q − 1), gives the following

φ(N) = pr−1(p− 1)(q − 1)

= N − pr − pr−1q + pr−1

N − φ(N) = pr + pr−1q − pr−1

< pr + pr−1q.

Since q < p and p < 2
1

r+1N
1

r+1 , then we have

N − φ(N) < 2pr

< 2
2r+1
r+1 N

r
r+1 .

Hence φ(N) > N − 2
2r+1
r+1 N

r
r+1 . �

Theorem 3.2. Let p and q be prime numbers satisfying p < q < 2p and let N = prq
be prime power modulus where (N, e) and (N, d) are public and private keys pairs

respectively with e < φ(N). If the decryption exponent d < 1√
2

√
N − 2

2r+1
r+1 N

r
r+1 ,

then one of the convergents k
d can be found from the continued fraction expansion of
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e

N−
⌈
2

2r+1
r+1 N

r
r+1

⌉ which leads to the factorization of prime power modulus N = prq

for r ≥ 2 in polynomial time.

Proof. Observe

ed− kφ(N)

dφ(N)
=

e

φ(N)
− k

d

=
1

dφ(N)

> 0

Taking N −
⌈
2

2r+1
r+1 N

r
r+1

⌉
from Lemma 3.1 as approximation of φ(N) yields::

e

φ(N)
− k

d
=

e

N −
⌈
2

2r+1
r+1 N

r
r+1

⌉ − e

φ(N)
+

e

φ(N)
− k

d

=
e
(
N − φ(N)−

⌈
2

2r+1
r+1 N

r
r+1

⌉)
φ(N)(N −

⌈
2

2r+1
r+1 N

r
r+1

⌉
)

+
e

φ(N)
− k

d

Since N − φ(N) <
⌈
2

2r+1
r+1 N

r
r+1

⌉
, let

e

(
N−φ(N)−

⌈
2

2r+1
r+1 N

r
r+1

⌉)
φ(N)(N−

⌈
2

2r+1
r+1 N

r
r+1

⌉
)

= T < 0, then

=
e

φ(N)
− k

d
− T

<
e

φ(N)
− k

d

=
1

dφ(N)

<
1

φ(N)
.

It was shown from Lemma 3.1 that φ(N) > N − 2
2r+1
r+1 N

r
r+1 , this implies

1

φ(N)
<

1

N − 2
2r+1
r+1 N

r
r+1

Since d < 1√
2

√
N − 2

2r+1
r+1 N

r
r+1 , then

1

N − 2
2r+1
r+1 N

r
r+1

<
1

2d2
.

Hence, ∣∣∣∣ e

N − 2
2r+1
r+1 N

r
r+1

− k

d

∣∣∣∣ <
1

2d2
.

This shows that Theorem 3.2 produces k
d as one of the convergent of the continued

fraction expansion of e

N−2
2r+1
r+1 N

r
r+1

. This terminates the proof. �

The section also outlines below the algorithm to be followed in factoring the
prime power modulus N = prq for r ≥ 2.
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Algorithm 1 Theorem 3.2

1: Initialization: Input the size n and (e,N) satisfying Theorem 3.2.
2: Compute the continued fraction of e

N−
⌈
2

2r+1
r+1 N

r
r+1

⌉ for r ≥ 2

3: for each convergent k
d of e

N−
⌈
2

2r+1
r+1 N

r
r+1

⌉ do

4: φ(N) := ed−1
k .

5: pr−1 := gcd
(
N, ed−1k

)
6: end for
7: if 1 < pr−1 < N then
8: q := N

pr .

9: end if
10: return the private keys (p, q) .

Example 3.1. This example gives an illustration of how Theorem 3.2 works on
prime power modulus N = prq for r = 3.

Let N = 6467824680967991485093968594984906698452846918126619877544795476

4512899975949030092389431143550672950630682676159477346727505541

7769195369573715802340930197206294064847562258550047184856229657

624642567132668279698576503914916943223342223042619190115630551

e = 73911690643137255586285890252274214143777796475233050043697253070

5528100075149987700910725916512370037680964946694446080570622352

30891956543988833677211276168333624077420583009020578268295151250

34066183663278580767186726153429453492047380587411856008249.

Taking the continued fraction expansion of e

N−
⌈
2

2r+1
r+1 N

r
r+1

⌉ for r = 3, gives the fol-

lowing: [0, 87, 1, 1, 32, 1, 95, 1, 13, 1, 13, 1, 7, 2, 6, 2, 6, 2, 1, 2, 2, 4, 7, 580, 1, 22, 5, 3, 30, 1, 1, 3, 3,
1, 14, 12, 5, 2, 26, 2, 3, 2, 1, 1, 1, 1, 9, 1, 16, 4, 1, 2, 1, 1, 4, 5, 1, 1, 1, 32, 1, 76, 13, 1, 2, 1, 14,
1, 1, 22, 1, 5, 1, 40, 1, 5, 2, 2, 3, 1, 1, 4, 273, 3, 1, 40, 3, 15, 1, 3, 1, 10, 36, 1, 43, 1, 3, 2, 1, 1, 1,
4, 2, 2, 3, 3, 2, 3, 1, 2, 1, 10, 1, 10, 1, 1, 1, 1, 9, 1, 1, 5, 1, 4, 2, 1, 9, 10, 1, 6, 8, 2, 4, 4, 6, 1, . . . , ].
Then the convergent k

d is found from the continued fraction expansion of e

N−
⌈
2

2r+1
r+1 N

r
r+1

⌉
as

k

d
=

5283691555749297587344711786335

462362453808524086451896135480609
.

From Algorithm 1, we compute φ(N) = ed−1
k as follows:

φ(N) = 64678246809679914850939685949849066984528469181266198775447954734769

19313372348183843208998399569436036670863930678884295028399128045789

530812942035589777693967687689231460940380248219361255263103210104370

18161613390372921479673079645463655977965218274984.

