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Half inverse problems for the impulsive singular diffusion operator
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Abstract. In this paper, we consider the inverse spectral problem for the impulsive Sturm-Liouville

differential pencils on [0, π] with the Robin boundary conditions and the jump conditions at the point
π
2

.
We prove that two potentials functious on the whole interval and the parameters in the boundary and
jump conditions can be determined from a set of eigenvalues for two cases: (i) The potentials is given on(
0,
π
4

(
α + β

))
. (ii) The potentials is given on

(
α + β,

α + β

2

)
, where 0 < α + β < 1, α + β > 1 respectively.

Finally, was given interior inverse problem for same boundary problem.

1. Introduction

We consider the impulsive quadratic pencils of Sturm-Liouville operator of the form

ly := −y′′ +
[
q (x) + 2λp (x)

]
y = λ2ρ (x) y , x ∈

[
0,
π
2

)
∪

(
π
2
, π

]
(1)

with the boundary conditions

U
(
y
)

:= y
′

(0) − hy(0) = 0 (2)

V
(
y
)

:= y
′

(π) + Hy(π) = 0 (3)

and the jump conditions

y
(
π
2

+ 0
)

= ay
(
π
2
− 0

)
(4)

y
′

(
π
2

+ 0
)

= a−1y
′

(
π
2
− 0

)
+ γy

(
π
2

)
Where λ is the spectral parameter, p (x) ∈ W1

2 [0, π] , q (x) ∈ L2 [0, π] are real valued functions, h,H ∈
R, a, γ, α, β are real numbers, 0 < α < β < 1, α + β > 1, a > 0, |a − 1|2 + γ2 , 0 and
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ρ(x) =

 α2, 0 < x <
π
2

β2,
π
2
< x < π,

Here we denote by Wm
2 [0, π] the space of functions f (x) , x ∈ [0, π] such that the derivatives f (m) (x)

(
m = 0,n − 1

)
are absolute continuous and f (n) (x) ∈ L2 [0, π] .
We can get p (0) = 0without general exposure, otherwise, if c0 = p (0) , 0by direct calculation we note that
equations (1) is equivalent to

ly := −y′′ +
[
q (x) + 2p (x) c0 − c2

0 + 2 (λ − c0)
(
p (x) − c0

)]
y = (λ − c0)2 ρ (x) y (5)

Let

q̂ (x) = q (x) + 2p (x) c0 − c2
0, p̂ (x) = p (x) − c0, λ̂ = λ − c0

then for the problem with the form (5) we have p̂ (0) = 0.
Inverse spectral problems consist in recovering the coefficients of an operator from their spectral char-

acteristics. The first results on inverse problems theory of classical Sturm-Liouville operator where given
by Ambarzumyan and Borg (see[13, 24]) . Inverse Sturm-Liouville problems which appear in mathematical
physics, mechanics, electronics, geophysics an other branches of natural sciences have been studied for
about ninety years (see[8, 9, 12]) .

The half inverse Sturm-Liouville problem which is one of the important subjects of the inverse spectral
theory has been studied firstly by Hochstadt and Lieberman in 1978 [see[20]] . They proved that spectrum
of the problem

−y
′′

+ q(x)y = λy, x ∈ (0, 1)

y
′

(0) − hy(0) = 0 = y
′

(1) + Hy(1)

and potential q (x) on the
(1

2
, 1

)
uniquely determine the potential q (x) on the whole interval [0, 1] almost

everywhere. Since then, this result has been generalized to various versions. In 1984, Hald [15] proved
similar results in the case when there exist a impulse conditions inside the interval. He also gave some
applications of this kinds of problem to geophysics. Recently, some new uniqueness results in inverse
spectral analysis with partial information on the potential for some classes of differential equations have
been given

(
see for example [18, 25, 32]

)
. These kinds of results are known as Hochstadt and Lieberman

type theorems. In particulary, in the work [6] studied the inverse spectral problem for the impulsive Sturm-
Liouville problem on (0, π) with the Robin boundary conditions and the jump conditions at the point

π
2

.
They proved that the potential q (x) on the whole interval and the paremeters in the boundary conditions
and jump conditions can be determined from a set of eigenvalues for two cases:

i) The potential q (x) is given on
(
0,

1 + α
4

π
)
,

ii) The potential q (x) is given on
(1 + α

4
π, π

)
, where 0 < α < 1,

and also shown that the potential and all the parameters can be uniquely recovered by one spectrum
and some information on the eigenfunctions at some interior point. Similary problem studied in [25]. In
particulary, they discuss Gesztesy-Simon theorem and show that if the potential function q(x) is preseribed

on the interval
[

π
2 (1 − α)

, π

]
for some α ∈ (0, 1) , then parts of a finite number of spectra suffice to determine

q(x) on [0, π] .
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2. Preliminaries

