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Abstract

In this paper, we are interested on the Shehu transform of both Prabhakar and Hilfer�Prabhakar fractional
derivative and its regularized version. These results are presented in terms of Mittag-Le�er type function
and also utilized to obtain the solutions of some Cauchy type problems, such as Space-time Fractional
Advection-Dispersion equation and Generalized fractional Free Electron Laser (FEL) equation, at which
Hilfer-Prabhakar fractional derivative of fractional order and its regularized version are involved.
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1. Introduction

During the last few decades, fractional calculus have received considerable attention to solve di�erent
kind of problems in pure mathematics, applied mathematics and mathematical physics by modelling a wide
range of phenomena such as: �uid mechanics, biology, chemistry, control theory, economics, electronics,
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�nance, psychology and other area of science and engineering [1, 15, 16, 17, 18, 19, 22, 24]. In literature,
there are many di�erent de�nitions of fractional integrals and derivatives.

These de�nitions, although they do not always lead to identical results, they are equivalent for a wide
range of functions. Among them, we have, in particular, Riemann-Liouville integral, Riemann-Liouville
fractional derivative, Caputo fractional derivatives, the Prabhakar integral, the Hilfer-Prabhakar fractional
derivative, ..., etc. We refer the reader to check e.g. [23, 11, 10, 8, 19, 14].

Many researchers use the Hilfer-Prabhakar fractional derivative operator for the purpose of modelling
some physical aspects due to its speci�c properties, especially the combination with several integral transforms
founded in the literature of fractional di�erentiations and integrations like Laplace, Fourier, Sumudu, Elzaki,
..., etc. In [10], the Laplace transformation of Hilfer-Prabhakar and its regularized version is considered,
where the authors have also implemented their results in classical equations of mathematical physics such as
heat, free electron laser equations and homogeneous Poisson process while in [21] W. Panchal et al. applied its
Sumudu transform to some non-homogeneous Cauchy type problems. Indeed, V. Gill et al. in [12] derived
the analytical solution of generalized space-time fractional advection-dispersion equation by coupling the
Sumudu and Fourier transforms, associated with the Hilfer-Prabhakar fractional derivative. Recently, in
[26] the authors use found the Elzaki transform of Hilfer-Prabhakar fractional derivative and its regularized
version and gathering these results for solving free electron laser type integro-di�erential equation.

On the other hand, the Shehu transform is a new integral transform which is introduced at the �rst time
in 2019 by Maitama and Zhao [25]. In fact, Shehu transform is a generalization of the Laplace and the
Sumudu integral transforms and has some good features. In this context, the main objective of this paper
is to �nd the Shehu transform of: Prabhakar fractional derivative, Hilfer�Prabhakar derivative and theirs
regularized version. These results are presented in terms of Mittag-Le�er type function and employed to
�nd the solutions of some Cauchy type problems such as space-time fractional advection-dispersion equation
and generalized fractional free electron laser (FEL) equation, at which Hilfer-Prabhakar fractional derivative
of fractional order and its regularized version are involved.

2. Preliminaries and notations

In this section, we study some important basic de�nition related to fractional calculus which are used in
the sequel.

De�nition 2.1 (Riemann�Liouville integral [8, 19, 3]). Let a, b ∈ R such that a < b and f ∈ L1(a, b) .
If α ≥ 0 then the left sided Riemann�Liouville fractional integral of order α of f is de�ned by

Iαf(x, t) =
1

Γ(α)

t∫
0

(t− τ)α−1f(x, τ)d τ, t > 0, (1)

and
I0f(x, t) = f(x, t), (α = 0). (2)

De�nition 2.2 (Riemann�Liouville derivative [8, 19, 3]). Let a, b ∈ R such that a < b, m ∈ N and
f(x, ·) ∈ Cm(R+) for all x ∈ (a, b). For all α ≥ 0 such that m − 1 < α ≤ m, the Liouville fractional
derivative of order α > 0 is de�ned as

Dα
a+f(x, t) =

1

Γ(m− α)

dm

dtm

(∫ t

a

f(τ, x)

(t− τ)α−m+1
dτ
)
, m = [α] + 1. (3)

De�nition 2.3 (Caputo derivative [8, 19, 3]). Let f(x, ·) ∈ Cm(R+) for all x ∈ (a, b) and m−1 < α ≤ m.
The Caputo fractional derivative of order α (α > 0) is