Finally, from Algorithm 1 the following computations reveal the prime factors p
and q of the prime power modulus N = prq:
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pr−1 = gcd (N,φ(N))

p = 5684119572206954830995467120947108108574615439214643985219161027

q = N
p3

q = 3521831905037505963424663411629941658417389143836791215207878197.

From our result, one can observe that, this work yields d ≈ N0.1281 which is
greater than Shehu-Ariffin’s bound d ≈ N0.102, as reported in [14].

3.2. Cryptanalysis Attacks on t Prime Power With Moduli Ns = prsqs

Using N − 2
2r+1
r+1 N

r
r+1 as Approximation of φ(N).

This section presents four successful cryptanalysis attacks of factoring t prime
power with moduli Ns = prsqs using systems of equations esd − ksφ(Ns) = 1,
esds−kφ(Ns) = 1, esd−ksφ(Ns) = zs and esds−kφ(Ns) = zs where the parameter
φ(N) = N − (pr + pr−1q − pr−1) for r ≥ 2 and s = 1, . . . , t.

3.2.1. The Attack on t Prime Power Moduli Ns = prsqs Satisfying System of Equa-
tion esd− ksφ(Ns) = 1.

Taking t ≥ 2, let Ns = prsqs, for s = 1, . . . , t and r ≥ 2. The attack works for
t instances of the public key tuple (Ns, es) when there exists an integer d and t
integers ks satisfying equation esd − ksφ(Ns) = 1. It shows that t prime factors
ps and qs of t prime power with moduli Ns = prsqs for s = 1, . . . , t,,r ≥ 2 can be

found efficiently for N = max{Ns} and d < N%, ks < N%, for all % = t(1−β)
t+1 for

0 < β < 1. In this case, the instances (Ns, es) shared common decryption exponent
d.

Theorem 3.3. Let Ns = prsqs be prime power moduli for r ≥ 2, s = 1, · · · , t and
t ≥ 2. Let (Ns, es) be public key pair and (d,Ns) be private key pair with condition
es < φ(Ns) and the relation esd ≡ 1 mod φ(Ns) is satisfied. Let N = max{Ns}.
If there exists positive integers d < N%, ks < N%, for all % = t(1−β)

t+1 such that

equation esd − ksφ(Ns) = 1 holds, for 0 < β < 1, then t prime power moduli Ns
can successfully be factored in polynomial time for 1

4 ≤ % ≤
1
2 and 0 < β < 1.

Proof. For r, t ≥ 2 where Ns = prsqs is prime power moduli. Suppose that N =
max{Ns} and ks < N% for s = 1, . . . , t. Then equation esd − ksφ(Ns) = 1 can be
rewritten as follows:

esd− ks(Ns − (Ns − φ(N)s)) = 1.

Let 4 = 2
2r+1
r+1 N

r
r+1

esd− ks (Ns −4+4− (Ns − φ(Ns))) = 1∣∣∣∣ es
N −4

d− ks
∣∣∣∣ =
|1− ks(Ns − φ(Ns)−4)|

Ns −4
. (3.1)

Since N = max{Ns} and ks < N%
s , d < N% be positive integers. Observe

|Ns − φ(Ns)−4| < Nβ
s < Nβ
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for β ∈ (0, 1) and

Ns −4 >
1

r + 2
N,

then plugging into equation (3.1) gives∣∣∣∣1− ks(Ns − φ(Ns)−4)

Ns −4

∣∣∣∣ < |1 + ks(Ns − φ(Ns)−4)|
Ns −4

<
1 +N%(Nβ)

1
r+2N

=
r + 2(1 +N%+β)

N

<
√

2rN%+β−1.

Then, it follows that ∣∣∣∣ es
Ns −4

d− ks
∣∣∣∣ <

√
2rN%+β−1.

We proceed to show the existence of integer d and t integers ks. Let ε =
√

2rN%+β−1,

with % = t(1−β)
t+1 . Then it gives

N%εt = N%
(√

2rN%+β−1
)t

= (2r)
t
2 N%+%t+βt−t = (2r)

t
2 .

Following Theorem 2.4, (2r)
t
2 < 2

t(t−3)
4 · 3t for t, r ≥ 3, then N%εt < 2

t(t−3)
4 · 3t. It

follows that since d < N% then d < 2
t(t−3)

4 · 3t · ε−t for s = 1, · · · , t, yields∣∣∣∣ es
Ns −4

d− ks
∣∣∣∣ < ε.

This clearly satisfies the conditions of Theorem 2.4, and proceeds to reveal the
private key d and t integers ks for s = 1, . . . , t. Next, from esd − ksφ(Ns) = 1 we
perform the following computations:

φ(Ns) =
esd− 1

ks

pr−1s = gcd(φ(Ns), Ns)

qs =
Ns
prs
.

Finally, the prime factors ps and qs can be revealed which leads to the factorization
of t prime power moduli Ns for s = 1, · · · , t in polynomial time. �

Let

X1 =
e1

N1 − 2
2r+1
r+1 N

r
r+1

1

,

X2 =
e2

N2 − 2
2r+1
r+1 N

r
r+1

2

,

X3 =
e3

N3 − 2
2r+1
r+1 N

r
r+1

3

.

Define,

T = [3t+1 × 2
(t+1)(t−4)

4 × ε−t−1].
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Consider the lattice L spanned by the matrix,

M =


1 −[T (X1)] −[T (X2)] −[T ×X3]

0 T 0 0

0 0 T 0

0 0 0 T


Taking r ≥ 2, the matrix M can be used in computing the reduced basis after
applying the LLL algorithm.

