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Time Fractional Equation with Non-homogenous Dirichlet Boundary Conditions 

 

Süleyman ÇETİNKAYA*1, Ali DEMİR2 

 

Abstract 

In this research, we discuss the construction of analytic solution of non-homogenous initial 
boundary value problem including PDEs of fractional order. Since non-homogenous initial 
boundary value problem  involves Caputo fractional order derivative, it  has classical initial and 
boundary  conditions. By means of separation of variables method and the inner product defined 
on 𝐿ଶ[0, 𝑙], the solution is constructed in the form of a Fourier series with respect to the 
eigenfunctions of a corresponding Sturm-Liouville eigenvalue problem including fractional 
derivative in Caputo sense used in this study. Illustrative example presents the applicability and 
influence of separation of variables method on fractional mathematical problems. 

Keywords: Caputo fractional derivative, Time-fractional diffusion equation, Mittag-Leffler 
function, Initial-boundary-value problems, Spectral method.           

1. INTRODUCTION 

Partial differential equations (PDEs) of fractional 
order turns out to be the best choice of modelling 
for the numerous processes and systems in 
various scientific research areas such as applied 
mathematics, industrial mathematics etc., Since 
PDEs of fractional order becomes an attractive 
research area, the mathematical knowledge and 
methods are used effectively to determine and 
analyze the solution of it. However further 
mathematical tools are necessary in view of the 
applications of mathematical models including 
fractional derivatives. This provides quite strong 
motivation and inspiration for scientists to make 
more research on it. This enriches the various 
branches of mathematics.   Since mathematical 
models including PDEs of fractional order are 
suitable for the analysis of the behavior of the 
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complex non-linear processes, it attracts 
increasing number of scientists. 

The derivative in the sense of Caputo is one of the 
most common one since mathematical models 
with Caputo derivative gives better results 
compare to the analysis of ones including other 
fractional derivatives. In literature, increasing 
number of studies can be found supporting this 
conclusion [1-9]. Moreover, the Caputo 
derivative of constant is zero which is not hold by 
many fractional derivatives. The solutions of 
fractional PDEs and ordinary differential 
equations (ODEs) are determined in terms of 
Mittag-Leffler function. 
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2. PRELIMINARY RESULTS 

Some fundamental definitions and accomplished 
results of fractional derivative in Caputo sense are 
presented in this section.  

Definition 2.1. The Caputo fractional derivative 
of 𝑢(𝑡) of order 𝑞 where 𝑛 − 1 < 𝑞 < 𝑛 is given 
by the equation 

𝐷𝑢(𝑡) =
ଵ

(ି)
∫ (𝑡 − 𝑠)ିିଵ௧

௧బ
𝑢()(𝑠)𝑑𝑠,    

𝑡 ∈ [𝑡, 𝑡 + 𝑇]       (1) 

where 𝑢()(𝑡) =
ௗ௨

ௗ௧
. Note that Caputo fractional 

derivative becomes the integer order derivative 
when 𝑞 is an integer. 

Definition 2.2. The fractional derivative of order 
𝑞 for 0 < 𝑞 < 1 in the Caputo sense is defined in 
the following form:  

𝐷𝑢(𝑡) =
ଵ

(ଵି)
∫ (𝑡 − 𝑠)ି௧

௧బ
𝑢ᇱ(𝑠)𝑑𝑠,                  

𝑡 ∈ [𝑡, 𝑡 + 𝑇]       (2) 

Definition 2.3. The two parameter Mittag-Leffler 
function by which the solution of eigenvalue 
problem is denoted, defined in the following 
form: 

𝐸ఈ,ఉ(𝜆(𝑡 − 𝑡)ఈ) = ∑
(ఒ(௧ି௧బ)ഀ)ೖ

(ఈାఉ)
ஶ
ୀ , 𝛼, 𝛽 > 0 (3) 

where 𝜆 is a constant. Especially, by taking 𝑡 =

0, 𝛼 = 𝛽 = 𝑞 we get 

𝐸,(𝜆𝑡) = ∑
(ఒ௧)ೖ

(ା)
ஶ
ୀ , 𝑞 > 0.     (4) 

Moreover substituting 𝑞 = 1, in the equation (4) 
we have 𝐸ଵ,ଵ(𝜆𝑡) = 𝑒ఒ௧. For further reading see 
[10,11]. 