CDα
a+f (t) =

1

Γ (m− α)

∫ t

a
(t− x)m−α−1 f (m) (x) dx, m− 1 < α ≤ m. (4)
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Theorem 2.1. [14]For all f ∈ ACm [a, b] ,m = dαe, α ∈ R+\ N, the Riemann�Liouville derivative of order
α of f exists almost everywhere and it can be written as

Dα
a+f (t) =C Dα

a+f (t) +

m−1∑
k=0

(x− a)k−α

Γ (k − α+ 1)
f (k)

(
a+
)
. (5)

De�nition 2.4 (Hilfer derivative [14]). Let β ∈ (0, 1) , ν ∈ [0, 1] , f ∈ L1 [a, b] , −∞ ≤ a < t ≤ ∞, f ∗
K(1−ν)(1−β) ∈ AC1 [a, b] .The Hilfer derivative is expressed as

Dβ,ν
a+
f (t) =

(
I
ν(1−β)
a+

d

dt

(
I

(1−ν)(1−β)
a+

f
))

(t) , (6)

where Kα (t) = tα

Γ(α) .

Remark 2.1. The Hilfer derivative (6) coincides with the Riemann�Liouville derivative (3) for ν = 0 and
with the Caputo derivative (4) for ν = 1.

De�nition 2.5 ([9]). The one parameter Mittag-Le�er function (M-L function) is given by the following
formula

Eα (z) =
∞∑
k=0

zn

Γ (αk + 1)
, z, α ∈ C, Re(α) > 0. (7)

The two parameter Mittag-Le�er function reads [27]

Eα,β (z) =

∞∑
k=0

zn

Γ (αk + β)
, z, α, β ∈ C, Re (α) > 0, (8)

such that Eα,1 (z) = Eα (z) .

De�nition 2.6 ([23]). The three parameter M-L function, also called Prabhakar function is given by

Eγα,β (z) =
1

Γ (γ)

∞∑
k=0

Γ (γ + k)

Γ (αk + β)

zk

k!
, z, α, β, γ ∈ C, Re (α) > 0. (9)

In applications it is usually used a further generalization of (9) which is given by

eγα,β,ω (t;ω) = tβ−1Eγα,β (ωtα) , (10)

where ω ∈ C is a parameter and t > 0 the independent real variable.

De�nition 2.7 (Prabhakar integral [23]). Let f ∈ L1
loc([0, b]), 0 < t < b ≤ ∞. The Prabhakar integral

can be written in the form

Eγ
α,β,ω,0+

f (t) =

∫ t

0
(t− τ)β−1Eγα,β [ω (t− τ)α] f (τ) dτ (11)

=
(
f ∗ eγα,β,ω

)
(t) ,

where α, β, γ, ω ∈ C, Re (α) and Re (β) > 0.

De�nition 2.8 (Prabhakar derivative [23]). Let f ∈ L1
loc [0, b], 0 < t < b ≤ ∞, and f ∗ e−γα,m−β,ω ∈

Wm,1 [0, b] , m = dβe . The Prabhakar derivative is de�ned by

Dγ
α,β,ω,0+

f (t) =
dm

dtm
E−γ
α,m−β,ω,0+f (t) , (12)

where α, β, γ, ω ∈ C,with Re (α) , Re (β) > 0.
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The Riemann�Liouville derivative in (3) can be expressed in terms of Prabhakar integrals as

I
m−(β+θ)
0+

f (t) = E0
α,m−(β+θ),ω,0+f (t) , (13)

we obtain that,

Dγ
α,β,ω,0+

f (t) =
dm

dtm
E−γ
α,m−β,ω,0+f (t)

=
dm

dtm
I
m−(β+θ)
0+

E−γ
α,θ,ω,0+

f (t) (14)

= Dβ+θ
0+

E−γ
α,θ,ω,0+

f (t) ,

where θ ∈ C, Re (θ) > 0 and Dβ+θ
0+

the Riemann�Liouville derivative.

De�nition 2.9 (Regularized Prabhakar derivative [10] ). Let f ∈ AC [0, b] , 0 < t < b < ∞, and
m = dβe . The regularized Prabhakar derivative is given

CDγ
α,β,ω,0+

f (t) = E−γ
α,m−β,ω,0+

dm

dxm
f (t) , (15)

where α, β, γ, ω ∈ C, Re (α) , Re (β) > 0.