Algorithm 2 Theorem 3.3

1: Initialization: The public key tuple (Ns, es, %, β) satisfying Theorem 3.3.
2: Choose r ≥ 2 and N = max{Ns} for s = 1, . . . , t.
3: for any (r,N, %, β) do

4: ε :=
√

2rN%+β−1

5: T = [3t+1 × 2
(t+1)(t−4)

4 × ε−t−1] for t ≥ 2.
6: end for
7: Consider the lattice L spanned by the matrix M as stated above.
8: Applying the LLL algorithm to L yields the reduced basis matrix K.
9: for any (M,K) do

10: J := M−1

11: Q = JK.
12: end for
13: Produce d, ks from Q
14: for each triplet (d, ks, es) do
15: φ(Ns) := esd−1

ks

16: pr−1s := gcd(φ(Ns), Ns).
17: qs := Ns

prs
18: end for
19: return the prime factors (ps, qs).

Example 3.2. This example gives an illustration of how Theorem 3.3 works on 3
prime power moduli also their corresponding public exponents:
Let N1 = 563382281374803858489382903716443474446580306437566005728878179
267676092551665191432331661132041057581935108036853538725342976031062566
064493977301796320064579931954653

N2 = 1107801608689388607908020314275395456891637713924780000534249617
140001335413025467235568243203922733387749142234285602245999359726144181
863789668190983522850626483669023

N3 = 9654013301685016055400506098375594830137130427693056264836899674
069160933238013628743471068194753666107834756424555627523960922969439392
11051267861006991380940921618139

e1 = 16764458147751748810556293131530021884042990680920812662235184222
412584386285442254876550471043222816261798853928202440252160827176635480
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7379374060611402592786734677161

e2 = 46315246118060854234591247117247522105087920085609401490448821248
150485833350212292332828566638083188341508684445351764219211533501687950
3086688812611607958721881159677

e3 = 41767933005026254973096790277305670676920459090792054979090531316
476588371879849877872939920171606752882950570359186955894106589500439562
792307841833725917421212937261

Observe that N = max{N1, N2, N3}

N = 11078016086893886079080203142753954568916377139247800005342496171
400013354130254672355682432039227333877491422342856022459993597261441818
63789668190983522850626483669023.

Using Algorithm 2 for t = 3 r = 3 and β = 0.75 gives % = t(1−β)
t+1 = 0.1875 and

ε =
√

2rN%+β−1 = 9.111089161× 10−39.
Applying Theorem 2.4 and using Algorithm 2 for n = t = 3, we compute

T = [3t+1 · 2
(t+1)(t−4)

4 · ε−t−1

T = 1154165320000000000000000000000000000000000
Consider the lattice L spanned by the matrix,

M =


1 −[T (X1)] −[T (X2)] −[T ×X3]

0 T 0 0

0 0 T 0

0 0 0 T


Therefore, by applying the LLL algorithm to L, it yields the reduced basis with the
following matrix

K =


A11 A12 A13 A14

B11 B12 B13 B14

C11 C12 C13 C14

D11 D12 D13 D14


where

A11 = 7770294469564621426285729048713, A12 = −11866076834029234002241236377582
A13 = −32633775130445983893911306068132, A14 = −3328082490144200863069292352913
B11 = 18663562246576439716517789824933, B12 = 15048857017191042713184735691338
B13 = 10286010869239647472878709783788, B14 = 18549844424135999309545228522867
C11 = −17095263517456624755229311937397, C12 = −1750544855365507798774316440042
C13 = −3457459628216362153472612722092, C14 = 25713796499666717792079771007197
D11 = −11796372669551527880579978498483, D12 = 49475532903151632120923767998362
D13 = −3506878085541730219207678001588, D14 = 2579429578946966788750278220683.
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Next, from Algorithm 2, we compute Q = KJ ,

Q =


E11 E12 E13 E14

F21 F22 F23 F24

G31 G32 G33 G34

H41 H24 H43 H44


where
E11 = 7770294469564621426285729048713, E12 = 2312191574659429845702482436055
E13 = 3248624103312694525051599010754, E14 = 336180538281891705775592037701
F21 = 18663562246576439716517789824933, F22 = 5553680307573184886408327739349
F23 = 7802908680667061550845174371910, F24 = 807476013539447921932253556384
G31 = −17095263517456624755229311937397, G32 = −5087004672277331272333963880373
G33 = −7147230434164420892985948873697, G34 = −739623821707154665925571172837
H41 = −11796372669551527880579978498483, H42 = −3510223918142974267040005409244
H43 = −4931856924607830680600230836138, H44 = 510368162925726525039096348715.

From the second row of the matrix Q, it yields the values for d, k1, k2 and k3 as
follows:

d = 18663562246576439716517789824933, k1 = 5553680307573184886408327739349
k2 = 7802908680667061550845174371910, k3 = 807476013539447921932253556384.

Using Algorithm 2, φ(Ns) = esd−1
ks

for s = 1, 2, 3 can be computed as follows,

φ(N1) = 5633822813748038584893829037164434744465782155701645149991994
356443759551568355864223530483724579125013595134403585635257661391033125
76827433249968405344191335088982588

φ(N2) = 1107801608689388607908020314275395456891635042012854891240545
862148617356725153462170062810236431892835802535487477427440668918578671
114561643302523968636342406392082904

φ(N3) = 9654013301685016055400506098375594830137106311177123492452313
119418214171537111121456291483851298457821141362575639293601436535938050
40382205965865042430321233447659168.

Next, from Algorithm 2, pr−1s for s = 1, 2, 3 and r = 3 can be computed as
follows,

p1 = 1172087672819698576140295693798879515111959

p2 = 1205801981963990013436312155116150241125443

p3 = 1165539406118780488715861651907300862321907.