Let ϕ(x, λ) and ψ (x, λ) be the solutions of the equation (1), satisfying the initial conditions
ϕ(0, λ) = 1, ϕ′(0, λ) = h, ψ (π, λ) = 1, ψ′(π, λ) = −H and the jump condition (4). Denote

σ (x) =
∫ x

0

√
ρ (t)dt,τ = Imλ, for every λ ∈ C

It is shown in [2] if q (x) ∈ L2 [0, π] and p (x) ∈ W1
2 [0, 1] for every λ ∈ C,that there exist funvtions

A (x, t)and B (x, t) whose first order partial derivatives are summable on [0, π] for each x ∈ [0, π] such that

ϕ (x, λ) = ϕ0 (x, λ) +

∫ σ(x)

0
A (x, t) cosλtdt +

∫ σ(x)

0
B (x, t) sinλtdt (6)

Where

ϕ0 (x, λ) =



cos
[
λσ (x) − w+(x)

√
ρ(x)

]
+ h

λα sin
[
λσ (x) − w+(x)

√
ρ(x)

]
, 0 ≤ x < π

2

a+ cos
[
λσ (x) − w+(x)

√
ρ(x)

]
+ a− cos

[
λ (απ − σ (x)) + w−(x)

√
ρ(x)

]
+ h
λα

{
a+ sin

[
λσ (x) − w+(x)

√
ρ(x)

]
+ a− sin

[
λ (απ − σ (x)) + w−(x)

√
ρ(x)

]}
, π2 < x ≤ π

(7)

and a± = 1
2

(
a ± α

aβ

)
, w+ (x) =

∫ x

0 p (t) dt, w− (x) =
∫ x
π
2

p (t) dt
It easy to verify from the integral representation (6) above that the solution ϕ (x, λ) following asimptotic
relation is valid as |λ| → ∞. For π

2 < x ≤ π

ϕ (x, λ) = a+ cos
[
λσ (x) − w+(x)

√
ρ(x)

]
+ a− cos

[
λ (απ − σ (x)) + w−(x)

√
ρ(x)

]
+ h
λα

{
a+ sin

[
λσ (x) − w+(x)

√
ρ(x)

]
+ a− sin

[
λ (απ − σ (x)) + w−(x)

√
ρ(x)

]}
+O

(
λ−2 exp (|τ| σ (x))

) (8)

ϕ′ (x, λ) = −a+
(
λβ − 1

βp (x)
)

sin
[
λσ (x) − w+(x)

√
ρ(x)

]
+a−

(
λβ − 1

βp (x)
)

sin
[
λ (απ − σ (x)) + w−(x)

√
ρ(x)

]
+ h
λαa+

(
λβ − 1

βp (x)
)

cos
[
λσ (x) − w+(x)

√
ρ(x)

]
−

h
λαa−

(
λβ − 1

βp (x)
)

cos
[
λ (απ − σ (x)) + w−(x)

√
ρ(x)

]
+ O

(
λ−1 exp (|τ| σ (x))

)
(9)

Similarly, for the solution ψ (x, λ) following asiymptotic relation hold as |λ| → ∞. For 0 ≤ x < π
2 ,

ψ (x, λ) = R+ cos
[
λ (σ (π) − σ (x)) − w+(x)

√
ρ(x)

]
+R− cos

[
λ
(
βπ − (σ (π) − σ (x))

)
+ w−(x)
√
ρ(x)

]
+ 1
λ

(
H
β R+ +

γ
α

)
sin

[
λ (σ (π) − σ (x)) − w+(x)

√
ρ(x)

]
+ 1
λ

(
H
β R− +

γ
α

)
sin

[
λ
(
βπ − (σ (π) − σ (x))

)
+ w−(x)
√
ρ(x)

]
+ O

(
λ−2 exp (|τ| (σ (π) − σ (x)))

)
(10)
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ψ′ (x, λ) = R+
(
λα − 1

αp (x)
)

sin
[
λ (σ (π) − σ (x)) − w+(x)

√
ρ(x)

]
−R−

(
λα − 1

αp (x)
)

sin
[
λ
(
βπ − (σ (π) − σ (x))

)
+ w−(x)
√
ρ(x)

]
+ 1
λ

(
H
β R+ +

γ
α

) (
λα − 1

αp (x)
)

cos
[
λ (σ (π) − σ (x)) − w+(x)

√
ρ(x)

]
+ 1
λ

(
H
β R− +

γ
α

) (
λα − 1

αp (x)
)

cos
[
λ
(
βπ − (σ (π) − σ (x))

)
+ w−(x)
√
ρ(x)

]
+O

(
λ−1 exp (|τ| (σ (π) − σ (x)))

)
(11)

where R± =
1
2

(
1
a
±
βa
α

)
.