De�nition 2.10 (Hilfer�Prabhakar derivative [10], [20]). Let β ∈ (0, 1) , ν ∈ [0, 1] , f ∈ L1 [a, b] ,

0 < t < b ≤ ∞, f ∗ e−γ(1−ν)
α,(1−ν)(1−β),ω (.) ∈ AC1 [a, b] .The Hilfer�derivative is

Dγ,β,ν
α,ω,0+

f (t) =

(
E−γν
α,ν(1−β),ω,0+

d

dt

(
E
−γ(1−ν)
α,(1−ν)(1−β),ω,0+

f
))

(t) , (16)

where γ, ω ∈ R, α > 0, and where E0
α,0,ω,0+f = f.

De�nition 2.11 (Regularized Version of Hilfer-Prabhakar Fractional Derivative [20]). Let f ∈
AC [0, b], β ∈ (0, 1) , ν ∈ [0, 1] , f ∈ L1 [a, b] , 0 < t < b < ∞. The regularized Prabhakar derivative of f (t)
is

CDγ,β,ν
α,ω,0+

f (t) =

(
E−γν
α,ν(1−β),ω,0+

E
−γ(1−ν)
α,(1−ν)(1−β),ω,0+

d

dt
f

)
(t)

=

(
E−γ
α,1−β,ω,0+

d

dt
f

)
(t) . (17)

Where γ, ω ∈ R, α > 0 .

3. Fundamental Facts of the Shehu Transform

The Sumudu transform ([2], [4]) is obtained over the set of functions

A =

{
f (t) : ∃N, η1, η2 > 0, |f (t)| < N exp

(
t

ηi

)
, if t ∈ (−1)i × [0,∞)

}
, (18)

by

S [f (t)] = G (u) =

∫ ∞
0

f (ut) exp (−t) dt, u ∈ (−η1, η2) . (19)

Shehu transform of function f (t) is recently introduced by Shehu Maitama and Weidong Zhao [25] and it is
a generalization of the Laplace and the Sumudu integral transforms.
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The Shehu transform is obtained over the set A is de�ned as

H [f (t)] = V (s, u) = lim
a−→∞

∫ a

0
exp

(
−st
u

)
f (t) dt. s > 0, u > 0. (20)

where s and u are the Shehu transform variables and a is a real constant .

Obviously, the Shehu transform is linear as the Laplace and Sumudu transformations.
Inversion formula of (20), is given by

H−1 [V (s, u)] = f (t) =
1

2πi

∫ a+i∞

a−i∞
exp

(
−st
u

)
f (t) dt. for t ≥ 0. (21)

Theorem 3.1. [25] (Derivative of Shehu transform). Let f(t) ∈ A. If the function f (n)(t) is the nth

derivative of the function f(t) with respect to t, then for n ≥ 1 its Shehu transform is de�ned by

H
[
f (n)(t)

]
=
( s
u

)n
V (s, u)−

n−1∑
k=0

( s
u

)n−(k+1)
f (k) (0) . (22)

Where V (s, u) denotes the Shehu transform of f(t).

Proposition 3.1. [28] Shehu transform of nth order partial derivative is de�ned as

H
[
∂nu (x, t)

∂tn

]
=
( s
u

)n
V (x, s, u)−

n−1∑
k=0

( s
u

)n−(k+1) ∂ku (x, 0)

∂tk
. (23)

Where V (x, s, u) denotes the shehu transform of the partial derivative of the function u (x, t).

In the next theorem, we �nd relation between Sumudu and shehu transform.

Theorem 3.2. [6](Shehu-Sumudu duality ) Let f(t) ∈ A and G (u) be the Sumudu transform, the Shehu
transform V (s, u) of f(t) is given by

V (s, u) =
u

s
G
(u
s

)
. (24)

Theorem 3.3. [5](Convolution theorem for Shehu transform)Let f(t) and g(t) be in A, having Sumudu
transforms F (u) and G(u), respectively, and Shehu transforms V (s, u) and W (s, u), respectively. The Shehu
transform of the convolution of f and g is given by

H ((f ∗ g) (t)) = V (s, u)W (s, u) . (25)

where the convolution is de�ned as

(f ∗ g) (t) =

∫ ∞
0

f (t) g (t− τ) dτ. (26)

Lemma 3.1. [5] In the complex plane C, for any Re (α) , Re (β) > 0, Re (γ) > 0 and ω ∈ C. Shehu transform
of Eγα,β (ωtα) is given by

H
(
tβ−1Eγα,β (ωtα)

)
=
(u
s

)β (
1− ω

(u
s

)α)−γ
. (27)
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4. Main Result

In this section, we �nd the Shehu transforms of: Prabhakar fractional derivative, regularized version of
Prabhakar fractional derivative, Hilfer-Prabhakar fractional derivative and its regularized version. in the
following, let f(t) ∈ A with Shehu transform V (s, u) .

