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ABSTRACT

In this paper, we obtain the parametrization of the canal surfaces whose center curves are the
hyperbolic curves on the hyperbolic space H2 in E3

1. The parametrization of the canal surface is
expressed according to the hyperbolic frame given in [10]. Then, the parallel surface of this surface
is studied. Also, we define the notion of the associated canal surface. Lastly, we give the geometric
properties of these surfaces such that Weingarten surface, (X,Y )-Weingarten surface and linear
Weingarten surface.
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1. Introduction

Canal surfaces was firstly investigated by Monge in 1850. A canal surface is defined as a surface formed as
the envelope of a family of spheres whose centers lie on a space curve C(t) with radius r(t). If the radius r(t) is
constant, then the canal surface is called as pipe surface or tubular surface. Canal surfaces play an essential role
in descriptive geometry, because in case of an orthographic projection its contour curve can be drawn as the
envelope of circles. In technical area canal surfaces can be used for blending surfaces smoothly. Canal surface
is useful to represent various objects e.g. pipe, hose, rope or intestine of a body. Moreover, canal surface is an
important instrument in surface modelling for CAD/CAM such as tubular surfaces, torus and Dupin cyclides
[7].

Canal surfaces and tubular surfaces have been studied by many researchers. In [5], [6], [7], [8], the authors
study canal surfaces and tubular surfaces in Euclidean 3-space, Minkowski 3-space, Galilean and Pseudo
Galilean spaces. Lately, in [13], the authors consider the new approach to canal surfaces. Also in [2] and [9], the
authors study canal surfaces with quaternions.

In [10], the author defines the hyperbolic frame of the curves on the sphereH2. Also the curves with constant
curvatures were studied in many papers such as [3],[4] and [11].

In this paper, we obtain the parametrization of the canal surfaces whose center curves are the hyperbolic
curves on the hyperbolic space H2 in E3

1. The parametrization of the canal surface is expressed according to the
hyperbolic frame given in [10]. Then the parallel surface of this surface is studied. Also we define the notion
of the associated canal surface. Lastly we give the geometric properties of these surfaces such that Weingarten
surface, (X,Y )-Weingarten surface and linear Weingarten surface.

2. Preliminaries

The Minkowski space E3
1 is the Euclidean 3-space E3 equipped with indefinite flat metric given by

ds2 = −dx21 + dx22 + dx23,

Received : 21-September-2020, Accepted : 18-January-2021
* Corresponding author

 https://doi.org/10.36890/iejg.829766\ 


A. Uçum

where (x1, x2, x3) is a rectangular coordinate system of E3
1. We denote by 〈 , 〉 the inner product on E3

1.
Let m be a fixed point and r > 0 be a constant. The pseudo-Riemannian sphere is defined by

S2
1 (m, r) = {u ∈ E3

1 : 〈u−m,u−m〉 = r2};

the pseudo-Riemannian hyperbolic space is defined by

H2 (m, r) = {u ∈ E3
1 : 〈u−m,u−m〉 = −r2};

the pseudo-Riemannian lightlike cone is defined by

Q2 (m) = {u ∈ E3
1 : 〈u−m,u−m〉 = 0}.

Now, for a unit speed regular curve x (s) ⊂ H2 ⊂ E3
1,we choose {x (s) , α (s) , y (s)} forming a standart Pseudo

orthonormal basis of E3
1. Then the hyperbolic Frenet formulas of the hyperbolic curve x (s) inH2 can be written

as
x′ (s) = α (s) , α′ (s) = x (s) + κ (s) y (s) , y′ (s) = −κ (s)α (s) (2.1)

where 〈x (s) , x (s)〉 = −1 and 〈α (s) , α (s)〉 = 〈y (s) , y (s)〉 = 1.
Here, the function κ (s) is called the hyperbolic curvature function (or curvature) of x (s) and the frame

{x (s) , α (s) , y (s)} is called the hyperbolic Frenet frame of the hyperbolic curve x (s) ([10]).
We recall some well-known formulas for the surfaces in E3

1. Let M be a surface of E3
1, the standart connection

D on E3
1 induces the Levi-Civita connection5 on M . We have the following Gauss formula

DXY = ∇XY + h (X,Y ) ,

and the Weingarten formula
DXξ = −AξX + ⊥∇X ξ,

where X,Y ∈ Γ (TM) and ξ ∈ Γ
(
TM⊥

)
. Then ∇ is the Levi-Civita connection of M , h is the second

fundamental form, Aξ is the shape operator, and ⊥∇ is the normal connection. We note that

〈h (X,Y ) , ξ〉 = 〈AξX,Y 〉 .

The mean curvature vector field
−→
H, the mean curvatureH and the Gauss curvature ofM are given respectively

by
−→
H =

1

2
(h (e1, e1) + h (e2, e2)), H =

∥∥∥−→H∥∥∥ and K = detA

where {e1, e2} is an pseudo orthonormal basis on M ([1]).
Let U be the unit normal vector field on a surface M (s, t) defined by

U =
Ms ×Mt

‖Ms ×Mt‖
.

The second fundamental form II of a surface M (s, t) is given as

II = eds2 + 2fdsdt+ gdt2

where
e = g (Mss, U) , f = g (Mst, U) , g = g (Mtt, U) .

