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Abstract: Xanthomonas arboricola pathovar corylina (Xac) causes a bacterial blight disease
*[2': https://orcid.org/0000-0003-2897-9911 (BBD) resulting in economic losses in young hazelnut trees worldwide. Although virulent Xac
genomes were sequenced, there is no comparative genomics study on these genomes. In this
study, all publicly available whole-genome sequences of Xac were compared by a comparative
genomics approach. The results showed that Xac CFBP1159 and Xac CFBP2565 genomes are
phylogenetically related to each other based on the orthology results. The genomic diversification

*Corresponding author’s: of Xac strains was depended on mobile genetic elements. Interestingly, Xac NCCB100457

gafak [CALINIDAVIAR genome had additional motility genes than Xac CFBP1159 and Xac CFBP2565 genomes. All Xac
epartment of Molecular Biology and i .

Genetics, Faculty of Arts and Sciences, Ordu genomes had shared virulence-related genes such as secretion systems and adherence factors. The

University, 52200, Ordu, Turkey.

52 safakkalindamar@odu.edur comparative genomics approach of this study supports that Xac genomes have slight genetic

variations, and the virulence-related proteins interacted with the host proteins. This comparative
genomics approach will provide insights into the understanding of the Xac genomes.

Keywords: Comparative genomics, host-pathogen interaction, phytopathogenic, virulence, Xanthomonas.

Fitopatojenik Xanthomonas arboricola patovar corylina Suslarina
Karsilastirmah Genomik Bakis

Oz: Xanthomonas arboricola patovar corylina (Xac), Diinya ¢apinda geng findik agaglarida
ekonomik kayiplarla sonuglanan findik bakteriyel yanikligi hastaligina neden olmaktadir.
Viriilent Xac suglarinin tim genomlar1 dizilenmis olmasina ragmen, bu genomlar iizerinde bir
karsilagtirmali genomik galigma yoktur. Bu calismada, Xac suslarinin halka agik tim genom
dizileri, karsilagtirmali genomik yaklagim kullanilarak karsilastirilmistir. Elde edilen sonuglarda,
Xac CFBP1159 ve Xac CFBP2565 genomlarinin, ortoloji sonucuna gore filogenetik olarak
birbirleriyle daha yakin iligkili oldugu saptanmistir. Xac suslarinin genomik ¢esitliliginin mobil

*Sorumlu yazar: genetik elementlerle iliskisi oldugu anlagilmustir. flging bir sekilde, Xac NCCB100457 genomu,
B IAILINIDAMIAR o Xac CFBP1159 ve Xac CFBP2565 genomlarindan daha fazla motilite genlerine sahiptir. Tiim
Ordu Universitesi, Fen-Edebiyat Fakiiltesi, . X . . .

Molekiiler Biyoloji ve Genetik Boliimii, Xac genomlari, sekresyon sistemleri ve adhezyon faktorleri gibi viriilans ile ilgili ortak genlere
52200, Ordu, Tiirkiye. sahiptir. Bu calismanin karsilastirmali genomik yaklasimu, Xac genomlarinin bazi genetik

D4 safakkalindamar@odu.edu.tr . o - SR . . . o
varyasyonlara sahip oldugu ve viriilans ile ilgili proteinlerin konakg¢i proteinlerle etkilesime

girdigini desteklemektedir. Bu ¢alismanin karsilastirmali genomik yaklasimi, Xac genomlarinin
anlagilmasi i¢in bir 6ngorii saglamstir.