Lemma 4.1. The Shehu transform of Prabhakar derivative (12) is

H(Dγ
α,β,ω,0+

f (t)) (s, u) =
(u
s

)−β (
1− ω

(u
s

)α)γ
V (s, u)

−
m−1∑
k=0

( s
u

)m−(k+1) [
Dγ
α,k−m+β,ω,0+

f (t)
]
t=0+

. (28)

Proof. Applying Shehu transforms of Prabhakar fractional derivative (12) with respect to variable t and
using (22), (27) and convolution theorem for Shehu transform (25), we get

H(Dγ
α,β,ω,0+

f (t)) (s, u) = H
[
dm

dtm
E−γ
α,m−β,ω,0+f (t)

]
(s, u) ,

=
( s
u

)m
H
[(

e−γ
α,m−β,ω,0+ ∗ f

)
(t)
]

(s, u)

−
m−1∑
k=0

( s
u

)m−(k+1)
[(

d

dt

)(k)

E−γ
α,m−β,ω,0+f (t)

]
t=0+

,

=
(u
s

)−β (
1− ω

(u
s

)α)γ
V (s, u)

−
m−1∑
k=0

( s
u

)m−(k+1)
[(

d

dt

)(k)

E−γ
α,k−(k−m+β),ω,0+

f (t)

]
t=0+

,

through some simpli�cation, we obtain the required result (28).

Lemma 4.2. The Shehu transform of regularized version of Prabhakar fractional derivative (15) is

H(CDγ
α,β,ω,0+

f (t)) (s, u) =
(u
s

)−β [
1− ω

(u
s

)α]γ
V (s, u)−

m−1∑
k=0

(u
s

)k−β (
1− ω

(u
s

)α)γ
f (k)

(
0+
)
. (29)

Proof. We follow the same method used in the previous proof, so, taking Shehu transforms of Prabhakar
fractional derivative (15) with respect to variable t and using (22), (27) and (25), we get

H(CDγ
α,β,ω,0+

f (t)) (s, u) = H
[
E−γ
α,m−β,ω,0+

dm

dxm
f (t)

]
(s, u)

= H
[(

E−γ
α,m−β,ω,0+ ∗

dm

dxm
f

)
(t)

]
(s, u) ,

=
(u
s

)−β (
1− ω

(u
s

)α)γ
V (s, u)

−
n−1∑
k=0

(u
s

)(k+1)−β (
1− ω

(u
s

)α)γ
f (k) (0) .

This is the desired result (29).
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Lemma 4.3. The Shehu transform of Hilfer-Prabhakar fractional derivative (16) is expressed as

H
(
Dγ,β,ν
α,ω,0+

f (t)
)

(s, u) =
(u
s

)−β [
1− ω

(u
s

)α]γ
V (s, u)

−
(u
s

)ν(1−β) [
1− ω

(u
s

)α]γν [
E
−γ(1−ν)
α,(1−ν)(1−β),ω,0+

f (t)
]
t=0+

. (30)

Proof. First, applying the Shehu transform of Hilfer-Prabhakar fractional derivative (16) with respect to
variable t, then, using (11), (10), (27) and convolution theorem for Shehu transform (25), we can write

By other method, we can use the Sumudu transform of Hilfer-Prabhakar fractional derivative de�ned in(
[20],[21] )by

S
(
Dγ,β,ν
α,ω,0+

f (t)
)

(u) = u−β [1− ωuα]γ S [f ] (u)

− uν(1−β) [1− ωuα]γν
[
E
−γ(1−ν)
α,(1−ν)(1−β),ω,0+

f (t)
]
t=0+

,

and by using Shehu-Sumudu duality theorem(3.2), we obtain the same result given by equation (30).