3. MAIN RESULTS 

Let us consider the following initial boundary 
value problem including time fractional 
derivative in Caputo sense.  

𝐷௧
ఈ𝑢(𝑥, 𝑡) = 𝛾ଶ𝑢௫௫(𝑥, 𝑡),                                    (8) 

𝑢(𝑥, 0) = 𝑓(𝑥),       (9) 

𝑢(0, 𝑡) = 𝑢, 𝑢(𝑙, 𝑡) = 𝑢ଵ    (10) 

where  0 < 𝛼 < 1, 𝛾 ∈ ℝ, 0 ≤ 𝑥 ≤ 𝑙, 0 ≤ 𝑡 ≤ 𝑇, 
𝑢 and 𝑢ଵ are constants. 

Before investigating the solution of the problem 
(8)-(10), let us define the function 𝑣(𝑥, 𝑡) which 
homogenizes the boundary conditions (10) as 
follows: 

𝑣(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) +
௫


(𝑢 − 𝑢ଵ) − 𝑢.   (11) 

Via (10), the problem (8)-(10) turns into the 
following problem (12)-(14). 

𝐷௧
ఈ𝑣(𝑥, 𝑡) = 𝛾ଶ𝑣௫௫(𝑥, 𝑡),    (12) 

𝑣(𝑥, 0) = 𝑓(𝑥) +
௫


(𝑢 − 𝑢ଵ) − 𝑢 ,   (13) 

𝑣(0, 𝑡) = 0, 𝑣(𝑙, 𝑡) = 0    (14) 

where  0 < 𝛼 < 1, 𝛾 ∈ ℝ, 0 ≤ 𝑥 ≤ 𝑙, 0 ≤ 𝑡 ≤ 𝑇, 
𝑢 and 𝑢ଵ are constants. 

By means of separation of variables method, the 
generalized solution of above problem is 
constructed in analytical form. Thus a solution of 
problem (12)-(14) has the following form: 

𝑣(𝑥, 𝑡; 𝛼) = 𝑋(𝑥) 𝑇(𝑡; 𝛼)    (15) 

where 0 ≤ 𝑥 ≤ 𝑙, 0 ≤ 𝑡 ≤ 𝑇.  

Plugging  (15) into (12) and arranging it, we have 


ഀ൫்(௧;ఈ)൯

்(௧;ఈ)
= 𝛾ଶ ᇱᇱ(௫)

(௫)
= −𝜆ଶ.    (16) 

Equation (16) produces a fractional differential 
equation with respect to time and an ordinary 
differential equation with respect to space. The  
first ordinary differential equation is obtained by 
taking the equation on the right hand side of Eq. 
(16). Hence with boundary conditions (14), we 
have the following problem:    

 𝑋′′(𝑥) + 𝜆ଶ𝑋(𝑥) = 0,     (17) 
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𝑋(0) = 𝑋(𝑙) = 0.     (18) 

The solution of eigenvalue problem (17)-(18) is 
accomplished by making use of the exponential 
function of the following form: 

𝑋(𝑥) = 𝑒௫.       (19) 

Hence the characteristic equation is computed as 
follows: 

𝑟ଶ + 𝜆ଶ = 0.       (20) 

Case 1: If 𝜆 = 0, then the characteristic equation 
have coincident solutions 𝑟ଵ,ଶ = 0, which leads to 
the general solution of the eigenvalue problem 
(17)-(18) have the following form: 

𝑋(𝑥) = 𝑘ଵ𝑥 + 𝑘ଶ.      

By making use of the first boundary condition, we 
have 

𝑋(0) = 𝑘ଶ = 0 ⇒ 𝑘ଶ = 0.    (21) 

Hence the solution becomes 

𝑋(𝑥) = 𝑘ଵ𝑥.      (22)  

Similarly second boundary condition leads to 

𝑋(𝑙) = 𝑘ଵ𝑙 = 0 ⇒ 𝑘ଵ = 0.    (23) 

which implies that 

𝑋(𝑥) = 0.      (24) 

As a result, the characteristic equation (20) can 
not have the solution for 𝜆 = 0. 