Anahtar kelimeler: Bitki patojeni, karsilastirmali genomik, konak patojen iliskisi, viriilans,
Xanthomonas.
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INTRODUCTION

Xanthomonas arboricola is primarily known as a
Gram-negative phytopathogenic bacterium that can infect
economically important plant species such as prunus,
walnut, and hazelnut (Vauterin et al., 1995). X. arboricola
pathovar-assigned strains are mostly described as pathogenic
bacteria although there are X. arboricola strains considered
non-pathogenic bacteria. Moreover, there are nine pathovar
strains (arracaciae, celebensis, corylina, fragariae,
guizotiae, juglandis, populi, pruni, and zantesdeschiae)
identified in X. arboricola (Fischer-Le Saux et al., 2015). As
one of the most virulent pathovars, Xanthomonas arboricola
pathovar corylina (Xac) is a causative agent of BBD of
hazelnut trees (Corylus spp.). The BBD was first described
on C. maxima in the USA (Barss, 1913). Later, the disease
has been increasingly reported on C. avellana from hazelnut
producer countries in the European Union (Eppo, 2004). Xac
has been also prevalently isolated from the hazelnut orchards
in the Black Sea Region of Turkey, which is a major hazelnut
producer in Europe (Karahan et al., 2013). The symptoms of
BBD can appear on hazelnut tree’s leaves and twigs. It has
been also reported that the disease can also kill hazelnut trees
or delay the growth of trees (Lamichhane et al., 2014).

The genus of Xanthomonas include a variety of
plant pathogenic bacterial species, and these bacteria can
utilize diverse virulence mechanisms such as secretion
systems, effector proteins of diverse secretion systems,

Table 1. Genome features of Xac strains.
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flagella, and small RNAs (Timilsina et al., 2020). Recently,
a comparative genomics study on virulent and non-virulent
Xanthomonas arboricola pv. pruni (Xap) strains showed
genomic differences between virulent and non-virulent Xap
strains (Garita et al., 2017). On the other hand, the Xac strain
was isolated from the leaf spots of C. colurna L. in Colorado,
and the first DNA sequence of Xac was revealed in 2013
(Caballero et al., 2013). There are also sequences of two Xac
genomes (Xac CFBP1159 and Xac CFBP2565) publicly
stored in the National Center for Biotechnology Information
(NCBI). However, these genomes were not used for any
comparative genomics analysis.

Although several Xac genomes have been
sequenced and their genomes were publicly available, there
is no comparative genomics study on Xac’s genomes. Thus,
the goal of this study was to compare Xac genomes that are
publicly available in the NCBI database. This study provides
a comparative insight into the comparison of Xac genomes,
genomic variations, orthologous clusters at the protein level,
annotation and gene predictions, prediction of virulence
factors, and interactions of host-pathogen proteins.

MATERIAL AND METHOD
Bacterial genome data: The Xac genomes data

were obtained from NCBI (as of 01/11/2020). The Xac
genomes were listed with features in Table 1.

Species Strain Host Location Size (Mbp) G+C Level Accession # Reference

Xac CFBP2565 C. avellana France 5.05 65.6 Contig NZ_MDSJ01000001.1 INRA

Xac CFBP1159 C. maxima USA 511 65.5 Scaffold NZ_MDEA01000001.1 INRA

Xac NCCB100457 C. colurna USA 5.23 65.5 Contig NZ_APMC02000173.1 Caballero et al., 2013

Location: country of origin, Level: genome assembly status, Mbp: million base pairs, Xac: Xanthomonas arboricola pathovar corylina, C: Corylus.

Comparative genome analyses: Blast Ring Image
Generator (BRIG) was used to visualize the comparative
genome analysis of Xac strains (Alikhan et al., 2011). The
orthologous clusters of Xac strains at the protein level were
calculated by using OrthoVenn2 (Wang et al., 2015).
Prokaryotic Genomes Automatic Annotation Pipeline
(NCBI PGAAP) and Rapid Annotation using Subsystem
Technology (RAST) annotation pipelines were used for the
annotation and gene prediction of bacterial genomes
(Angiuoli et al., 2008; Overbeek, 2014). The potential
protein-protein interactions between 3 of Xac whole proteins
and the complete proteins of the eukaryotic host C. avellana
(European hazelnut) genome (GenBank accession #:
CAAJGP010000000) were determined using the Host-
Pathogen Interaction Database (HPIDB) by the default
upload options (Ammari et al., 2016; Kumar and Nanduri,
2010). The predicted putative virulence factors were
determined by downloading the full dataset from the
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Virulence Factors Database (VFDB) and by uploading them
to BioEdit software (Lihong et al., 2016). The local BLAST
feature of BioEdit was used with a cutoff E-value of 10-%
(Hall, 1999).