Define 〈
ϕ (x, λ) , ψ (x, λ)

〉
:= ϕ (x, λ)ψ′ (x, λ) − ϕ′ (x, λ)ψ (x, λ)

It is easy to verify that if y (x) and z (x) satisfy equations (1) and jump conditions (4), then
〈
y, z

〉
is independent

of x, and 〈
y, z

〉∣∣∣
x= π

2 −0
=

〈
y, z

〉∣∣∣
x= π

2 +0

Denote
∆ (λ) =

〈
ϕ,ψ

〉
= V

(
ϕ
)

= −U
(
ψ
)

(12)

The function ∆ (λ) is called the characteristic function of L,which is entire inλ and it has an at most countable
set of zeros {λn},n ∈ Z. It follows from (3) and (4) that the characteristic function of the pencil L can be
reduced

∆ (λ) = ϕ′ (π, λ) + Hϕ (π, λ) (13)

or

∆ (λ) = ∆0 (λ) +

∫ σ(π)

0
A (π, t) cosλtdt +

∫ σ(π)

0
B (π, t) sinλtdt (14)

Where ∆0 (λ) = ϕ
′

0 (π, λ) + Hϕ′0 (π, λ). Denote by Gδ = {λ : |λ − λn| ≥ δ,n ∈ Z} with fixed δ > 0. Then exist a
constant Cδ > 0 such that

|∆ (λ)| ≥ Cδ
(
C + β (λ)

)
exp (|τ| σ (π)) f orλ ∈ Gδ (15)

On here supposes that the function q (x)satisfies the additional condition∫ π

0

{∣∣∣y′ (x)
∣∣∣2 + q (x)

∣∣∣y (x)
∣∣∣2} dx > 0 (16)

For all y (x) ∈W2
2

([
0, π2

)
∪

(
π
2 , π

])
such that y (x) , 0and

y′ (0) y (0)−y′ (π) y (π) = 0. (17)

Lemma 2.1. The following statements hold:
i) The zeros {λn}n≥0 of the characteristic function ∆ (λ) coincide with the eigenvalues of the boundary value problem

L.
ii) The functions ϕ (x, λn) and ψ (x, λn) are corresponding eigenfunctions and exists a sequence

{
βn

}
, βn , 0,

n = 0, 1, 2, ..., such that

ψ(x, λn) = βnϕ (x, λn) . (18)

Next, we denote by L2
(
(0, π) ;ρ (x)

)
a space which has the inner product

(
ϕ,ψ

)
=

π∫
0

ρ (x)ϕ(x, λ)ψ(x, λ)dx
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Then it is shown in [2] that the eigenvalues of the boundary values problem L are real, nonzero, simple and
does not have associated functions. Additionaly, eigenfunctions correspondings to different eigenvalues of
the problem L are orthogonal in the sense of the equality

(λ1 + λ2)
(
ρ (x) y1, y2

)
− 2

(
ρ (x) y1, y2

)
= 0

Lemma 2.2. The eigenvalues {kn}n≥0 of the problem L are real and simple. The eigenfunctions corresponding to the
different eigenvalues are orthogonal in the weighted space L2

(
(0, π) ;ρ (x)

)
and for sufficiently large values of n, the

eigenvalue kn has the following behavior

kn = k0
n +

dn

k0
n

+
kn

k0
n

(19)

where, λ0
n are zeros of ∆0 (λ) = ϕ′0(π, λ) + Hϕ0 (π, λ) , dn is bounded and kn ∈ `2,

k0
n =

nπ
σ (π)

+ θn, sup
n
|θn| < +∞

Proof of lemmas similarly to the proof of [7], so we omit the proof. Let αn (n ≥ 0) be the normalized

constants, which are defined as αn :=

π∫
0

ρ (x)ϕ2 (x, λn) dx for all n ≥ 0.

Lemma 2.3. The following relation holds:

•

∆(kn) = −2αnβnkn (20)

where
•

∆(kn) =

(
d

dλ
∆ (λ)

)
k=kn

, βn = −
[
ϕ (π, kn)

]−1 .

In particular, it follows from (19) that all eigenvalues kn are simple.
Let be δ > 0 and fixed. Define Gδ :=

{
k ∈ C :

∣∣∣k − k0
n

∣∣∣ ≥ δ,n = 1, 2, ...
}
. The following inequality can be deduced

using the asymptotic formula for ∆ (λ) ,

∆0 (k) ≥ c |k| exp(|τ| σ (π)), k ∈ Gδ (21)

for some pozitive constant c.

3. Main Results

Now we state the main result of this work. It is assumed in what follows that if a certain symbol s
denotes an object related to L, then the corresponding symbol s̃ with tilde denote the analogous object
related to L̃.