([14]) Thus the second Gaussian curvature KII of a surface is given as

KII =
1

(eg − f2)
2


∣∣∣∣∣∣
− 1

2ett + fst − 1
2gss

1
2es fs − 1

2et
ft − 1

2gs e f
1
2gt f g

∣∣∣∣∣∣
−

∣∣∣∣∣∣
0 1

2et
1
2gs

1
2et e f
1
2gs f g

∣∣∣∣∣∣
 .
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3. Canal surfaces with the hyperbolic curve in H2

In this section, we consider the canal surfaces whose center curve is the hyperbolic curves in H2. The
following theorem can be obtained by similar technique in [13]. Thus we omit the proof.

Theorem 3.1. Let x (s) be a hyperbolic curve with arc-length parameter s on H2 and be the center curve of a canal
surface
(i) obtained from the sphere S2 (r). Then the parametrization of the canal surface can be as following

M (s, t) =
(

1 +m1r (s)
√

1− r2s(s) sinh t
)
x (s)− r (s) rs(s)α (s)

+
(
m2r (s)

√
1− r2s(s) cosh t

)
y (s)

and the parametrization of the tubular surface can be as following

M (s, t) = (1 +m1r sinh t)x (s) + (m2r cosh t) y (s)

(ii) obtained from the hyperbolic space H2 (r). Then the parametrization of the canal surface can be as following

M (s, t) =
(

1 +m1r (s)
√

1 + r2s(s) cosh t
)
x (s) + r (s) rs(s)α (s)

+
(
m2r (s)

√
1 + r2s(s) sinh t

)
y (s)

and the parametrization of the tubular surface can be as following

M (s, t) = (1 +m1r cosh t)x (s) + (m2r sinh t) y (s)

(iii) obtained from the ligthlike coneQ2. Then the parametrization of the canal surface(tubular surface) can be as following

M (s, t) = (1 + a (s, t))x (s) +m1a (s, t) y (s)

where m1,m2 ∈ {−1, 1} and a (s, t) is a function of s and t, but not only s.

Remark 3.1. It is clear that the surface

M (s, t) = (1 + a (s, t))x (s) +m1a (s, t) y (s)

is a degenerate surface.

In the following theorem, we classify all hyperbolic curve on H2 with constant curvature.

Theorem 3.2. Let κ be a real number. Then x (s) is a hyperbolic curve on H2 with arc-length parameter s and curvature
κ satisfying
(i) κ2 < 1 if and only if x (s) can be parameterized by

x = cosh
(√

1− κ2s
)
V1 + sinh

(√
1− κ2s

)
V2 + V3

where V1, V2, V3 are mutually orthogonal vectors satisfying the following equations

〈V1, V1〉 = −〈V2, V2〉 = − 1

1− κ2
and 〈V3, V3〉 =

κ2

1− κ2
.

(ii) κ2 > 1 if and only if x (s) can be parameterized by

x = cos
(√

κ2 − 1s
)
V1 + sin

(√
κ2 − 1s

)
V2 + V3

where V1, V2, V3 are mutually orthogonal vectors satisfying the following equations

〈V1, V1〉 = 〈V2, V2〉 =
1

κ2 − 1
and 〈V3, V3〉 = − κ2

κ2 − 1
.

www.iejgeo.com 108

http://www.iej.geo.com


A. Uçum

(iii) κ2 = 1 if and only if x (s) can be parameterized by

x = s2V1 + sV2 + V3

where
〈V1, V1〉 = 〈V1, V2〉 = 〈V2, V3〉 = 0,

〈V2, V2〉 = −〈V3, V3〉 = 1 and 〈V1, V3〉 = −1

2
.

Proof. Let x (s) be a hyperbolic curve onH2 with arc-length parameter s and constant curvature κ. By using the
hyperbolic Frenet equations (4.2), we obtain the following homogeneous differential equation with constant
coefficients

x′′′ +
(
κ2 − 1

)
x′ = 0.

The characteristic equation of the previous equation is follows

r
(
r2 +

(
κ2 − 1

))
= 0.

(i) Assume that κ2 < 1. Then we get

x = cosh
(√

1− κ2s
)
V1 + sinh

(√
1− κ2s

)
V2 + V3. (3.1)

Differentiating (3.1) with respect to s, we get

α =
√

1− κ2 sinh
(√

1− κ2s
)
V1 +

√
1− κ2 cosh

(√
1− κ2s

)
V2.

By using 〈α, α〉 = 1, we get V1, V2, V3 are mutually orthogonal vectors satisfying the following equations

〈V1, V1〉 = −〈V2, V2〉 = − 1

1− κ2
and 〈V3, V3〉 =

κ2

1− κ2
.

(ii) Assume that κ2 > 1. Then the proof is similar.
(iii) Assume that κ2 = 1. Then we get

x = s2V1 + sV2 + V3. (3.2)

Differentiating (3.2) with respect to s, we get

α = 2sV1 + V2.

By using 〈x, x〉 = −1 and 〈α, α〉 = 1, we get 〈V1, V1〉 = 〈V1, V2〉 = 〈V2, V3〉 = 0,

〈V2, V2〉 = −〈V3, V3〉 = 1 and 〈V1, V3〉 = −1

2
.