Finally, from Algorithm 2, qs for s = 1, 2, 3 can be computed as follows,

q1 = 349883038156174349555037833667162924726907

q2 = 631879129745772702497880264093194679122189

q3 = 609715181679983501366253856456455327579473.
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This shows the factorization of 3 prime power moduli Ns = prsqs for s = 1, 2, 3
and r = 3 in polynomial time. One can also observe that , our work yield d ≈
N0.18608 which is greater than d ≈ N0.1857, as reported in [14]. This shows that
Shehu and Ariffin’s attack can not yield the factorization of t prime power moduli
in our case.

3.2.2. The Attack on t Prime Power Moduli Ns = prsqs Satisfying System of Equa-
tion esds − kφ(Ns) = 1.

This section considers second case in which t prime power moduli satisfies equa-
tions of the form esds − kφ(Ns) = 1 for unknown positive integers ds and k for
s = 1, . . . , t. In this case, every pair of the instances (Ns, es) has its own unique
decryption exponent ds.

Theorem 3.4. Let Ns = prsqs be prime power moduli where ps and qs are prime
numbers for s = 1, . . . , t, r, t ≥ 2. Let (es, Ns) be public key pair and (ds, Ns)
be private key pair with es < φ(Ns) and the relation esds ≡ 1 mod φ(Ns) is
satisfied. Let e = min{es} = Nα be public exponent. If there exists t integers

ds < N% and integer k < N%, for all % = t(α−β)
t+1 such that esds − kφ(Ns) = 1

holds, then prime factors ps and qs of t prime power moduli Ns can be successfully
recovered in polynomial time for 0 < % ≤ 1

2 , 0 < β < 1 and β < α < 1.

Proof. For r, t ≥ 2 and Ns = prsqs, be t prime power moduli e = min{es} = Nα

be public exponent for s = 1, . . . t and suppose that ds < N%. Then equation
esds − kφ(Ns) = 1 can be transformed into

esds − k(Ns − (Ns − φ(Ns))) = 1

Let 4 = 2
2r+1
r+1 N

r
r+1
s

esds − k(Ns −4+4− (Ns − φ(Ns))) = 1

esds − k(Ns −4) = 1− k(Ns − φ(Ns)−4)∣∣∣∣k (Ns −4)

es
− ds

∣∣∣∣ =
|1− k (Ns − φ(Ns)−4)|

es
.

Since N = max{Ns} and ds < N%, k < N% are positive integers. Observe

Ns − φ(Ns)−4 < Nβ
s < Nβ

for β ∈ (0, 1). Since also e = min{es} = Nα, for s = 1, · · · , t then it gives

|1− k (Ns − φ(Ns)−4)|
es

≤ |1 + k (Ns − φ(Ns)−4)|
es

<
1 +N%(Nβ)

Nα

=
1 +N%+β

Nα

<
√
rN%+β−α.

Hence, ∣∣∣∣k (Ns −4)

es
− ds

∣∣∣∣ < √rN%+β−α.
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We proceed to show the existence of integer k and t integers ds. Taking ε =√
rN%+β−α and % = t(α−β)

t+1 . Then it gives

N%εt = N%
(√
rN%+β−α)t = (

√
r)tN%+%t+βt−αt = r

t
2 .

Following Theorem 2.4, r
t
2 < 2

t(t−3)
4 ·3t for r, t ≥ 2, then it gives N%εt < 2

t(t−3)
4 ·3t.

It follows that if k < N% then k < 2
t(t−3)

4 · 3t · ε−t for s = 1, . . . , t, yields∣∣∣∣k (Ns −4)

es
− ds

∣∣∣∣ < ε.

This clearly satisfies the conditions of Theorem 2.4, and proceeds to reveal the
private keys k and t integers ds for s = 1, . . . , t. Next from esds − kφ(Ns) = 1 we
make the following computations :

φ(Ns) =
esds − 1

k

pr−1s = gcd(φ(Ns), Ns)

qs =
Ns
prs
.

Finally, the prime factors ps and qs can be revealed which lead to the factorization
of t prime power moduli Ns for s = 1, . . . , t and r ≥ 2. �

Let

X1 =
N1 − 2

2r+1
r+1 N

r
r+1

1

e1

X2 =
N2 − 2

2r+1
r+1 N

r
r+1

2

e2

X3 =
N3 − 2

2r+1
r+1 N

r
r+1

3

e3
.

Define,

T = [3t+1 × 2
(t+1)(t−4)

4 × ε−t−1].

Consider the lattice L spanned by the matrix,

M =


1 −[T (X1)] −[T (X2)] −[T (X3)]

0 T 0 0

0 0 T 0

0 0 0 T


Taking r ≥ 2, the matrix M can be used in computing the reduced basis after
applying the LLL algorithm



DIOPHANTINE ATTACK ON PRIME POWER WITH MODULUS N = prq 117

Algorithm 3 Theorem 3.4

1: Initialization: The public key tuple (Ns, es, α, β, %) satisfying Theorem 3.4.
2: Choose r ≥ 2 and N = max{Ns} for s = 1, . . . , t.
3: for any (r,N, α, β, %) do
4: ε =

√
rN%+β−α

5: e =: min{es} := Nα

6: T = [3t+1 × 2
(t+1)(t−4)

4 × ε−t−1] for t ≥ 2.
7: end for
8: Consider the lattice L spanned by the matrix M as stated above.
9: Applying the LLL algorithm to L yields the reduced basis matrix K.

10: for any (M,K) do
11: J := M−1

12: Q = JK.
13: end for
14: Produce ds, k from Q
15: for each triplet (ds, k, es) do
16: φ(Ns) := esds−1

k

17: pr−1s := gcd(φ(Ns), Ns).
18: qs := Ns

prs
19: end for
20: return the prime factors (ps, qs).