Lemma 3.1. If λn = λ̃n, n = 0, 1, 2, ... then σ (π) = σ̃ (π).

Proof of Lemma is easily obtained from the asymptotic expression of λn.

Lemma 3.2. If kn = k̃n, n = 0, 1, 2, ... then a = ã , α = α̃, β = β̃, ρ (x) = ρ̃ (x) , h = h̃ and H = H̃.

Proof. Since, kn = k̃n, n = 0, 1, 2, ..., Lemma 2.2 requires σ (π) = σ̃ (π) or α + β = α̃ + β̃. ∆ (k) , ∆̃ (k) are entire
functions of order one by Hadamard factorization theorem, for λ ∈ C

∆ (k) ≡ C∆̃ (k) . (22)

Then from Lemma 2.3 and σ (π) = σ̃ (π) we obtain C = 1.
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On the other hand, (22) can be written as

∆0 (k) − C∆̃0 (k) =
[
∆̃ (k) − ∆̃0 (k)

]
− [∆ (k) − ∆0 (k)] (23)

Hence [
∆̃ (k) − ∆̃0 (k)

]
− [∆ (k) − ∆0 (k)] =

= −r+kβ sin kσ (π) + r−kβ sin k(απ − σ (π))

+ h
β

α

[
r+ cos kσ (π) − r− cos k(απ − σ (π))

]
+ H

{
r+ cos kσ (π) + r− cos k(απ − σ (π))

+
h

kα
[
r+ sin kσ (π) + r− sin k(απ − σ (π))

]}
−

{̃
r+kβ sin kσ (π) + r̃−kβ sin k(απ − σ (π))

+ h̃
β

α

[̃
r+ cos kσ (π) − r̃− cos k(απ − σ (π))

]}
− H̃

{̃
r+ cos kσ (π) + r̃− cos k(απ − σ (π))

+
h̃

kα
[̃
r+ sin kσ (π) + r̃− sin k(απ − σ (π))

]}
(24)

if we multiply both sides of (24) with sin kσ (π) and integrate with respect to k in (ε,T) (ε is sufficiently small
pozitive number) for any pozitive real number T, then we get

T∫
ε

([
∆̃ (k) − ∆̃0 (k)

]
− [∆ (k) − ∆0 (k)]

)
sin kσdk =

T∫
ε

{
−r+kβ sin kσ (π) + r−kβ sin k (απ − σ (π)) + h

β

α
[r+ cos kσ (π) − r− cos k (απ − σ (π))]

+H [r+ cos kσ (π) − r− cos k (απ − σ (π)) +
h

kα
(r+ sin kσ (π) + r− sin k (απ − σ (π)))]

−
[̃
r+kβ sin kσ (π) + r̃−kβ sin k (απ − σ (π)) + h̃

β

α

(̃
r+ cos kσ (π) − r̃− cos k (απ − σ (π))

)]
−H̃

̃r+ cos kσ (π) + r̃− cos k (απ − σ (π)) +
h̃

kα
(̃
r+ sin kσ (π) + r̃− sin k (απ − σ (π))

)
 sin kσdk

Since
∆ (k) − ∆0 (k) = O

(
k−2 exp (|τ| σ (π))

)
, ∆̃ (k) − ∆̃0 (k) = O

(
k−2 exp (|τ| σ (π))

)
for all k in (ε,T)

β

4
r̃+
−
β

4
r+ = O(

1
T2 )

By letting T tend to infinity we see that
r+ = r̃+ (25)

Similarly, if we multiply both sides of (24) with sin k (απ − σ(π)) and integrate again with respect to k in
(ε,T), and by letting T tend to infinity, then we get

r− = r̃− (26)

Taking a > 0 into account, (25) and (26) implies that a = ã, α = α̃,β = β̃.
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Considering that Lemma 3.2, and a = ã, if both sides of the last expression are multiplied by the cos kσ (π)
and integrate with respect to k in (ε,T) , then we get

h
β

α
r+ + Hr+ = h̃

β

α
r+ + H̃r+ (27)

Similary, if we multiply both sides of the last expression are with cos k (απ − σ(π)) and integrate again
with respect to k in (ε,T) , and by letting T tend to infinity, then we get

h
β

α
r− −Hr− = h̃

β

α
r− − H̃r− (28)

Finaly, from (27) and (28) implies that h = h̃ and H = H̃.

Theorem 3.3. If for any n ∈ Z, λn = λ̃n ,

y′ (c1, λn)
y (c2, λn)

=
ỹ′ (c1, λn)
ỹ (c2, λn)

(29)

Then p (x) = p̃ (x) on [0, π], q (x) = q̃ (x) a. e. on [0, π], and ρ (x) = ρ̃ (x), a = ã, h = h̃, H = H̃.