Then the proof is complete.

Example 3.1. Let us take κ =
√
2
2 in (i) of Theorem 3.2. Then we obtain

〈V1, V1〉 = −〈V2, V2〉 = −2 and 〈V3, V3〉 = 1.

Then we can choose
V1 =

(√
2, 0, 0

)
, V2 =

(
0,
√

2, 0
)
, V3 = (0, 0, 1) ,

which implies that

x =

(√
2 cosh

(
s√
2

)
,
√

2 sinh

(
s√
2

)
, 1

)
,

α =

(
sinh

(
s√
2

)
, cosh

(
s√
2

)
, 0

)
,

y =

(
− cosh

(
s√
2

)
,− sinh

(
s√
2

)
,−
√

2

)
.

Now let us take m1 = m2 = 1 in Theorem 3.1 and give the canal surfaces in Figure 2.
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Figure 1. The canal surface for r = es in (i) of Theorem 3.1 (left), r = s in (ii) of Theorem 3.1(middle) and a = s2 cosh t in (iii) of Theorem
3.1(right).

Example 3.2. Let us take κ =
√

2 in (ii) of Theorem 3.2. Then we choose

V1 = (0, 1, 0) , V2 = (0, 0, 1) , V3 =
(√

2, 0, 0
)
,

which implies that

x =
(√

2, cos s, sin s
)
,

α = (0,− sin s, cos s) ,

y =
(
−1,−

√
2 cos s,−

√
2 sin s

)
.

Now let us take m1 = m2 = 1 in Theorem 3.1 and give the canal surfaces in Figure 3.

Figure 2. The canal surface for r = s2 in (i) of Theorem 3.1 (left), r = s in (ii) of Theorem 3.1(middle) and a = s2 cosh t in (iii) of Theorem
3.1(right).

Example 3.3. Let us take κ = 1 in (ii) of Theorem 3.2. Then we choose

V1 =

(
1

2
, 0,

1

2

)
, V2 = (0, 1, 0) , V3 = (1, 0, 0) ,
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which implies that

x =

(
s2

2
+ 1, s,

s2

2

)
,

α = (s, 1, s) ,

y =

(
−s

2

2
,−s, 1− s2

2

)
.

Now let us take m1 = m2 = 1 in Theorem 3.1 and give the canal surfaces in Figure 4.

Figure 3. The canal surface for r = 2 in (i) of Theorem 3.1 (left), r = s3 in (ii) of Theorem 3.1(middle) and a = et in (iii) of Theorem 3.1(right).

4. Tubular surface whose center curve is the hyperbolic curve

In this section we consider the tubular surface whose center curve is the hyperbolic curve in H2.

4.1. Tubular surface obtained from the sphere S2
1 (r)

In this subsection, we consider the tubular surface obtained from the sphere S2
1 (r), given in theorem 3.1. We

assume that m1 = m2 = 1. So we give the parametrization of the tubular surface as

ψ (s, t) = (1 + r sinh t)x+ (r cosh t) y (s) (4.1)

From (4.1), we find

ψs = (1 + r sinh t− rκ cosh t)α,

ψt = (r cosh t)x− (r sinh t) y.

We can find the components of first fundemental form as follows

g11 = 〈ψs, ψs〉 = (1 + r sinh t− rκ cosh t)
2
, g12 = 〈ψs, ψt〉 = 0, g22 = 〈ψt, ψt〉 = −r2.

Then g11g22 − (g12)
2

= r2 (1 + r sinh t− rκ cosh t)
2. We assume that 1 + r sinh t− rκ cosh t > 0 for the regularity

of the surface ψ.
Now we will give an orthonormal basis on ψ (s, t) .

e1 =
1

‖ψs‖
ψs = α,

e2 =
1

‖ψt‖
ψt = (cosh t)x− (sinh t) y,
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where {e1, e2} is an orthonormal frame field on ψ (s, t) with signature (+,−). Set

e3 = − (sinh t)x− (cosh t) y,

where e3 is a normal vector field to ψ (s, t) . {e1, e2, e3} is an orthonormal basis on ψ (s, t) . Then we obtain

De1e1 =
1

1 + r sinh t− rκ cosh t
(x+ κy) ,

De1e2 =
cosh t− κ sinh t

1 + r sinh t− rκ cosh t
α,

De2e2 =
1

r
((sinh t)x+ (cosh t) y) .

The components of the second fundamental form h are calculated as follows

h11 = 〈De1e1, e3〉 =
sinh t− κ cosh t

1 + r sinh t− rκ cosh t
,

h12 = 〈De1e2, e3〉 = 0 and h22 = 〈De2e2, e3〉 = −1

r
.