Example 3.3. This example gives an illustration of how Theorem 3.4 works on 3
prime power moduli and their corresponding public exponents:

N1 = 2307524307670130722498876842939107188370400400713992482838666369151434

45411611467379

N2 = 434991743050236060915996189147523264755865914949477613614468188806740

952003913552583

N3 = 980914643623371382312729458097187264388503427621447777571718784533143

406738292636683

e1 = 62904914881055994984178504976156821570002622680726423145736325680212

648863937888039

e2 = 265035571511591897022174737291070924314658140619585199620247165205557

379598308572799

e3 = 424302253973827276427319770823031080967261427337097513012296323366084

850555293675453.

Observe

N = max{N1, N2, N3} = 9809146436233713823127294580971872643885034276214477775717187

84533143406738292636683

e = min{e1, e2, e3} = 62904914881055994984178504976156821570002622680726423145736

325680212648863937888039
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with e = min{e1, e2, e3} = Nα for α = 0.9857968390. Taking t = 3, β = 0.75 it

gives % = t(α−β)
t+1 = 0.1768476292 and ε = 0.00001937850804.

Applying Theorem 2.4 and using Algorithm 3, we compute

T = [3t+1 · 2
(t+1)(t−4)

4 · ε−t−1] = 287192882900000000000.

Consider the lattice L spanned by the matrix,

M =


1 −[T (X1)] −[T (X2)] −[T (X3)]

0 T 0 0

0 0 T 0

0 0 0 T


Therefore, by applying the LLL algorithm to L, it yields the reduced basis with the
following matrix

K =


−64528041013590 22316660983540 −14660675253070 −23287047712390

−833898253680997 −1831141920267418 −628510813959081 1059071291894963

509570466489060 −4655727886202360 −481050100124620 −5658983802111740

5843566312885470 3758022552321180 −17342920355447690 −1610120341214130


Next, from Algorithm 3, we compute Q = KJ ,

Q =


−64528041013590 −236706501307159 −105907161352079 −149177855554037

−833898253680997 −3058966845644782 −1368642151792744 −1927830928699482

509570466489060 1869243826365026 836336587427863 1178040248091503

5843566312885470 21435799310693196 9590799761610551 13509331410827634


From the first row of matrix Q, it yields the values for k, d1, d2 and d3 as follows:

k = 64528041013590, d1 = 236706501307159,

d2 = 105907161352079, d3 = 149177855554037.

Using Algorithm 3, φ(Ns) = esds−1
k for s = 1, 2, 3 can be computed as follows,

φ(N1) = 23075243076701307224877654326747005767745347248898869640

1562070407244760015236527680

φ(N2) = 4349917430502360609149739400310310943655109837893928735

71099791027040771533822542568

φ(N3) = 9809146436233713823107593251565022080188392973725819800

30651478359865012354849827664.

Next, from Algorithm 3, pr−1s for s = 1, 2, 3 and r = 3 can be computed as follows,

p1 = 954408180105791988011, p2 = 770755872323270534549,

p3 = 994602670246108900363.

Finally, from Algorithm 3, qs for s = 1, 2, 3 can be computed as follows,

q1 = 265426222155632917409, q2 = 950015052524020374467,

q3 = 996970609016663314889.
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This shows the factorization of 3 prime power moduli Ns = prsqs for s =
1, 2, 3 and r = 3 in polynomial time. Also, one can observe that our work yield
min(d1, d2, d3) ≈ N0.1669 which is greater than d ≈ N0.1319, as reported in [14].
This shows that Shehu and Ariffin’s attack can not yield the factorization of t
prime power moduli in this case.

3.2.3. The Attack on t Prime Power Moduli Ns = prsqs Satisfying System of Equa-
tion esd− ksφ(Ns) = zs.

This section considers another case in which t prime power moduli satisfies equa-
tions of the form esd − ksφ(Ns) = zs for unknown positive integers d, ks, and zs
for s = 1, . . . , t.
Taking r ≥ 2, let Ns = prsqs, s = 1, . . . , t. The attack works for t instances
(Ns, es) when there exists integer d and t integers ks such that esd− ksφ(Ns) = zs
is satisfied. The attack shows that t prime factors ps and qs of t prime power
moduli Ns = prsqs for s = 1, ..., t can be found efficiently for N = max{Ns} and

d < N%, ks < N%, zs < N%, for all % = t(1−β)
t+1 for 0 < % ≤ 1

2 and o < β < 1. In

this case, the instances (Ns, es) shared common decryption exponent d.

Theorem 3.5. Let Ns = prsqs be t prime power moduli for r ≥ 2 where ps and
qs are prime numbers for s = 1 . . . , t. Let (es, Ns) be public key pair and (d,Ns)
be private key pair with condition es < φ(Ns) and relation esd ≡ zs mod φ(Ns)
is satisfied. Let N = max{Ns}. If there exists positive integer d < N%, t integers

ks < N% and zs < N%, for all % = t(1−β)
t+1 such that equation esd − ksφ(Ns) = zs

holds, then prime factors ps and qs of t prime power moduli Ns can be successfully
recovered in polynomial time for 0 < % ≤ 1

2 and o < β < 1.

Proof. Suppose Ns = prsqs be t prime power moduli, N = max{Ns} and ks < N%

for r ≥ 2 and s = 1, . . . , t. Then equation esd− ksφ(Ns) = zs can be rewritten as:

esd− ks(Ns − (Ns − φ(Ns)) = zs.