Proof. Letϕ (x, λ) be the solution of the equations (1) satisfying the initial conditionsϕ (0, λ) = 1,ϕ′ (0, λ) = h
and the jump conditions (4). Let ϕ̃ (x, λ)be the solution of the equations

−ϕ̃′′ (x, λ) +
[
q̃ (x) + 2λp̃ (x)

]
ϕ̃ (x, λ) = λ2ρ̃ (x) ϕ̃ (x, λ) (30)

With the initial conditions
ϕ̃ (0, λ) = 1, ϕ̃′ (0, λ) = h̃ (31)

and the jump conditions (4). Multiplying (1) by ϕ̃ (x, λ) and (30) by ϕ (x, λ), respectively, and subtracting,
we get

d
dx

[
ϕ̃ (x, λ)ϕ′ (x, λ) − ϕ̃′ (x, λ)ϕ (x, λ)

]
=

[(
q (x) − q̃ (x)

)
+ 2λ

(
p (x) − p̃ (x)

)]
ϕ (x, λ) ϕ̃ (x, λ) (32)

Integrating the above equality from 0 to c1 with respect to x, using the initial conditions at x = 0 and
Lemma 3.1, we have

H (λ) =
∫ c1

0

[(
q (x) − q̃ (x)

)
+ 2λ

(
p (x) − p̃ (x)

)]
ϕ (x, λ) ϕ̃ (x, λ) dx

= ϕ̃ (c1, λ)ϕ′ (c1, λ) − ϕ̃′ (c1, λ)ϕ (c1, λ)
(33)

It follows from (6)-(7) that H (λ) is an entire function of exponential type and there are some pozitive
constant A and B such that

|H (λ)| ≤ (A + B |λ|) exp (|τ| σ (π)) f or allλ ∈ C (34)

From the assumption (29) we have
H (λn) = 0 , n ∈ Z (35)

Define

F (λ) =
H (λ)
∆ (λ)

(36)

Which is entire function from the above arguments and it follows from (14) and (35) that

F (λ) = O (1)

For sufficiently large |λ|,λ ∈ Gδ, thus, by liouville’s theorem [4], we obtain for all λ that F (λ) = C.
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Where c is a constant. Let us show that the constant C = 0. Based on (24) and (14), we can rewrite the
equations H (λ) = C∆ (λ) in the form

2λ
∫ c1

0

(
p (x) − p̃ (x)

)
ϕ (x, λ) ϕ̃ (x, λ) dx +

∫ c1

0

(
q (x) − q̃ (x)

)
ϕ (x, λ) ϕ̃ (x, λ) dx

= C
{
∆0 (λ) +

∫ σ(π)

0 A (π, t) cosλtdt +
∫ σ(π)

0 B (π, t) sinλtdt
}

By use of Riemann-Lebesgue lemma [4], we see that the limit of the left-hand side of the above equality
exists as λ→∞ , λ ∈ R thus we obtain that C = 0. So we have H (λ) = 0 for all λ ∈ C.
As already mentioned, if H (λ) = 0 for all λ ∈ C, then from (33) we have
ϕ̃ (c1, λ)ϕ′ (c1, λ) − ϕ̃′ (c1, λ)ϕ (c1, λ) = 0 for all λ ∈ C
so
ϕ(c1,λ)
ϕ′(c1,λ) =

ϕ̃(c1,λ)
ϕ̃′(c1,λ) for all λ ∈ C.

The function M (λ) := ϕ(c1,λ)
ϕ′(c1,λ) is the Weyl function of the boundary value problem for equation (1) on

(0, c1)with boundary conditoons V
(
y
)

= 0, y′ (c1) = 0 and without jump conditions.
By [2], the Weyl function uniquely species p (x) and q (x)a.e. on (0, c1)and the coefficients in boundary and
jump conditions and ρ (x).

Theorem 3.4. If for any n ∈ Z, λn = λ̃n , αβ = α̃
β̃

, p (x) = p̃ (x) and q (x) = q̃ (x) on
(
0, α+β

4 π
)
, then p (x) = p̃ (x) and

q (x) = q̃ (x) a.e. on
(
α+β

4 π,
α+β

2 π
)

and ρ (x) = ρ̃ (x), a = ã, h = h̃, H = H̃

.

Proof. Let the boundary value problems Land L̃ satisfy the conditions of Teorem 3.4, then by virtue of
Lemma 2.4 and Lemma 3.2 a = ã, h = h̃, H = H̃ and ρ (x) = ρ̃ (x). For brevity, denote c1 =

α+β
4 π, c2 =

α+β
2 π.