Theorem 4.1. The mean curvature H of ψ (s, t) is obtained as

H =
1

2
(h11 − h22) =

1− 2rκ cosh t+ 2r sinh t

2r (1 + r sinh t− rκ cosh t)
. (4.2)

Theorem 4.2. The Gauss curvature K of ψ (s, t) is obtained as

K = −
(
h11h22 − (h12)

2
)

=
sinh t− κ cosh t

r (1 + r sinh t− rκ cosh t)
. (4.3)

A surface is called Weingarten surface if there exist a non-trivial function Ψ (K,H) such that Ψ (K,H) =
KsHt −KtHs = 0 for the Gauss curvature K and mean curvature H of the surface. Here subscripts denote
partial derivatives. Also we a surface is called as a linear Weingarten surface if there exist real numbers a,
b, c ∈ R\{0} such that the linear combination aK + bH = c is satisfied. For (X,Y ) ∈ {(K,KII) , (H,KII)}, the
surface is called as (X,Y )-Weingarten surface if Ψ (X,Y ) = 0 ([12]).

From (4.2) and (4.3) , we have

Ks =
−κ′ cosh t

r (1 + r sinh t− rκ cosh t)
2 , Kt =

cosh t− κ sinh t

r (1 + r sinh t− rκ cosh t)
2

and
Hs =

−κ′ cosh t

2 (1 + r sinh t− rκ cosh t)
2 , Ht =

cosh t− κ sinh t

2 (1 + r sinh t− rκ cosh t)
2 .

Thus it can be easily seen that Ψ (K,H) = KsHt −KtHs = 0. So we can give the following theorem.

Theorem 4.3. The surface ψ (s, t) is a Weingarten surface.

Now assume that there exist real numbers a, b, c ∈ R\{0} such that the linear combination aK + bH = c is
satisfied.

aK + bH − c =
b− 2cr + 2

(
a− cr2 + br

)
sinh t− 2

(
a− cr2 + br

)
κ cosh t

2r (1 + r sinh t− rκ cosh t)
= 0

which implies that b = 2cr and a+ cr2 = 0. So we can give the following theorem.

Theorem 4.4. Let K and H be the Gauss curvature and mean curvature of the surface ψ (s, t). Then there exists the
following relation between K and H :

−r2K + 2rH = 1

where r is a positive real number.

From above theorem, we get the following corollary.
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Corollary 4.1. The surface ψ (s, t) is a linear Weingarten surface.

Definition 4.1. The parallel surface of the surface X (s, t) defined by

X∗ (s, t) = X (s, t) + µU (s, t)

where
U (s, t) =

Xs ×Xt

‖Xs ×Xt‖
is the unit normal vector of the surface X (s, t) and µ ∈ R.

Now we will define the parallel surface ψ∗ (s, t) of the surface ψ (s, t) as follows

ψ∗ (s, t) = ψ (s, t) + µe3

= (1 + (r − µ) sinh t)x (s) + ((r − µ) cosh t) y (s) (4.4)

From (4.4), we find

ψ∗s = (1 + (r − µ) sinh t− (r − µ)κ cosh t)α,

ψ∗t = ((r − µ) cosh t)x− ((r − µ) sinh t) y.

We can find the components of first fundemental form as follows

g∗11 = 〈ψ∗s , ψ∗s 〉 = (1 + (r − µ) sinh t− (r − µ)κ cosh t)
2
,

g∗12 = 〈ψ∗s , ψ∗t 〉 = 0, g22 = 〈ψt, ψt〉 = − (r − µ)
2 .

Then g∗11g
∗
22 − (g∗12)

2
= (r − µ)

2
(1 + (r − µ) sinh t− (r − µ)κ cosh t)

2. We assume that r − µ > 0 and 1 +
(r − µ) sinh t− (r − µ)κ cosh t > 0 for the regularity of the surface ψ∗ (s, t).

Now we will give an orthonormal basis on ψ∗ (s, t) .

e∗1 =
1

‖ψ∗s‖
ψ∗s = α,

e∗2 =
1

‖ψ∗t ‖
ψ∗t = (cosh t)x+ (sinh t) y,

where {e∗1, e∗2} is an orthonormal frame field on ψ∗ (s, t). Set

e∗3 = − (sinh t)x− (cosh t) y,

where e∗3 is a normal vector field to ψ∗ (s, t) . {e∗1, e∗2, e∗3} is an orthonormal basis on ψ∗ (s, t) . Then we obtain

De∗1
e∗1 =

1

1 + (r − µ) sinh t− (r − µ)κ cosh t
(x+ κy) ,

De∗1
e∗2 =

cosh t− κ sinh t

1 + (r − µ) sinh t− (r − µ)κ cosh t
α,

De∗2
e∗2 =

1

(r − µ)
((sinh t)x+ (cosh t) y) .

The components of the second fundamental form h∗ are calculated as follows

h∗11 =
〈
De∗1

e∗1, e
∗
3

〉
=

sinh t− κ cosh t

1 + (r − µ) sinh t− (r − µ)κ cosh t
,

h∗12 =
〈
De∗1

e∗2, e
∗
3

〉
= 0 and h22 =

〈
De∗2

e∗2, e
∗
3

〉
= − 1

(r − µ)
.

Similarly we can find the following results.

Theorem 4.5. The mean curvature H∗ of ψ∗ (s, t) is obtained as

H∗ =
1− 2 (r − µ)κ cosh t+ 2 (r − µ) sinh t

2 (r − µ) (1 + (r − µ) sinh t− (r − µ)κ cosh t)
.
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Theorem 4.6. The Gauss curvature K∗ of ψ∗ (s, t) is obtained as

K∗ =
sinh t− κ cosh t

(r − µ) (1 + (r − µ) sinh t− (r − µ)κ cosh t)
.