Let 4 = 2
2r+1
r+1 N

r
r+1
s

esd− ks (Ns −4+4− (Ns − φ(Ns))) = zs

esd− ks(Ns −4) = zs − ks(Ns − φ(NS)−4)

∣∣∣∣ es
Ns −4

d− ks
∣∣∣∣ =
|zs − ks(Ns − φ(NS)−4)|

Ns −4
. (3.2)

Since N = max{NS} and ks < N%, zs < N% are positive integers. Observe

|Ns − φ(NS)−4| < Nβ
s < Nβ

Ns −4 >

√
r + 1

r
N
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for β ∈ (0, 1). Then plugging the conditions into equation (3.2) yields

|zs − ks(Ns − φ(NS)−4)|
Ns −4

≤ |zs + ks(Ns − φ(NS)−4)|
Ns −4

<
N% +N%(Nβ)

√
r+1
r N

=
r(N% +N%+β)√

r + 1N

<
√

2r + 1N%+β−1.

Hence, ∣∣∣∣ es
Ns −4

d− ks
∣∣∣∣ < √2r + 1N%+β−1.

We proceed to show the existence of an integer d, let ε =
√

2r + 1N%+β−1, for

% = t(1−β)
t+1 . Then it gives

N%εt = N%
(√

2r + 1N%+β−1)t =
(√

2r + 1
)t
N%+%t+βt−t = (2r + 1)

t
2 .

Following Theorem 2.4, (2r + 1)
t
2 < 2

t(t−3)
4 · 3t for r, t ≥ 2, then it gives N%εt <

2
t(t−3)

4 ·3t. It follows that if d < N%, then d < 2
t(t−3)

4 ·3t · ε−t for s = 1, . . . , t, yields∣∣∣∣ es
Ns −4

d− ks
∣∣∣∣ < ε.

This clearly satisfies the conditions of Theorem 2.4, and proceeds to reveal the
private key d and t integers ks for s = 1, . . . , t. Next, from esd− ksφ(Ns) = zs, we
make the following computations:

φ(Ns) =
esd− zs
ks

pr−1s = gcd(φ(Ns), Ns)

qs =
Ns
prs
.

Finally, the prime factors ps and qs can be revealed which lead to the factorization
of t prime power moduli Ns = prsqs for r ≥ 2 and s = 1, . . . , t in polynomial
time. �

Let

X1 =
e1

N1 − 2
2r+1
r+1 N

r
r+1

1

, X2 =
e2

N2 − 2
2r+1
r+1 N

r
r+1

2

,

X3 =
e3

N3 − 2
2r+1
r+1 N

r
r+1

3

.

Define,

T = [3t+1 × 2
(t+1)(t−4)

4 × ε−t−1].

Consider the lattice L spanned by the matrix,
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M =


1 −[T (X1)] −[T (X2)] −[T ×X3]

0 T 0 0

0 0 T 0

0 0 0 T


Taking r ≥ 2, the matrix M can be used in computing the reduced basis after
applying the LLL algorithm.

Algorithm 4 Theorem 3.5

1: Initialization: The public key tuple (Ns, es, %, β) satisfying Theorem 3.5.
2: Choose r ≥ 2 and N = max{Ns} for s = 1, . . . , t.
3: for any (r,N, %, β) do
4: ε :=

√
2r + 1N%+β−1

5: T = [3t+1 × 2
(t+1)(t−4)

4 × ε−t−1] for t ≥ 2.
6: end for
7: Consider the lattice L spanned by the matrix M as stated above.
8: Applying the LLL algorithm to L yields the reduced basis matrix K.
9: for any (M,K) do

10: J := M−1

11: Q = JK.
12: end for
13: Produce d, ks from Q
14: for each tuple (d, ks, es, zs) do
15: φ(Ns) := esd−zs

ks

16: pr−1s := gcd(φ(Ns), Ns).
17: qs := Ns

prs
18: end for
19: return the prime factors (ps, qs).

Example 3.4. This example gives an illustration of how Theorem 3.5 works on 3
prime power moduli and their corresponding public exponents:

Let N1 = 5525890830792963955829635376372589877105029843972435328080

96725056837793945542263311852509300451

N2 = 409009336956200004848526206159753677602922864786417839660

443537581155477440303212646889912922681

N3 = 1856599915884947721902864900852488867958645847203065789382

29732631116403569017708089856336697379

e1 = 535660672991610223946156685795497788662147614731651359062338

800947852331357924924200110870181597

e2 = 39814664618572247441461535731683170237273038362112873671207

7969303212977619132096891312620129374

e3 = 20945136845011188204703189941036359552207329716772570248911

704906472236104028384132724576188013.
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Observe N = max{N1, N2, N3}

N = 55258908307929639558296353763725898771050298439724353280809

6725056837793945542263311852509300451.

Using Algorithm 4 for t = 3 r = 3 and β = 0.75 gives % = t(1−β)
t+1 = 0.1875 and

ε =
√

7Nγ+β−1 = 0.000002745673398.
Applying Theorem 2.4 and using Algorithm 4 for n = t = 3, we compute

T = [3t+1 · 2
(t+1)(t−4)

4 · ε−t−1] = 712622481500000000000000.

Consider the lattice L spanned by the matrix,

M =


1 −[T (X1)] −[T (X2)] −[T ×X3]

0 T 0 0

0 0 T 0

0 0 0 T


Therefore, by applying the LLL algorithm to L, it yields the reduced basis with the
following matrix

K =


240575049922396781 45168467894653961 −38707598398094518 195092642719432714

−151248559543325924 −488046878955018644 707575095426884472 620320224274381944

−574956937086078187 491431650385399953 −786566357699210214209783791280367322

−89655203762229785 −1063060408191942085−430492105618860770168843844246479710


Next, from Algorithm 4, we compute Q = KJ ,

Q =


240575049922396781 233205101389831407 234185727874526165 27140351020204693

−151248559543325924−146615102749620456−147231618648953995−17063028766409243

−574956937086078187−557343294124629361−559686920366201207−64863472330366436

−89655203762229785 −86908641981956074 −87274092461248535 −10114405885730059


From the first row of matrix Q, it yields the values for k, d1, d2 and d3 as

follows:

d = 240575049922396781, k1 = 233205101389831407,

k2 = 234185727874526165, k3 = 27140351020204693.