Let ψ (x, λ), ψ̃ (x, λ) be the solutions of the equations

−ψ′′ (x, λ) +
[
q (x) + 2λp (x)

]
ψ (x, λ) = λ2ρ (x)ψ (x, λ) (37)

−ψ̃′′ (x, λ) +
[
q̃ (x) + 2λp̃ (x)

]
ψ̃ (x, λ) = λ2ρ̃ (x) ψ̃ (x, λ) (38)

With the initial conditions, respectively

ψ (π, λ) = 1 , ψ′ (π, λ) = −H (39)

ψ̃ (π, λ) = 1 , ψ̃′ (π, λ) = −H̃ (40)

and the jump conditions (4). After multipliying (37) by ψ̃ (x, λ) and (38) by ψ (x, λ) , we subtract these
equations from each other. Then by integrating on[c1, π] with respect to x, using the initial conditions (39)
and (40)and jump conditions (4), we have∫ π

c1

[(
q (x) − q̃ (x)

)
+ 2λ

(
p (x) − p̃ (x)

)]
ψ (x, λ) ψ̃ (x, λ) dx = ψ̃ (c1, λ)ψ′ (c1, λ) − ψ̃′ (c1, λ)ψ (c1, λ) (41)

From the hypothesis p (x) = p̃ (x) and q (x) = q̃ (x) on (0, c1).
Denote Q (x) = q (x) − q̃ (x), P (x) = p (x) − p̃ (x) and

F0 (λ) = 2λ
∫ π

c1

P (x)ψ (x, λ) ψ̃ (x, λ) dx +

∫ π

c1

Q (x)ψ (x, λ) ψ̃ (x, λ) dx (42)

It follows from (10) and (41) that F0 (λ) is an entire function of exponential type and there are some pozitive
constants A1 and B1 such that

|F0 (λ)| ≤ (A1 + B1 |λ|) exp (|τ| σ (π)) f or allλ ∈ C (43)
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It is clear from the properties ψ (x, λ), ψ̃ (x, λ) and the boundary conditions (2)

F0 (λn) = 0 , n ∈ Z (44)

Define

F (λ) :=
F0 (λ)
∆ (λ)

Which is an entire function from the above arguments and it follows from (15) and (43) that

F (λ) = O (1)

For sufficiently large |λ|,λ ∈ Gδ. Using Liouville’s theorem [4], we obtain for all λ that F (λ) = C.
Where C is a constant. Let us Show that the constant C = 0. We can rewrite the equations F0 (λ) = C∆ (λ) as

2λ
∫ π

c1
P (x)ψ (x, λ) ψ̃ (x, λ) dx +

∫ π
c1

Q (x)ψ (x, λ) ψ̃ (x, λ) dx

= −a+C
(
λβ − 1

βp (π)
)

sin
[
λσ (π) − w+(π)

β

]
+a−C

(
λβ − 1

βp (π)
)

sin
[
λ (απ − σ (π)) + w−(π)

β

]
+Ha+C cos

[
λσ (π) − w+(π)

β

]
+ Ha−C cos

[
λ (απ − σ (π)) + w−(π)

β

]
+O

(
exp (|τ| σ (π))

)
By use of Riemann-Lebesgue lemma [4], we see that the limit of the left-hand side of the above equality
exists as λ→∞ , λ ∈ R. Therefore, we get that C = 0. So, we have F0 (λ) = 0 for all λ ∈ C.
Then, from teh equality (41) we obtain
ψ̃ (c1, λ)ψ′ (c1, λ) − ψ̃′ (c1, λ)ψ (c1, λ) = 0 for all λ ∈ C. Hence,

ψ (c1, λ)
ψ′ (c1, λ)

=
ψ̃ (c1, λ)

ψ̃′ (c1, λ)
. (45)

Note that M (λ) := − ψ(c1,λ)
ψ′(c1,λ) is the Weyl function, defined [2], of the boundary value problem for equation (1)

on the interval (c1, π)with the boundary conditoons V
(
y
)

= 0, y′ (c1) = 0 and jump conditions (4). It has
been show in [2] that the Weyl function species the function p (x) and q (x)on (c1, π), consequently on (c1, c2).
Theorem is proved.

Corollary.
If for any n ∈ Z, λn = λ̃n , α

β = α̃
β̃

, p (x) = p̃ (x) and q (x) = q̃ (x) on (0, c1), then p (x) = p̃ (x) on (0, π) and

q (x) = q̃ (x) a.e. on (0, π) and ρ (x) = ρ̃ (x), a = ã, h = h̃, H = H̃.

Theorem 3.5. If λn = λ̃n for all n ∈ Z,, αβ = α̃
β̃

, p (x) = p̃ (x) and q (x) = q̃ (x) on
(
α+β

4 π,
α+β

2 π
)
, then p (x) = p̃ (x)

and q (x) = q̃ (x) a.e. on
(
0, α+β

4 π
)

and
(
α+β

2 π, π
)

andρ (x) = ρ̃ (x), a = ã, h = h̃, H = H̃.