Theorem 4.7. The surface ψ∗ (s, t) is a Weingarten surface.

Theorem 4.8. Let K∗ and H∗ be the Gauss curvature and mean curvature of the surface ψ∗ (s, t). Then there exists the
following relation between K∗ and H∗ :

− (r − µ)
2
K∗ + 2 (r − µ)H∗ = 1

where r is a positive real number and µ is a real number.

From above theorem, we get the following corollary.

Corollary 4.2. The surface ψ∗ (s, t) is a linear Weingarten surface.

Definition 4.2. Let x1 (s) be the associated curve of x (s) such that x1 (s) = y (s) where there exists a
diffeomorfism s = f1 (s). In this paper, we will call x1 (s) = y (s) as the first associated curve of the hyperbolic
curve x (s).
Let x2 (s∗) = α (s) where there exists a diffeomorfism s∗ = f2 (s) Then we will call x2 (s∗) = α (s) as the second
associated curve of the hyperbolic curve x (s).

Definition 4.3. Let x1 (s) be the first associated curve of the hyperbolic curve x (s) in H2, ψ (s, t) and ψ1 (s, t) be
canal surfaces (or tubular surfaces) whose center curves are x (s) and x1 (s) , respectively. Then ψ1 (s, t) is called
as "the first associated canal surface (or the first associated tubular surface)" of ψ (s, t) .
Similarly, let x2 (s∗) be the second associated curve of the hyperbolic curve x (s) in H2, ψ (s, t) and ψ2 (s∗, t)
be canal surfaces (or tubular surfaces) whose center curves are x (s) and x2 (s∗) , respectively. Then ψ2 (s∗, t) is
called as "the second associated canal surface (or the second associated tubular surface)" of ψ (s, t) .

4.1.1. The first associated curve and the first associated tubular surface Firstly we consider the first associated
curve and the first associated tubular surface of the hyperbolic curve x (s) . So we can give the following
corollary.

Corollary 4.3. Let x1 (s) be the first associated curve of the hyperbolic curve x (s) in H2 with the hyperbolic frame
{x (s) , α (s) , y (s)} such that x1 (s) = y (s) where there exists a diffeomorfism s = f1 (s). Then we have

x1 = y, α1 = −ε1α, y1 = −ε1x, κ1 =
ε1
κ
,

df1
ds

= ε1κ,

and
dx1
ds

= α1,
dα1

ds
= −x1 + κ1y1,

dy1
ds

= κ1α1

where ε1 = sgn (κ), {x1 (s) , α1 (s) , y1 (s)} is the spherical frame, κ1 (s) is the spherical curvature of x1 (s) and

〈x1 (s) , x1 (s)〉 = 〈α1 (s) , α1 (s)〉 = 1, 〈y1 (s) , y1 (s)〉 = −1.

Theorem 4.9. Let x1 (s) be the first associated curve of the hyperbolic curve x (s) in H2 with the hyperbolic frame
{x (s) , α (s) , y (s)} such that x1 (s) = y (s) . Also let x1 (s) be the center curve of a canal surface
(i) obtained from the sphere S2 (r). Then the parametrization of the canal surface can be as following

M1 (s, t) =
(

1 +m1r (s)
√

1− r2s(s) cosh t
)
x1 (s)− r (s) rs(s)α1 (s)

+
(
m2r (s)

√
1− r2s(s) sinh t

)
y1 (s)

and the parametrization of the tubular surface can be as following

M1 (s, t) = (1 +m1r cosh t)x1 (s) + (m2r sinh t) y1 (s)
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(ii) obtained from the hyperbolic space H2 (r). Then the parametrization of the canal surface can be as following

M2 (s, t) =
(

1 +m1r (s)
√

1 + r2s(s) sinh t
)
x1 (s) + r (s) rs(s)α1 (s)

+
(
m2r (s)

√
1 + r2s(s) cosh t

)
y1 (s)

and the parametrization of the tubular surface can be as following

M2 (s, t) = (1 +m1r sinh t)x1 (s) + (m2r cosh t) y1 (s)

(iii) obtained from the ligthlike coneQ2. Then the parametrization of the canal surface(tubular surface) can be as following

M3 (s, t) = (1 + a (s, t))x1 (s) +m1a (s, t) y1 (s)

where m1,m2 ∈ {−1, 1} and a (s, t) is a function of s and t, but not only s.

Firstly we consider the tubular surface M1 (s, t) for m1 = m2 = 1 as follows

M1 (s, t) = (1 + r cosh t)x1 (s) + (r sinh t) y1 (s)

= −ε1 (r sinh t)x (s) + (1 + r cosh t) y (s) . (4.5)

From (4.5), we have

(M1)s =
−ε1 (ε1r sinh t+ κ (1 + r cosh t))

κ
α,

(M1)t = − (ε1r cosh t)x+ (r sinh t) y,

which implies that

〈(M1)s , (M1)s〉 =
(ε1r sinh t+ κ (1 + r cosh t))

2

κ2
,

〈(M1)s , (M1)t〉 = 0, 〈(M1)t , (M1)t〉 = −r2.