Lemma 4.4. The Shehu transforms of the regularized version of Hilfer-Prabhakar fractional derivative (17)
of order β is

H
(
CDγ,β,ν

α,ω,0+
f (t)

)
(s, u) =

(u
s

)−β (
1− ω

(u
s

)α)γ
V (s, u)

−
(u
s

)1−β (
1− ω

(u
s

)α)γ
f
(
0+
)
. (31)

Proof. Applying Shehu transforms of regularized version of Hilfer-Prabhakar fractional derivative (17) of
order β, then using (11), (25), (10), (27) and (22). We have

H
(
CDγ,β,ν

α,ω,0+
f (t)

)
(s, u) = H

[(
E−γ
α,1−β,ω,0+

d

dt
f

)
(t)

]
(s, u)

= H
[(

e−γ
α,1−β,ω,0+ ∗

d

dt
f

)
(t)

]
(s, u) ,

=
(u
s

)1−β (
1− ω

(u
s

)α)γ [( s
u

)
V (s, u)− f

(
0+
)]
,

=
(u
s

)−β (
1− ω

(u
s

)α)γ
V (s, u)

−
(u
s

)1−β (
1− ω

(u
s

)α)γ
f
(
0+
)
.

Also, by a di�erent method, we can get the same result given by equation (31), by using the Sumudu
transform of regularized version of Hilfer-Prabhakar fractional derivative de�ned in( [20],[21] ) and by using
Shehu-Sumudu duality theorem(3.2).

5. Applications

In this section, we will provide some applications of Hilfer�Prabhakar derivatives using Shehu transform
to �nd the solutions of Cauchy problems such as space-time fractional advection-dispersion equation and
generalized fractional Free Electron Laser (FEL) equation [12, 10].
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5.1. Generalized Space-time Fractional Advection-Dispersion Equation

Here we �nd, the solution of the generalized space-time advection-dispersion equation (32) under the
initial condition (33) and the boundary condition(33).

Theorem 5.1. The solution of Cauchy problem

Dγ,β,ν
α,ω,0+

(u (x, t)) = −ηDxu (x, t) + ξ4
λ
2 (u (x, t)) , (32)

Subject to below constraints

E
−γ(1−ν)
α,(1−ν)(1−β),ω,0+

u
(
x, 0+

)
= g (x) , ω, γ, x ∈ R, α > 0, (33)

lim
x−→∞

u (x, t) = 0, t ≥ 0, (34)

is

u (x, t) =

∞∑
n=0

tν(1−β)+nβ−1

2π

∫ ∞
−∞

exp−ikx g (k)
(
iηk − ξ |k|λ

)n
E
γ(n−ν)
α,ν(1−β)+nβ (ωtα) dk. (35)

where λ ∈ (0, 2], x ∈ R, t ∈ R+, β ∈ (0, 1), ν ∈ [0, 1].

4
λ
2 is the fractional Laplace operator of order λ where it is de�ned in [7].

The positive constants η and ξ are the average �uid velocity and the dispersion coe�cient respectively .

Proof. First, applying the Fourier transform of equation (32) with respect to the space variable x, we can
write

Dγ,β,ν
α,ω,0+

(u (k, t)) = ηiku (k, t)− ξ |k|λ u (k, t) , (36)

where u (k, t) represent Fourier transform of u(x, t) and the Fourier transform of 4
λ
2 is given in [7], as

F
{
4

λ
2 (u (x, t)) ; k

}
= − |k|λ F {u (x, t)} , λ ∈ (0, 2]. (37)

Then, taking the Shehu transform on left sided of the above equation (36) with respect to the space variable
t and by using (30), we obtain

H
{
Dγ,β,ν
α,ω,0+

(u (k, t))
}

=
(u
s

)−β [
1− ω

(u
s

)α]γ
V (k, s, u)

−
(u
s

)ν(1−β) [
1− ω

(u
s

)α]γν [
E
−γ(1−ν)
α,(1−ν)(1−β),ω,0+

u (k, t)
]
t=0+

, (38)

where V (k, s, u) represents Shehu transform of u (k, t) .
Again, apply Shehu transform on right hand side of the equation (36) and using the initial condition

(33), we get

(u
s

)−β [
1− ω

(u
s

)α]γ
V (k, s, u)

−
(u
s

)ν(1−β) [
1− ω

(u
s

)α]γν
g (k) = ηikV (k, s, u)− ξ |k|λ V (k, s, u) , (39)

after some simpli�cations ,we can write

V (k, s, u) =
(u
s

)ν(1−β) [
1− ω

(u
s

)α]γν
g (k)