Using Algorithm 4, φ(Ns) = esd−zs
ks

for s = 1, 2, 3 can be computed as follows,
where z1, z2, z3 are :

z1 = 12594844191468409, z2 = 7690976311642434, z3 = 18446004731332273

φ(N1) = 5525890830792963955829616358238193471847011236132861263613349

90579765661347407538020846597914464

φ(N2) = 4090093369562000048485248259766212750303796455582890471317695

73374160014405441556077741716001204

φ(N3) = 1856599915884947721902855514033279681481441962537377493683119

56715037950804743239281977597971160.
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Next, from Algorithm 4, pr−1s for s = 1, 2, 3 and r = 3 can be computed as
follows,

p1 = 1121052815618170503691307, p2 = 988706976202053289655339,

p3 = 901538558587875149528599.

Finally, from Algorithm 4, qs for s = 1, 2, 3 can be computed as follows,

q1 = 392214892049653107897457, q2 = 423185157151460671796099,

q3 = 253375960517480945644421.

This shows the factorization of 3 prime power moduli Ns = prsqs simultaneously
for r ≥ 2 and s = 1, . . . , t. From our result, one can also observe that our work
yields d ≈ N0.18154. The equation esd−ksφ(Ns) = zs is a generalization of equation
eid− kiφ(Ni) = 1, as reported in [14].

3.2.4. The Attack on t Prime Power Moduli Ns = prsqs Satisfying System of Equa-
tion esds − kφ(Ns) = zs.

This section presents another cryptanalysis attack in which t prime power moduli
Ns = prsqs satisfies equations of the form esds − kφ(Ns) = zs for unknown positive
integers ds, k, and zs for s = 1, . . . , t and r ≥ 2 which can be simultaneously
factored in polynomial time. In this case, every pair of the instances (Ns, es) has
its own unique decryption exponent ds.

Theorem 3.6. Let Ns = prsqs be t prime power moduli where ps and qs are prime
numbers for s = 1, . . . , t and t ≥ 3. Let (es, Ns) be public key pair and (ds, Ns) be
private key pair with es < φ(Ns) and relation esds ≡ zs mod φ(Ns) is satisfied.
Let e = min{es} = Nα be public exponent. If there exists positive t integers ds <

N%, integer k < N% and t integers zs < N%, for all % = t(α−β)
t+1 such that equation

esds − kφ(Ns) = zs holds, then prime factors ps and qs of t prime power moduli
Ns = prsqs for Ns and r ≥ 2 can be successfully recovered in polynomial time for
0 < % ≤ 1

2 , 0 < β < 1 and β < α < 1.

Proof. Suppose Ns = prsqs be t prime power moduli and e = min{es} = Nα be
public exponent for s = 1, . . . t and suppose that ds < N%, for r ≥ 2 and t ≥ 3.
Then equation esds − kφ(Ns) = zs can be rewritten as

esds − k(Ns − (Ns − φ(Ns))) = zs.

Let 4 = 2
2r+1
r+1 N

r
r+1
s

esds − k(Ns −4+4− (Ns − φ(Ns))) = zs

esds − k (Ns −4) = zs − k(Ns − φ(Ns)−4)∣∣∣∣k (Ns −4)

es
− ds

∣∣∣∣ =
|zs − k(Ns − φ(Ns)−4)|

es
.

Since N = max{Ns} and ds < N%, k < N%, zs < N%. Observe

|Ns − φ(Ns)−4| < Nβ
s < Nβ

for β ∈ (0, 1). Also since e = min{es} = Nα, for s = 1, . . . t then it gives
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|zs − k(Ns − φ(Ns)−4)|
es

≤|zs + k(Ns − φ(Ns)−4)|
es

<
N% +N%(Nβ)

Nα

=
N% +N%+β

Nα

<
√
r + 2N%+β−α.

Hence, ∣∣∣∣k (Ns −4)

es
− ds

∣∣∣∣ < √r + 2N%+β−α.

We proceed to show the existence of integer k and t integers ds. Let ε =
√
r + 2N%+β−α

and % = t(α−β)
t+1 . Then it gives

N%εt = N%
(√
r + 2N%+β−α)t = (

√
r + 2)tN%+βt−αt = (r + 2)

t
2 .

Following Theorem 2.4, (r + 2)
t
2 < 2

t(t−3)
4 · 3t for r, t ≥ 2, then N%εt < 2

t(t−3)
4 · 3t.

It follows that if k < N% then k < 2
t(t−3)

4 · 3t · ε−t for s = 1, . . . , t, yields∣∣∣∣k (Ns −4)

es
− ds

∣∣∣∣ < ε.

This clearly satisfies the conditions of Theorem 2.4, and proceeds to reveal the
private keys t integers ds and k for s = 1, . . . , t. Next, from esds − kφ(Ns) = zs we
make the following computations:

φ(Ns) =
esds − zs

k

pr−1s = gcd(φ(Ns), Ns)

qs =
Ns
prs
.

Finally, the prime factors ps and qs can be revealed which lead to the factorization
of t prime power moduli Ns for s = 1, · · · , t in polynomial time. �

Let

X1 =
(N1 − 2

2r+1
r+1 N

r
r+1

1 ) + 1

e1
, X2 =

(N2 − 2
2r+1
r+1 N

r
r+1

2 ) + 1

e2
, X3 =

(N3 − 2
2r+1
r+1 N

r
r+1

3 ) + 1

e3
.

Define,

T = [3t+1 × 2
(t+1)(t−4)

4 × ε−t−1].