RESULTS

Genome features of Xac genomes: The genomic
information about Xac genomes (plant host, location, and
genome-level) was summarized in Table 1. The three
genomes of Xac was represented and stored in NCBI. The
average genome size of Xac genomes is 5.13 million base-
pairs (Mbp). The average G+C content of Xac genomes is
65.53 mol%. The NCBI genome data indicated that Xac
genomes were isolated from different hazelnut species
(Table 1). There are no plasmids sequences reported for Xac
strains.
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Comparative analyses of Xac genomes: The
visualization of the comparison of genes by BRIG showed
that most of the genes among all Xac genomes were
conserved (Fig 1). In orthology analysis, the comparison of
proteins encoded by Xac genomes was determined by
OrthoVenn2 (Fig 2). All strains shared 3694 clusters of
orthologous proteins. The unique protein clusters identified
such as 1 cluster (Non-ribosomal peptide synthetase) in Xac
CFBP1159, 5 clusters (Phage portal protein, P-type
conjugative  transfer protein TrbJ, DDE-type
integrase/transposase) in Xac CFBP2565, and 5 clusters
(SDR family oxidoreductase, UvrD helicase, virulence
RhuM family protein, transcriptional regulator) in Xac
NCCB100457 was unique to genomes. The annotation and
categorization of genes based upon the RAST showed that
there is a close relationship between Xac CFBP1159 and Xac
CFBP2565 genomes in the subsystems categorization of
genes (Fig 3). However, Xac NCCB100457 had slightly
more genes in some subcategories compared to other Xac
genomes. Interestingly, Xac NCCB100457 had motility and
chemotaxis genes, which other Xac genomes do not encode
any of these genes (Fig 3). In host-pathogen interactions
(HPIs), the interactions were predicted between a total of 26
proteins of Xac and 34 proteins of C. avellana (Fig 4). The
virulence factors detected in Xac genomes were categorized
based on the function such as adherence, adhesion, and
secretion systems (Table 2). The pathogen proteins
interacted with the host proteins are listed in Table 3.
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Figure 1. Comparative circular visualization of Xac genomes. The
reference strain is Xac NCCB100457. The two inner rings represent
the G+C content (black) and GC-skew (green/purple). The three
outside rings represent a genomics comparison between Xac
CFBP1159 and Xac CFBP2565 strains and the reference Xac
NCCB100457 strain.
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Figure 2. Venn diagram of protein clusters encoded by Xac
genomes based on orthology. The Venn diagrams and bar charts
show the numbers of unique and shared orthologous genes of each
genome.

Table 2. Virulence factors of Xac strains.

Xanthomonas arboricola pv. corylina

Class Virulence Factor CFBP1 CFBP2565 NCCB100457
159
Adherence Type IV pili + + +
Adhesion Outer membrane protein + + +
Adhesion Autotransporter-like protein + + +
Secretion system  Type Il secretion system + + *
+ + +

Secretion system  Type |11 secretion system

(+): Presence of virulence factor in the genome.

Table 3 Predicted pathogen proteins in host-pathogen interactions.
Species Protein ID Pathogen Protein
Xac CFBP1159 WP_016903631.1 Diaminopimelate epimerase

WP_024937682.1  ParA family protein
WP_039815062.1  tRNA preQ1(34) S-adenosylmethionine

ribosyltransferase-isomerase

Response regulator

Histidinol dehydrogenase

ParA family protein

Thioredoxin TrxC

Mannitol dehydrogenase family protein

CHASE3 domain-containing protein

Diaminopimelate epimerase

ParA family protein

Histidinol dehydrogenase

ParA family protein

Thioredoxin TrxC

Mannitol dehydrogenase family protein

CHASE3 domain-containing protein

Response regulator

ParA family protein

Thioredoxin TrxC

CHASE3 domain-containing protein

WP_039811254.1 Diaminopimelate epimerase

WP_039815062.1  tRNA preQ1(34) S-adenosylmethionine

ribosyltransferase-isomerase

Response regulator

Histidinol dehydrogenase
WP_039816312.1 Mannitol dehydrogenase, partial
WP_039816713.1 ParA family protein

Xac: Xanthomonas arboricola pathovar corylina.