1

1− ξ|k|λ−ηik
(us )

−β
[1−ω(us )

α
]
γ

, (40)
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so, it gives

V (k, s, u) =
∞∑
n=0

(u
s

)ν(1−β)+βn [
1− ω

(u
s

)α]−γ(n−ν) (
ξ |k|λ − ηik

)n
g (k) . (41)

Now, taking inverse Shehu transform of equation (41) using (27), we have

u (k, t) =
∞∑
n=0

(
iηk − ξ |k|λ

)n
g (k) tν(1−β)+nβ−1E

γ(n−ν)
α,ν(1−β)+nβ (ωtα) . (42)

Again, taking inverse Fourier transform of (42), get our required result (35).

Example 5.1. If η = 0, ξ = ih
2m in above theorem 5.1, the solution of the resulting equation called one

dimensional space-time Schrödinger equation of fractional order, for a free nature particle of mass m with h
Planck constant, is

u (x, t) =
∞∑
n=0

tν(1−β)+nβ−1

2π

∫ ∞
−∞

exp−ikx g (k)

(
− ih

2m
|k|λ

)n
E
γ(n−ν)
α,ν(1−β)+nβ (ωtα) dk, (43)

Where λ, x, t, β, ν and 4
λ
2 are the same as we identi�ed previously.

Example 5.2. To describe solute transport in aquifers, we take η = 1, ξ = d
v′L in equation 32 , and take

g (x) = exp (−x) , 0 < x < 1 in the conditions (33).
The analytical expression of solute concentration of the resulting Cauchy type problem de�ned by equation

(32) subject to constraints to (33) and (33), is

u (x, t) =

∞∑
n=0

tν(1−β)+nβ−1

2π

∫ ∞
−∞

exp−ikx g (k)
(
ik − µ′ |k|λ

)n
E
γ(n−ν)
α,ν(1−β)+nβ (ωtα) dk. (44)

where µ′ = d
v′L , L is the packing length, d is the dispersion coe�cient and v′ is the Darcy velocity .

5.2. Fractional Free Electron Laser (FEL) equation

Here we study the following fractional generalization of the FEL equation, involving Hilfer�Prabhakar
derivatives.

Theorem 5.2. The solution of Cauchy problem

Dγ,β,ν
α,ω,0+

y (t) = λEδα,β,ω,0+y (t) + f (t) , (45)(
E
−γ(1−ν)
α,(1−ν)(1−β),ω,0+

f
)
t=0+

= K, (46)

where f(x) ∈ L1[0,∞);β ∈ (0, 1), ν ∈ [0, 1];ω, λ ∈ C; t, α > 0,K, γ, δ ≥ 0, is given by

y (t) = K

∞∑
n=0

λntν(1−β)+β(2n+1)−1E
γ−γν+n(δ+γ)
α,ν(1−β)+β(2n+1) (ωtα) +

∞∑
n=0

E
γ+n(δ+γ)
α,β(2n+1),ω,0+

f (t) . (47)

Proof. We denote by Y (s, u) and V (s, u) the Shehu transform of y(t) and f(t), respectively. Applying Shehu
transform of (45) and using (11), (25), (10) and (27), (46), we can write

H
(
Dγ,β,ν
α,ω,0+

y (t)
)

(s, u) = H
(
λEδα,β,ω,0+y (t) + f (t)

)
(s, u)

= λH(Eδα,β,ω,0+y (t)) (s, u) + V (s, u),

= λH((eδα,β,ω,0+ ∗ y) (t)) (s, u) + V (s, u),

= λH(tβ−1Eδα,β (ωtα)) (s, u)Y (s, u) + V (s, u),

= λ
(u
s

)β (
1− ω

(u
s

)α)−δ
Y (s, u) + V (s, u),
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and from lemma 4.3, we get(u
s

)−β [
1− ω

(u
s

)α]γ
Y (s, u)−K

(u
s

)ν(1−β) [
1− ω

(u
s

)α]γν
= λ

(u
s

)β (
1− ω

(u
s

)α)−δ
Y (s, u) + V (s, u), (48)

so that

Y (s, u) =
V (s, u) +K

(
u
s

)ν(1−β) [
1− ω

(
u
s

)α]γν(
u
s

)−β [
1− ω

(
u
s

)α]γ 1[
1− λ(us )