Then

〈(M1)s , (M1)s〉 〈(M1)t , (M1)t〉 − 〈(M1)s , (M1)t〉
2

= −r2 (ε1r sinh t+ κ (1 + r cosh t))
2

κ2
.

Theorem 4.10. Let M1 (s, t) be the first associated tubular surfaces of M (s, t) , which is obtained by S2
1 (r). Then

M1 (s, t) has a singular point at M (s0, t0) if and only if

ε1r sinh t0 + κ (s0) (1 + r cosh t0) = 0.

Now we assume that ε1r sinh t0 + κ (s0) (1 + r cosh t0) 6= 0 for all (t, s) . Then we will give an orthonormal
basis on M1 (s, t) .

e1 =
1

‖(M1)s‖
(M1)s = −ε2α,

e2 =
1

‖(M1)t‖
(M1)t = − (ε1 cosh t)x+ (sinh t) y,

where ε2 = sgn (ε1r sinh t+ κ (1 + r cosh t)) and {e1, e2} is an orthonormal frame field on M1 (s, t). Set

e3 = − (sinh t)x− (ε1 cosh t) y,

where e3 is a normal vector field to M1 (s, t) . {e1, e2, e3} is an orthonormal basis on M1 (s, t) . Then we obtain

De1e1 =
−1

ε1r sinh t+ κ (1 + r cosh t)
(x+ κy) ,

De1e2 =
−ε2 (ε1 cosh t+ κ sinh t)

ε1r sinh t+ κ (1 + r cosh t)
α,

De2e2 =
1

r
(− (ε1 sinh t)x+ (cosh t) y) .
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The components of the second fundamental form h are calculated as follows

h11 = 〈De1e1, e3〉 =
ε1κ cosh t− sinh t

ε1r sinh t+ κ (1 + r cosh t)
,

h12 = 〈De1e2, e3〉 = 0 and h22 = 〈De2e2, e3〉 =
ε1
r
.

Theorem 4.11. The mean curvature H1 of M1 (s, t) is obtained as

H1 =
1

2

(
h11 − h22

)
=
−ε1 (2ε1r sinh t+ κ (1 + 2r cosh t))

2r (ε1r sinh t+ κ (1 + r cosh t))
. (4.6)

Theorem 4.12. The Gauss curvature K1 of M1 (s, t) is obtained as

K1 = −
(
h11h22 −

(
h12
)2)

=
ε1 (sinh t+ ε1κ cosh t)

r (ε1r sinh t+ κ (1 + r cosh t))
. (4.7)

Thus it can be easily seen that Ψ (K1, H1) = (K1)s (H1)t − (K1)t (H1)s = 0. So we can give the following
theorems.

Theorem 4.13. The surface M1 (s, t) is a Weingarten surface.

Theorem 4.14. Let K1 and H1 be the Gauss curvature and mean curvature of the surface M1 (s, t). Then there exists the
following relation between K1 and H1 :

−r2K1 − 2ε1rH1 = 1

where r is a positive real number.

From above theorem, we get the following corollary.

Corollary 4.4. The surface M1 (s, t) is a linear Weingarten surface.

Now we consider the tubular surface M2 (s, t) for m1 = m2 = 1 as follows

M2 (s, t) = (1 + r sinh t)x1 (s) + (r cosh t) y1 (s)

= (−ε1r cosh t)x (s) + (1 + r sinh t) y (s) .

Similarly we can find the followings.

Theorem 4.15. Let M2 (s, t) be the first associated tubular surfaces of M (s, t) , which is obtained by H2 (r). Then
M2 (s, t) has a singular point at M (s0, t0) if and only if

ε1r cosh t0 + κ (s0) (1 + r sinh t0) = 0.

Theorem 4.16. The mean curvature H2 of M2 (s, t) is obtained as

H2 =
ε1 (2ε1r cosh t+ κ (1 + 2r sinh t))

2r (ε1r cosh t+ κ (1 + r sinh t))
.

Theorem 4.17. The Gauss curvature K2 of M2 (s, t) is obtained as

K2 =
−ε1 (cosh t+ ε1κ sinh t)

r (ε1r cosh t+ κ (1 + r sinh t))
.

Thus it can be easily seen that Ψ (K2, H2) = (K2)s (H2)t − (K2)t (H2)s = 0. So we can give the following
theorems.

Theorem 4.18. The surface M2 (s, t) is a Weingarten surface.

Theorem 4.19. Let K2 and H2 be the Gauss curvature and mean curvature of the surface M2 (s, t). Then there exists the
following relation between K1 and H1 :

r2K2 + 2ε1rH2 = 1

where r is a positive real number.

From above theorem, we get the following corollary.

Corollary 4.5. The surface M2 (s, t) is a linear Weingarten surface.

Remark 4.1. Let M3 (s, t) be the first associated tubular surfaces of M (s, t) , which is obtained by Q2. Then
M3 (s, t) is a degenerate surface.
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4.1.2. The second associated curve and the second associated tubular surface Now, we consider the second
associated curve and the second associated tubular surface of the hyperbolic curve x (s) . So we can give the
following corollaries.

