

Advances in the Theory of Nonlinear Analysis and its Applications

Comment on strongly preirresolute topological vector spaces

Madhu Ram ${ }^{\text {a }}$, Sayed K Elagan ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, University of Jammu, Jammu-180006, J\& K, India.
${ }^{b}$ Department of Mathematics and Statistics, Faculty of Science, P.O. 888, Taif University, Saudi Arabia.

Abstract

A subset A of a topological space X is said to be pre-open if $A \subseteq \operatorname{Int}(C l(A))$. Let $P O(X)$ denote the family of all pre-open sets in a given topological space X. In general, $P O(X)$ does not form a topology on X. Furthermore, in topological vector spaces, it is not always true that $P O(L)$ forms a topology on L when L is a topological vector space. In this note, we prove that the class of strongly preirresolute topological vector spaces is that subclass of topological vector spaces in which $P O(L)$ forms a topology and thereby we will observe that all results which are proven in [5] concerning strongly preirresolute topological vector spaces are obvious.

Keywords: Pre-open sets strongly preirresolute topological vector spaces. 2010 MSC: 57N17, 57N99.

1. Introduction and the main result

Let (X, \Im) (or simply, X) be a topological space. A subset $A \subseteq X$ is called pre-open if $A \subseteq \operatorname{Int}(C l(A))$. The complement of a pre-open set is called pre-closed set. Let $P O(X)$ denote the collection of all pre-open subsets of X. It is well-known that in general, $P O(X)$ does not form a topology on X. Furthermore, consider a topological vector space $L=\mathbb{R}$, where \mathbb{R} is endowed with the standard topology. Now,
let $A=\{x \in \mathbb{Q}: 0<x<1\}$ and $B=\{x \in \mathbb{R}: x \notin \mathbb{Q}, 0<x<1\} \cup\left\{\frac{1}{2}\right\}$ where \mathbb{Q} denotes the set of rational numbers.

[^0]Obviously, both A and B are pre-open subsets of \mathbb{R} but $A \cap B=\left\{\frac{1}{2}\right\}$ is not pre-open. Thus, we have seen that in topological vector spaces, $P O(L)$ need not form a topology on L when L is a topological vector space.

Definition 1.1. Let X, Y be two topological spaces. A function $f: X \rightarrow Y$ is called p-continuous if the inverse image of any pre-open subset of Y is open in X.

Definition 1.2. A topological space X is called pre- T_{2} [3] if for each pair of distinct points x and y in X, there exist disjoint pre-open sets U and V of X such that $x \in U$ and $y \in V$.

Definition 1.3. A subset A of a topological space X is called strongly compact [4] if every cover of A by pre-open sets in X has a finite subcover.

In [5], Rajesh and Vijayabharathi (2013) introduced the notion of strongly preirresolute topological vector spaces and established several results in strongly preirresolute topological vector spaces.

A pair (L, \Im) (or simply, L) is called a strongly preirresolute topological vector space if:

- L is a real vector space, and
- \Im is a topology on L such that the vector space operations are p-continuous.

In fact, this definition can be extended to all complex vector spaces like topological vector spaces. Evidently, every strongly preirresolute topological vector space is a topological vector space but the converse is not true, in general because (\mathbb{R}, \Im) is not strongly preirresolute topological vector space.

This note concerns the paper [5] by Rajesh and Vijayabharathi. We exhibit that all theorems in [5] are the particular cases of well-known results of topological vector spaces which follow directly from the following fact:

Theorem 1.1. Let (L, \Im) be a strongly preirresolute topological vector space. Then $P O(L)$ forms a topology on L.

Proof. To prove this theorem, it is enough to show that every pre-open set of L is open. For, let A be any pre-open set of L and let $x \in A$ be any element.

Since the vector addition mapping of cartesian product $L \times L$ into L is p-continuous, there exist open sets U of L containing 0 and V of L containing x such that $U+V \subseteq A$. In particular, $0+V \subseteq A$. This indicates that x is an interior point of A. Thus, A is open. Hence $P O(L)=\Im$.

Corollary 1.1. If (L, \Im) is a strongly preirresolute topological vector space, then we have
(1) A subset $A \subseteq L$ is strongly compact if and only if it is compact.
(2) (L, \Im) is pre- T_{2} space if and only if it is T_{2} space.

Remark 1.1. All results (for example, Theorem 3.9, Theorem 3.11, Theorem 3.13 and Theorem 3.18) in [5] follow directly by Corollary 1.1.1 together with corresponding well-known results in topological vector spaces (for example, see [2, Proposition 2.2.3, Corollary 2.2.4], [6, Theorem 1.10] and [7]).

We now formulate an alternative definition of Hahn Banach Separation Theorem in strongly preirresolute topological vector spaces.

Theorem 1.2. Suppose A, B are disjoint, non-empty convex sets in a strongly preirresolute topological vector space L.
(a) If A is pre-open, then there is a linear continuous map $\varphi: L \rightarrow \mathbb{R}, \lambda \in \mathbb{R}$ s.t. Sup $\{\operatorname{Re} \varphi(x): x \in$ $A\}<\operatorname{Re} \varphi(y)$, for all $y \in B$.
(b) If B is strongly compact, A pre-closed, and L is locally convex, then there is a linear continuous map $\varphi: L \rightarrow \mathbb{R}, \lambda \in \mathbb{R}$ and $\epsilon>0$ s.t. $\forall x \in B, y \in A, \operatorname{Re} \varphi(x)<\lambda<\lambda+\epsilon<\operatorname{Re} \varphi(y)$.
Proof. Follows from Theorem 1.4 and [1, Theorem 5.7].

References

[1] P. Bandyopadhyay, Topological Vector Spaces, Lecture Notes.
[2] M. Infusino, Topological Vector Spaces, Monograph, University of Konstanz, 2015.
[3] A. Kar and P. Bhattacharyya, Some weak separation axioms, Bull. Calcutta Math. Soc., 82 (1990), 415-422.
[4] A.S. Mashhour, M.E. Abd El-Monsef, I.A. Hasanein and T. Noiri, Strongly compact spaces, Delta J. Sci., 8 (1984), 30-46.
[5] N. Rajesh and V. Vijayabharathi, On strongly preirresolute topological vector spaces, Mathematica Bohemica, 38 (1) (2013), 37-42.
[6] W. Rudin, Functional Analysis, McGraw-Hill, 2nd edition, 1991.
[7] H.H. Schaefer, Topological Vector Spaces, Springer-Verlag New York, 1971.

[^0]: Email addresses: madhuram0502@gmail.com (Madhu Ram), sayed_khalil2000@yahoo.com (Sayed K Elagan)