β
(1−ω(us )

α
)
−δ

(us )
−β

[1−ω(us )
α
]
γ

] ,
=

[
V (s, u) +K

(
u
s

)ν(1−β) [
1− ω

(
u
s

)α]γν(
u
s

)−β [
1− ω

(
u
s

)α]γ
] ∞∑
n=0

λn
(u
s

)(2β)n (
1− ω

(u
s

)α)−(δ+γ)n
,

= V (s, u)
∞∑
n=0

λn
(u
s

)β(2n+1) (
1− ω

(u
s

)α)−(δ+γ)n−γ

+K

∞∑
n=0

λn
(u
s

)β(2n+1)+ν(1−β) (
1− ω

(u
s

)α)−(δ+γ)n+γν−γ
.

Last step is valid for

∣∣∣∣λ(us )
β
(1−ω(us )

α
)
−δ

(us )
1−β

[1−ω(us )
α
]
γ ≤ 1

∣∣∣∣. The required solution (47) is obtained by applying the

inverse of Shehu transform on both side of last equation,

y (t) = H−1

[
V (s, u)

∞∑
n=0

λn
(u
s

)β(2n+1) (
1− ω

(u
s

)α)−(δ+γ)n−γ
]

+ H−1

[
K
∞∑
n=0

λn
(u
s

)β(2n+1)+ν(1−β) (
1− ω

(u
s

)α)−(δ+γ)n+γν−γ
]
,

= K
∞∑
n=0

λntβ(2n+1)+ν(1−β)E
γ+n(δ+γ)
α,β(2n+1),ω,0+

+
∞∑
n=0

E
γ+n(δ+γ)
α,β(2n+1),ω,0+

f (t) ,

Which is required solution .

Theorem 5.3. The solution of Cauchy problem

CDγ,β,ν
α,ω,0+

u (x, t) = K
∂2

∂t2
u (x, t) , t > 0, x ∈ R, (49)

[u (x, t)]t=0+
= g (x) , (50)

lim
x−→±∞

u (x, t) = 0, (51)

where f(x) ∈ L1[0,∞);β ∈ (0, 1), ν ∈ [0, 1];ω ∈ R, K, α > 0, γ ≥ 0, is given by

u (x, t) =
1

2π

∞∫
−∞

∞∑
n=0

Eγnα,βn+1 (ωtα)
(
−Ktγη2

)n
exp−iηxG (η) dη. (52)
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Proof. We denote by u (η, t) the Fourier transform of u(x, t) with respect to the time variable x and V (η, s, u)
the Shehu transform of u (η, t) with respect to the time variable t. Taking the Fourier transform of (49), we
get

CDγ,β,ν
α,ω,0+

(u (x, t)) = −Kη2u (x, t) , t > 0, x ∈ R. (53)

Then, by formula (31), we have

(u
s

)−β (
1− ω

(u
s

)α)γ
V (η, s, u)

−
(u
s

)1−β (
1− ω

(u
s

)α)γ
G (η) = −Kη2u (x, t) , (54)

so that

V (k, s, u) =

[ (
s
u

)
G (η)

+
Kη2(

u
s

)1−β (
1− ω

(
u
s

)α)γ
G (η)

]−1

,

=
(u
s

)
G (η)

1(
1 + Kη2

(us )
−β

(1−ω(us )
α
)
γ

) ,
=

∞∑
n=0

(u
s

)
G (η)

(
−Kη2(

u
s

)−β (
1− ω

(
u
s

)α)γ
)n

,
Kη2(

u
s

)−β (
1− ω

(
u
s

)α)γ < 1,

=

∞∑
n=0

(−K)n η2n
(u
s

)1+βn (
1− ω

(u
s

)α)−γn
G (η) .

Using �rst the Shehu transform, it produces

u (k, t) =
∞∑
n=0

(−K)n η2nG (η)Eγnα,βn+1 (ωtα) . (55)

Finally, by inverting the Snehu transform to (55) we obtain the required solution (52).

6. Conclusion

In this work, we present the Shehu transform of Hilfer-Prabhakar fractional derivative and its regular-
ized version. We also present some its application of Cauchy type problems such as Space-time Fractional
Convection-dispersion Equation and Generalized fractional Free Electron Laser (FEL) equation using the
results of the third and the fourth section. The results shows that Shehu transform is very useful for solving
fractional di�erential equations.
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