Corollary 4.6. Let x2 (s∗) be the second associated curve of the hyperbolic curve x (s) with κ2 > 1 in H2 with the
hyperbolic frame {x (s) , α (s) , y (s)} such that x2 (s∗) = α (s) where there exists a diffeomorfism s∗ = f2 (s). Then we
have

x2 = α, α2 =
1√

κ2 − 1
(x+ κy) , y2 =

1√
κ2 − 1

(−κx− y) ,

κ2 =
κ′

(κ2 − 1)
3/2

,
df2
ds

=
√
κ2 − 1,

and
dx2
ds∗

= α2,
dα2

ds∗
= −x2 + κ2y2,

dy2
ds∗

= κ2α2

where {x2 (s∗) , α2 (s∗) , y2 (s∗)} is the spherical frame, κ2 (s∗) is the spherical curvature of x2 (s∗) and

〈x2 (s∗) , x2 (s∗)〉 = 〈α2 (s∗) , α2 (s∗)〉 = 1, 〈y2 (s∗) , y2 (s∗)〉 = −1.

Theorem 4.20. Let x2 (s∗) be the second associated curve of the hyperbolic curve x (s) with κ2 > 1 in H2 with the
hyperbolic frame {x (s) , α (s) , y (s)} such that x2 (s∗) = α (s) . Also let x2 (s∗) be the center curve of a canal surface
(i) obtained from the sphere S2 (r). Then the parametrization of the canal surface can be as following

M4 (s∗, t) =
(

1 +m1r (s∗)
√

1− r2s(s∗) cosh t
)
x2 (s∗)− r (s∗) rs(s

∗)α2 (s∗)

+
(
m2r (s∗)

√
1− r2s(s∗) sinh t

)
y2 (s∗)

and the parametrization of the tubular surface can be as following

M4 (s∗, t) = (1 +m1r cosh t)x2 (s∗) + (m2r sinh t) y2 (s∗)

(ii) obtained from the hyperbolic space H2 (r). Then the parametrization of the canal surface can be as following

M5 (s∗, t) =
(

1 +m1r (s∗)
√

1 + r2s(s
∗) sinh t

)
x2 (s∗) + r (s∗) rs(s

∗)α2 (s∗)

+
(
m2r (s∗)

√
1 + r2s(s

∗) cosh t
)
y2 (s∗)

and the parametrization of the tubular surface can be as following

M5 (s∗, t) = (1 +m1r sinh t)x2 (s∗) + (m2r cosh t) y2 (s∗)

(iii) obtained from the ligthlike coneQ2. Then the parametrization of the canal surface(tubular surface) can be as following

M6 (s∗, t) = (1 + a (s∗, t))x2 (s∗) +m1a (s∗, t) y2 (s∗)

where m1,m2 ∈ {−1, 1} and a (s∗, t) is a function of s∗ and t, but not only s∗.

Corollary 4.7. Let x2 (s∗) be the second associated curve of the hyperbolic curve x (s) with κ2 < 1 in H2 with the
hyperbolic frame {x (s) , α (s) , y (s)} such that x2 (s∗) = α (s) where there exists a diffeomorfism s∗ = f2 (s). Then we
have

x2 = α, α2 =
1√

1− κ2
(x+ κy) , y2 =

1√
1− κ2

(−κx− y) ,

κ2 =
κ′

(1− κ2)
3/2

,
df2
ds

=
√

1− κ2,

and
dx2
ds∗

= α2,
dα2

ds∗
= x2 − κ2y2,

dy2
ds∗

= −κ2α2

where {x2 (s∗) , α2 (s∗) , y2 (s∗)} is the spherical frame, κ2 (s∗) is the spherical curvature of x2 (s∗) and

〈x2 (s∗) , x2 (s∗)〉 = 〈y2 (s∗) , y2 (s∗)〉 = 1, 〈α2 (s∗) , α2 (s∗)〉 = −1.
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Theorem 4.21. Let x2 (s∗) be the second associated curve of the hyperbolic curve x (s) with κ2 < 1 in H2 with the
hyperbolic frame {x (s) , α (s) , y (s)} such that x2 (s∗) = α (s) . Also let x2 (s∗) be the center curve of a canal surface
(i) obtained from the sphere S2 (r). Then the parametrization of the canal surface can be as following

M7 (s∗, t) =
(

1 +m1r (s∗)
√

1 + r2s(s
∗) cos t

)
x2 (s∗) + r (s∗) rs(s

∗)α2 (s∗)

+
(
m2r (s∗)

√
1 + r2s(s

∗) sin t
)
y2 (s∗)

and the parametrization of the tubular surface can be as following

M7 (s∗, t) = (1 +m1r cos t)x2 (s∗) + (m2r sin t) y2 (s∗)

(ii) obtained from the hyperbolic space H2 (r). Then the parametrization of the canal surface can be as following

M8 (s∗, t) =
(

1 +m1r (s∗)
√
r2s(s

∗)− 1 cos t
)
x2 (s∗)− r (s∗) rs(s

∗)α2 (s∗)

+
(
m2r (s∗)

√
r2s(s

∗)− 1 sin t
)
y2 (s∗) ,

where m1,m2 ∈ {−1, 1}.