Proof. By the Lemma 3.1 and the condition of Teorem 3.5, we have h = h̃, H = H̃, a = ã, ρ (x) = ρ̃ (x) and
p (x) = p̃ (x) and q (x) = q̃ (x) on (c1, c2).
Let

−ϕ′′ (x, λ) +
[
q (x) + 2λp (x)

]
ϕ (x, λ) = λ2ρ (x)ϕ (x, λ) (46)

−ϕ̃′′ (x, λ) +
[
q̃ (x) + 2λp̃ (x)

]
ϕ̃ (x, λ) = λ2ρ̃ (x) ϕ̃ (x, λ) (47)

With the initial conditions, respectively

ϕ (0, λ) = 1 , ϕ′ (0, λ) = h (48)

ϕ̃ (0, λ) = 1 , ϕ̃′ (0, λ) = h̃ (49)
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and the jump conditions (4). Multipliying (46) by ϕ̃ (x, λ) and (47) by ϕ (x, λ) , we subtract these equations
from each other. Then by integrating on[0, c2] with respect to x, using the initial conditions (48) and (49)
and jump conditions (4), we have

H (λ) = 2λ
∫ c1

0 P (x)ϕ (x, λ) ϕ̃ (x, λ) dx +
∫ c1

0 Q (x)ϕ (x, λ) ϕ̃ (x, λ) dx
= ϕ′ (c1, λ) ϕ̃ (c1, λ) − ϕ̃′ (c1, λ)ϕ (c1, λ)

(50)

From the hypothesis p (x) = p̃ (x) and q (x) = q̃ (x) on (c1, c2). Similarly to proof of Theorem 3.5, we have that
H (λ) = 0 for all λ ∈ C. Then, from equality
ϕ′ (c1, λ) ϕ̃ (c1, λ) − ϕ̃′ (c1, λ)ϕ (c1, λ) = 0 for all λ ∈ C.
so

ϕ (c1, λ)
ϕ′ (c1, λ)

=
ϕ̃ (c1, λ)
ϕ̃′ (c1, λ)

.

The function M (λ) := − ϕ(c1,λ)
ϕ′(c1,λ) is the Weyl function of the boundary value problem for the equation (1) on

(0, c1)with boundary conditoons V
(
y
)

= 0, y′ (c1) = 0 and without jump conditions (4) (see[2]). By [2],
the Weyl function uniquely species p (x) and q (x)a.e. on (0, c1). Next, now using Theorem 3.6 we obtain
p (x) = p̃ (x)and q (x) = q̃ (x) a.e. on (c2, π). Theorem is proved.

4. An interior inverse problems.

We cconsider the interior inverse problem for the same boundary problem L and obtain the corresponding
result.

Theorem 4.1. If λn = λ̃n for all n ∈ Z, αβ = α̃
β̃

, and

y (c1, λn)
y′ (c1, λn)

=
ỹ (c1, λn)
ỹ′ (c1, λn)

(51)

, then p (x) = p̃ (x) on [0, π], q (x) = q̃ (x) a.e. on [0, π]and ρ (x) = ρ̃ (x), a = ã, h = h̃, H = H̃.

Proof. Let ϕ (x, λ) be the solution of the equations (1) satisfying the initial conditions ϕ (0, λ) = 1 , ϕ′ (0, λ) =
h and jump conditions (4). Firstly, the assumption that λn = λ̃n and α

β = α̃
β̃

can determine ρ (x) = ρ̃ (x), a = ã,

h = h̃, H = H̃ by Lemma 3.1 the other hand from (50), we see that

ϕ (c1, λ)
ϕ′ (c1, λ)

=
ϕ̃ (c1, λ)
ϕ̃′ (c1, λ)

,

Then from (50), the entire function H (λ) has zeros {λn} , n ∈ Z, i.e. H (λn) = 0. Similarly to the proof of
Theorem4, we have that p (x) = p̃ (x) and q (x) = q̃ (x) on (0, c1). Once we get that p (x) = p̃ (x) and q (x) = q̃ (x),
by Corollary of Theorem 3.4 we have that p (x) = p̃ (x) on [0, π], q (x) = q̃ (x) a.e. on [0, π]. Theorem is
proved.