WP_039815650.1
WP_039815715.1
WP_039816713.1
WP_053045317.1
WP_053046172.1
WP_104613287.1
WP_016903631.1
WP_024937682.1
WP_039815715.1
WP_039816713.1
WP_053045317.1
WP_053046172.1
WP_104566950.1
WP_104567625.1
WP_024937682.1
WP_039810077.1
WP_039810822.1

Xac CFBP2565

Xac NCCB100457

WP_039815650.1
WP_039815715.1
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Figure 3. SEED subsystem categorization and RAST annotation of Xac genomes. The colors indicate the number of functional categorization

of genes in Xac genomes.

Xanthomonas arboricola pv. corylina NCCB100457

Xanthomonas arboricola pv. corylina CFBP2565

X

Xanthomonas arboricola pv. corylina CFBP1159

Figure 4. Visualization of predicted interactions network of host C. avellana proteins and bacterial Xac proteins. The shapes and colors

represent host proteins (blues circles) and bacterial proteins (red triangles).

DISCUSSION AND CONCLUSION

In this research, all publicly available genomes of
Xac were analyzed by comparative genomics methods.
This is the first comparative genomics analysis of Xac
genomes isolated from three different hazelnut species.

Orthology analysis provides more accurate
information about the phylogenetic relationship between
closely related bacterial strains (Ullah et al., 2015). Based
on the orthology analysis of Xac genomes in this study, Xac
CFBP1159 and Xac CFBP2565 genomes are more closely
related than Xac NCCB100457 genome. On the other hand,
Xac strains share 3694 orthologous clusters. The genetic
differences among genomes depend on mobile elements.
This finding suggests that genetic differentiation of Xac
genomes is linked to the acquisition of different mobile
elements. Interestingly, Xac NCCB100457 genome
possesses additional motility and chemotaxis gene sets.
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This variation may be related to location and host
adaptation.

The prediction of potential interactions between
host and pathogen proteins may provide valuable
information about an infection process (Durmus et al.,
2015). The HPIs analysis in this study showed that a total
of 26 proteins of Xac proteins interacted with host C.
avellana proteins. These results confirm that multiple
potential interactions occur between Xac and C. avellana
in the host-pathogen interactions. Thus, the HPIs result
demonstrated evidence of Xac virulence during infection.
Determination of virulence factors of bacterial pathogens
is important to understand the pathogenesis of bacteria
during the infection process (Wu et al., 2008). The whole-
genome sequencing of Xac strains enables identifying
virulence-related factors. Identification of virulence factors
in this study revealed that Xac genomes have important
virulence-related factors such as type Il secretion system
(T2SS), type Il secretion system (T3SS), and adhesion
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factors (Table 2). The bacterial adhesion of Xanthomonas
strains is crucially important for the invasion of plant tissue
during the diseases process (Mhedbi-Hajri et al., 2011).
While Xac strains invade plant tissues, degradative
enzymes and secretion system-dependent effector proteins
play a major role in establishing a successful bacterial
infection. For example, T3SS and effector proteins are
identified as important virulence factors in plant immunity
suppression by Xac strains (Hajri et al., 2011; Jacques et
al., 2016). In addition to T3SS, T2SS also plays an
important role in secreting a variety of degradation
enzymes in the genus of Xanthomonas (Szczesny et al.,
2010). Overall, these virulence factors may contribute to
the bacterial pathogenicity of Xac strains in the host.

As a result, the comparative genomics data
presented in this study showed that Xac strains are closely
related to each other. The virulence-related factors of Xac
strains are also important in host-pathogen interactions.
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