Consider the lattice L spanned by the matrix,

M =


1 −[T (X1)] −[T (X2)] −[T (X3)]

0 T 0 0

0 0 T 0

0 0 0 T


Taking r ≥ 2, the matrix M can be used in computing the reduced basis after
applying the LLL algorithm
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Algorithm 5 Theorem 3.6

1: Initialization: The public key tuple (Ns, es, α, β, %) satisfying Theorem 3.6.
2: Choose r ≥ 2 and N = max{Ns} for s = 1, . . . , t.
3: for any (r,N, α, β, %) do
4: ε =

√
r + 2N%+β−α

5: e =: min{es} := Nα

6: T = [3t+1 × 2
(t+1)(t−4)

4 × ε−t−1] for t ≥ 2.
7: end for
8: Consider the lattice L spanned by the matrix M as stated above.
9: Applying the LLL algorithm to L yields the reduced basis matrix K.

10: for any (M,K) do
11: J := M−1

12: Q = JK.
13: end for
14: Produce ds, k from Q
15: for each triplet (ds, k, es, zs) do
16: φ(Ns) := esds−zs

k

17: pr−1s := gcd(φ(Ns), Ns).
18: qs := Ns

prs
19: end for
20: return the prime factors (ps, qs).

Example 3.5. This example gives an illustration of how Theorem 3.6 works on 3
prime power moduli and their corresponding public exponents:

N1 = 118206700499027973555226065271614027133355822416165333781707131772561

895107920252379

N2 = 1531872675863933704937871257817812503603379715206904363401447389746

44921936384902153

N3 = 924899290347826697102573577323286044355305745566432529788292084959

590562885708269169

e1 = 94472170189652409334810337024409313700966097954777781302492419150

324241356533223123

e2 = 925995466598943224506439532320239713941284965387703819238402532

25802616168922466797

e3 = 62982869619724355834375582908978776341707025327451907660592240

8153811221100854704887.

Observe

N = max{N1, N2, N3} = 92489929034782669710257357732328604435530574556643

2529788292084959590562885708269169

e = min{e1, e2, e3} = 9259954665989432245064395323202397139412849653877038

1923840253225802616168922466797
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with e = min{e1, e2, e3} = Nα for α = 0.9880965575. Taking t = 3, β = 0.75 it

gives % = t(α−β)
t+1 = 0.1785724181,ε = 0.00002246340004 .

Applying Theorem 2.4 and using Algorithm 5, we compute

C = [3t+1 · 2
(t+1)(t−4)

4 · ε−t−1] = 159057099200000000000.

Consider the lattice L spanned by the matrix,

M =


1 −[T (X1)] −[T (X2)] −[T (X3)]

0 T 0 0

0 0 T 0

0 0 0 T


Therefore, by applying the LLL algorithm to L, it yields the reduced basis with the
following matrix

K =


−192479622515690 −477895645520 −115255751942450 123625906116600

300578256728925 1229934560231400 −602650460625375 38597963550500

−1282731106006613 354397216043096 −475121843615865 −2396325179490180

1337229767906843 −1481780789001256 −3446686105094985 −1015254431182020


Next, from Algorithm 5, we compute Q = KJ ,

Q =


−192479622515690 −240836862805235 −318418701848887 −282655057392665

300578256728925 376093445279694 497246082783771 441397189459762

−1282731106006613 −1604995538518056 −2122019818292808 −1883682177099557

1337229767906843 1673186064806441 2212176859064010 1963713103001738


From the first row of matrix Q, it yields the values for k, d1, d2 and d3 as follows:

k = 192479622515690, d1 = 240836862805235,

d2 = 318418701848887, d3 = 282655057392665.

Using Algorithm 5, φ(Ns) = esds−zs
k for s = 1, 2, 3 can be computed as follows,

where z1, z2, z3 are :

z1 = 125587188015385, z2 = 213104320451339, z3 = 223377252772855

φ(N1) = 1182067004990279735548122132240889792044275182121851

20438299120180310861269069393208

φ(N2) = 153187267586393370493317462323916741449295154485594

324234978653995475779166247995440

φ(N3) = 92489929034782669710021054527475913748082630652189

3518875458562989447638863244024900.

Next, from Algorithm 5, pr−1s for s = 1, 2, 3 and r = 3 can be computed as
follows,

p1 = 601114833736581054997, p2 = 601114833736581054997,

p3 = 1161433282369002470551.
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Finally, from Algorithm 5, qs for s = 1, 2, 3 can be computed as follows,

q1 = 544214062088679626023, q2 = 718297824560170977461,

q3 = 590352823628934085319.

This shows the factorization of 3 prime power moduli Ns = prsqs simultaneously
for r ≥ 2 and s = 1, . . . , t. From our result, one can also observe that our work yields
min(d1, d2, d3) ≈ N0.1712. The equation esds − kφ(Ns) = zs is a generalization of
equation eidi − kφ(Ni) = 1, as reported in [14].

4. Conclusion

In this paper, we developed new technique that led to the successful factorization
of prime power modulus N = prq for r ≥ 2 via good approximation of φ(N). The

paper also showed that using N −
⌈
2

2r+1
r+1 N

r
r+1

⌉
as good approximation of φ(N)

led to the extension of the bound to susceptible decryption exponent. The paper
also presented four cryptanalysis attacks that successfully factored t prime power
moduli Ns = prsqs for s = 1, . . . , t using generalized key equations of the form
esd−ksφ(Ns) = 1, esds−kφ(Ns) = 1, esd−ksφ(Ns) = zs and esds−kφ(Ns) = zs .
It has improved susceptible decryption exponent bounds of [14] from d ≈ N0.1857 to
d ≈ N0.1863 and from min{di} ≈ N0.1319 to min{ds} ≈ N0.1669. From these results,
the paper generalized key equations of [14] from eid−kφ(Ni) = 1 to esd−ksφ(Ns) =
zs and also from eidi − kφ(Ni) = 1 to esds − kφ(Ns) = zs.
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