Case 2: If 𝜆 ≠ 0, then the characteristic equation 
have the solutions 

𝑟ଵ,ଶ = ∓𝑖𝜆      (25) 

which leads to the general solution of the 
eigenvalue problem (17)-(18) have the following 
form: 

𝑋(𝑥) = 𝑐ଵ cos(𝜆𝑥) + 𝑐ଶ sin(𝜆𝑥).     (26) 

By making use of the first boundary condition, we 
have 

𝑋(0) = 𝑐ଵ = 0 ⇒ 𝑐ଵ = 0.    (27) 

Hence the solution becomes 

𝑋(𝑥) = 𝑐ଶ sin(𝜆𝑥).      (28) 

Similarly last boundary condition leads to 

𝑋(𝑙) = 𝑐ଶ sin(𝜆𝑙) = 0     (29) 

which implies that 

sin(𝜆𝑙) = 0.       (30) 

Let 𝑤 = √𝜆𝑙. The solutions of (30) can be 
denoted by means of 𝑤 = 𝑛𝜋 which are 
eigenvalues of the problem (17)-(18). Moreover 
we have 

𝜆 =
௪

మ

మ
, 0 < 𝑤ଵ < 𝑤ଶ < 𝑤ଷ < ⋯   (31) 

As a result 

𝑋(𝑥) = 𝑐 sin ൬𝑤 ቀ
௫


ቁ൰ = sin ൬𝑤 ቀ

௫


ቁ൰,  

𝑛 = 1,2,3, …        (32) 

represent the solutions of the eigenvalue problem. 

From equation (16) for each eigenvalue 𝜆, we 
have the following differential equation: 


ഀ൫்(௧;ఈ)൯

்(௧;ఈ)
= −𝛾ଶ𝜆ଶ      (33) 

which has the following solutions 

𝑇(𝑡; 𝛼) = 𝑘ଵ𝐸ఈ,ଵ(−𝛾ଶ𝜆
ଶ 𝑡ఈ) =

𝐸ఈ,ଵ ቀ−𝛾ଶ ௪
మ

మ
𝑡ఈቁ, 𝑛 = 1,2,3, …   (34) 

As a result, the specific solutions of problem (12)-
(14) can be written as 

𝑣(𝑥, 𝑡; 𝛼) = 𝑋(𝑥)𝑇(𝑡; 𝛼) =

𝐸ఈ,ଵ ቀ−𝛾ଶ ௪
మ

మ
𝑡ఈቁ sin ൬𝑤 ቀ

௫


ቁ൰,𝑛 = 1,2,3, …  (35) 
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which leads to following general solution of 
problem (12)-(14) 

𝑣(𝑥, 𝑡; 𝛼) =

∑ 𝑑 sin ൬𝑤 ቀ
௫


ቁ൰ஶ

ୀଵ 𝐸ఈ,ଵ ቀ−𝛾ଶ ௪
మ

మ
𝑡ఈቁ   (36) 

Note that the general solution (36) satisfies both 
boundary conditions (14) and the fractional 
equation (12). By making use of the inner product 
defined on 𝐿ଶ[0, 𝑙], we determine the coefficients 
𝑑 in such a way that the general solution (36) 
satisfies the initial condition (13). Plugging 𝑡 = 0 
into the general solution (36) and making equal to 
the initial condition (13), we have 

𝑣(𝑥, 0) = 𝑓(𝑥) +
௫


(𝑢 − 𝑢ଵ) − 𝑢 =

∑ 𝑑 sin ൬𝑤 ቀ
௫


ቁ൰ஶ

ୀଵ .     (37) 

By means of the inner product on 𝐿ଶ[0, 𝑙], the 
coefficients 𝑑 for 𝑛 = 1,2,3, … are obtained as 
follows: 

𝑑 =
ଶ


ቂ∫ sin ቀ

గ௫


ቁ 𝑓(𝑥)𝑑𝑥




+ (𝑢 −

𝑢ଵ) ∫ sin ቀ
గ௫


ቁ

௫


𝑑𝑥




− 𝑢 ∫ sin ቀ

గ௫


ቁ 𝑑𝑥




ቃ.    (38) 

Substituting (38) in (36) leads to the solution of 
the problem (12)-(14). By making use of (11) and 
this solution, we obtain the general solution of the 
problem (8)-(10). 