Now, we consider the second associated tubular surface M4 (s∗, t) of M (s, t) . Assume that κ (s) = κ
(constant). Let M4 (s∗, t) be the second associated tubular surface of M (s, t). Then we can write

M4 (s∗, t) = (1 + r cosh t)x2 (s∗) + (r sinh t) y2 (s∗)

= −κr sinh t√
κ2 − 1

x (s) + (1 + r cosh t)α (s) +
r sinh t√
κ2 − 1

y (s) . (4.8)

From (4.8), we have

(M4)s∗ =
1 + r cosh t√

κ2 − 1
(−x+ κy) ,

(M4)t =
−κr cosh t√
κ2 − 1

x+ (r sinh t)α− r cosh t√
κ2 − 1

y,

which implies that

〈(M4)s∗ , (M4)s∗〉 = (1 + r cosh t)
2
, 〈(M4)s∗ , (M4)t〉 = 0, 〈(M4)t , (M4)t〉 = −r2.

Then
〈(M4)s∗ , (M4)s∗〉 〈(M4)t , (M4)t〉 − 〈(M4)s∗ , (M4)t〉

2
= −r2 (1 + r cosh t)

2
.

Theorem 4.22. Let M4 (s∗, t) be the second associated tubular surfaces of M (s, t). Then M4 (s∗, t) has a singular point
at M (s, t0) if and only if 1 + r cosh t0 = 0.

Now we assume that 1 + r cosh t 6= 0 for all (t, s) . Then we will give an orthonormal basis on M4 (s∗, t) .

e∗1 =
1

‖(M4)s∗‖
(M4)s∗ =

ε2√
κ2 − 1

(x+ κy) ,

e∗2 =
1

‖(M4)t‖
(M4)t = − κ cosh t√

κ2 − 1
x+ (sinh t)α− cosh t√

κ2 − 1
y,

where ε2 = sgn (1 + r cosh t) and {e∗1, e∗2} is an orthonormal frame field on M4 (s∗, t). Set

e∗3 =
ε2κ sinh t√
κ2 − 1

x− (ε2 cosh t)α+
ε2 sinh t√
κ2 − 1

y,

where e∗3 is a normal vector field to M4 (s∗, t) . {e∗1, e∗2, e∗3} is an orthonormal basis on M4 (s∗, t) . Then we obtain

De∗1
e∗1 =

1

1 + r cosh t
α

De∗1
e∗2 =

ε2 sinh t

(1 + r cosh t)
√
κ2 − 1

(x+ κy) ,

De∗2
e∗2 = − κ sinh t

r
√
κ2 − 1

x+
cosh t

r
α− sinh t

r
√
κ2 − 1

y.
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The components of the second fundamental form h∗ are calculated as follows

h∗11 =
〈
De∗1

e∗1, e
∗
3

〉
=
−ε2 cosh t

1 + r cosh t
,

h∗12 =
〈
De∗1

e∗2, e
∗
3

〉
= 0 and h∗22 =

〈
De∗2

e∗2, e
∗
3

〉
= −ε2

r
.

Theorem 4.23. The mean curvature H2 of M4 (s∗, t) is obtained as

H2 =
ε2

2r (1 + r cosh t)
. (4.9)

Theorem 4.24. The Gauss curvature K2 of M4 (s∗, t) is obtained as

K2 =
− cosh t

r (1 + r cosh t)
. (4.10)

From (4.9) and (4.10) , we have

(K2)s∗ = 0, (K2)t =
− sinh t

r (1 + r cosh t)
2

and

(H2)s∗ = 0, (H2)t =
− sinh t

2 (1 + r cosh t)
2 .

Thus it can be easily seen that Ψ (K2, H2) = 0. So we can give the following theorem.

Theorem 4.25. The surface M4 (s∗, t) is a Weingarten surface.

Also we can give the following theorem.

Theorem 4.26. Let K2 and H2 be the Gauss curvature and mean curvature of the surface M4 (s∗, t). Then there exists
the following relation between K2 and H2 :

−r2K2 + 2ε2rH2 = 1

where r is a positive real number.

From above theorem, we get the following corollary.

Corollary 4.8. The surface M4 (s∗, t) is a linear Weingarten surface.

The second Gaussian curvature KII of the surface M4 (s∗, t) is obtained that

KII =
1 + 2r2 + 6r cosh t+ 2r2 cosh 2t+ sech2t

4ε2r (1 + r cosh t)
2 .

Then it can be easily seen that Ψ (KII , H2) = 0 and Ψ (KII ,K2) = 0. So we can give the following theorem.

Theorem 4.27. The surface M4 (s∗, t) is a (X,Y )-Weingarten surface where (X,Y ) ∈ {(K2,KII) , (H2,KII)} .

Remark 4.2. Similar properties can be easily obtained for the tubular surfaces M5 (s∗, t) and M7 (s∗, t) .

Remark 4.3. The tubular surface M6 (s∗, t) is a degenerate surface.

4.2. Tubular surface obtained from the sphere H2 (r)

This subsection is omitted from the paper since the properties can be obtained similarly to previous
subsection.
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