Theorem 4.2. Let m (n)be a sequence of integers such that inf
n∈Z

m(n)
λn
≤ 1

(i) If for any n ∈ Z,

λm(n) = λ̃m(n),
y
(
c1, λm(n)

)
y′

(
c1, λm(n)

) =
ỹ
(
c1, λm(n)

)
ỹ′

(
c1, λm(n)

) and
α
β

=
α̃

β̃
(52)

Then p (x) = p̃ (x) on (0, c1) and q (x) = q̃ (x) a.e. on (0, c1) and ρ (x) = ρ̃ (x), a = ã, h = h̃, H = H̃.
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(ii) If for any n ∈ Z,

λm(n) = λ̃m(n),
y
(
c2, λm(n)

)
y′

(
c2, λm(n)

) =
ỹ
(
c2, λm(n)

)
ỹ′

(
c2, λm(n)

) and
α
β

=
α̃

β̃
(53)

Then p (x) = p̃ (x) on (c2, π)and q (x) = q̃ (x) a.e. on (c2, π) and ρ (x) = ρ̃ (x), a = ã, h = h̃, H = H̃.

Proof. (i) from the assumption (52) and (50) we have

ϕ′
(
c1, λm(n)

)
ϕ̃

(
c1, λm(n)

)
− ϕ̃′

(
c1, λm(n)

)
ϕ

(
c1, λm(n)

)
= 0

Which means
H

(
λm(n)

)
= 0 , n ∈ Z (54)

Next, we shall show that H (λ) = 0 on the whole λ-plane. From (50) and (6) on has

|H (λ)| ≤ (A + Br) e2c1r|sinθ| (55)

For some pozitive costants A and B, where λ = reiθ. Moreover, we see that the entire function H1 (λ) is a
function of exponential type less than 2c1.
Define the indicator of function H1 (λ) by

h (θ) = lim
r→∞

sup
ln

∣∣∣∣H1

(
reiθ

)∣∣∣∣
r

(56)

One obtain the following estimate from (55)and (56) that h (θ) ≤ 2c1 |sinθ|.
Let us denote by n (r)the number of zeros of H1 (λ) in the disk |λ| ≤ r. From the equations (4.4), the
assimption of (52) and known asymtotic expreession of the eigenvalues λn, we have the following estimate
for the number of zeros of H1 (λ) in the disk |λ| ≤ r.

n (r) = 1 + 2 [σr (1 + ε (r))] = 2σr (1 + ε (r)) .

Here ε (r) → 0 f or r → ∞, σis number such that σ > α+β
2 = 2c1

π and [x]is the integer part of x. It follows that
in the case under consideration

lim
r→∞

n (r)
r

= 2σ >
4c1

π
=

c1

π

∫ 2π

0
|sinθ| dθ ≥

1
2π

∫ 2π

0
h (θ) dθ (57)

To complate the proof we have to recall the following theorem [4]: the set of zeros of every entire function
of the exponential type, not identically zero, satisfy the inequality

lim
r→∞

inf
n (r)

r
≤

1
2π

∫ 2π

0
h (θ) dθ (58)

Inequalities (57) and (58) implay that H1 (λ) ≡ 0 on the whole λ-plane. As already mentioned, if H1 (λ) ≡ 0,
then from (52) we have

ϕ̃ (c1, λ)ϕ′ (c1, λ) − ϕ̃′ (c1, λ)ϕ (c1, λ) = 0

so
ϕ(c1,λ)
ϕ′(c1,λ) =

ϕ̃(c1,λ)
ϕ̃′(c1,λ) on the whole λ-plane.

The function M (λ) := ϕ(c1,λ)
ϕ′(c1,λ) is the Weyl function of the boundary value problem for the equation (1) on

(0, c1)with boundary conditoons U
(
y
)

= 0, y′ (c1) = 0 and without jump conditions (4) (see[2]). By [2], the
Weyl function uniquely species p (x) and q (x)a.e. on (0, c1) and coefficient h.
(ii)
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To prove that p (x) = p̃ (x) on (c2, π)and q (x) = q̃ (x) a.e. on (c2, π) and ρ (x) = ρ̃ (x), a = ã, h = h̃, H = H̃.
We will consider the supplementary problem L

−y′′ +
[
q1 (x) + 2λp1 (x)

]
y = λ2ρ (x) y , x ∈

[
0, π2

)
∪

(
π
2 , π

]
y (0) −Hy (0) = 0
y (π) − hy (π) = 0
y
(
π
2 + 0

)
= a−1y

(
π
2 − 0

)
y′

(
π
2 + 0

)
= ay′

(
π
2 − 0

)
+ γ

(
π
2 − 0

)
Where q1 (x) = q (π − x) and p1 (x) = p (π − x). A direct calculation implies that ŷn := yn (π − x) is the solution
to the supplementary problem L̂ and ŷn (π − x) = yn (c2). Note that π − c2 ∈

(
0, π2

)
. Thus the assmption

conditions for L̂ in the case (i) are still satisfied. Repeting the above arguments we can obtain the proof of
this Theorem 4.2.
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