4. ILLUSTRATIVE EXAMPLE 

In this section, we first consider the following 
nonhomogenous initial boundary value problem: 

𝑢௧(𝑥, 𝑡) = 𝑢௫௫(𝑥, 𝑡) , 0 ≤ 𝑥 ≤ 2, 0 ≤ 𝑡 ≤ 𝑇 

𝑢(0, 𝑡) = 1 , 𝑢(2, 𝑡) = 1, 0 ≤ 𝑡 ≤ 𝑇 

𝑢(𝑥, 0) = − sin(𝜋𝑥) + 1, 0 ≤ 𝑥 ≤ 2  (39) 

which has the solution in the following form: 

𝑢(𝑥, 𝑡) = −sin(𝜋𝑥) 𝑒ିగమ௧ + 1.   (40) 

Now let us take the following fractional heat-like 
problem into consideration: 

𝐷௧
ఈ𝑢(𝑥, 𝑡) = 𝑢௫௫(𝑥, 𝑡), 0 < 𝛼 < 1, 0 ≤ 𝑥 ≤ 2, 

0 ≤ 𝑡 ≤ 𝑇      (41) 

𝑢(𝑥, 0) = − sin(𝜋𝑥) + 1, 0 ≤ 𝑥 ≤ 2  (42) 

𝑢(0, 𝑡) = 1, 𝑢(2, 𝑡) = 1, 0 ≤ 𝑡 ≤ 𝑇   (43) 

To make the boundary conditions (43) 
homogenous, we apply the transformation 

𝑣(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − 1     (44) 

to the above problem which leads to the following 
fractional heat-like problem 

𝐷௧
ఈ𝑣(𝑥, 𝑡) = 𝑣௫௫(𝑥, 𝑡),      (45) 

𝑣(0, 𝑡) = 0 , 𝑣(2, 𝑡) = 0,      (46) 

𝑣(𝑥, 0) = − sin(𝜋𝑥)     (47) 

where 0 < 𝛼 < 1, 0 ≤ 𝑥 ≤ 2, 0 ≤ 𝑡 ≤ 𝑇. 

By means of (36), the solution of problem (45)-
(47) is represented in the following form: 

𝑣(𝑥, 𝑡; 𝛼) =

∑ 𝑑 sin ൬𝑤 ቀ
௫

ଶ
ቁ൰ஶ

ୀଵ 𝐸ఈ,ଵ ቀ−
௪

మ

ଶమ
𝑡ఈቁ.   (48) 

The coefficients 𝑑 in (48) are obtained by means 
of the equation (38) as follows: 

⟹ 𝑑 = ∫ − sin ቀ
గ௫

ଶ
ቁ sin(𝜋𝑥) 𝑑𝑥

ଶ


 . 

𝑑 = 0 for 𝑛 ≠ 2. For 𝑛 = 2, 𝑑ଶ is obtained as 
follows: 

⟹ 𝑑ଶ = − ∫ sinଶ(𝜋𝑥) 𝑑𝑥
ଶ


= −

ଵ

ଶ
ቀ𝑥 +

ୱ୧୬(ଶగ௫)

ସగ
ቁቚ

௫ୀ

௫ୀଶ

= −1.     (49) 

Substituting (49) in (48) leads to the solution of 
the problem (45)-(47). 

𝑣(𝑥, 𝑡; 𝛼) = − sin ቀ𝑤ଶ
௫

ଶ
ቁ 𝐸ఈ,ଵ ቀ−

௪మ
మ

ଶమ
𝑡ఈቁ.   (50) 

By making use of (44) and the solution (50), we 
obtain the general solution of the problem (41)-
(43) as follows: 
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𝑢(𝑥, 𝑡; 𝛼) = − sin(𝜋𝑥) 𝐸ఈ,ଵ(−𝜋ଶ𝑡ఈ) + 1.  (51) 

5. CONCLUSION 

In this study, we determine the analytic solution 
of one dimensional time fractional initial 
boundary value problem with non-homogenous 
Dirichlet boundary conditions. By making use of 
seperation of variables, the solution is constructed 
in the form of a Fourier series in terms of the 
eigenfunctions of a corresponding Sturm-
Liouville eigenvalue problem. 
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