
International Journal of Applied Mathematics, Electronics and Computers 8(4): 273-281, 2020

e-ISSN: 2147-8228

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS

ELECTRONICS AND COMPUTERS

www.dergipark.org.tr/ijamec

International

Open Access

Volume 08
Issue 04

December, 2020

* Corresponding author. E-mail address: mehmetisitann@gmail.com

DOI: 10.18100/ijamec.832673

Research Article

Comparison and Evaluation of Cross Platform Mobile Application Development

Tools

Mehmet ISITAN a , Murat KOKLU b

 a Sakarya University, Faculty of Computer and Information Science, Department of Software Engineering
b Selcuk University, Faculty of Technology, Department of Computer Engineering

 ARTICLE INFO ABSTRACT

Article history:

Received 28 November 2020

Accepted 6 December 2020

 In order to develop a mobile application, it is necessary to develop software separately for each

operating system to be outputted. In response to this problem, frameworks that can give application

outputs for more than one operating system by developing applications on only one platform have
been developed. With the recent diversification of these systems, which are called cross platform

mobile application development tools, which one should be preferred has become a problem for

developers. In this study, the cross-platform mobile application development tools that have come

to the fore in recent years will be determined and evaluated separately based on the pros and cons
of distinguishing parameters. With the help of the applications to be developed, values such as

processor, memory, battery and network usage, rendering time, opening time, installation file size,

application size will be measured. It is also aimed to help developers find out which framework is

more suitable for their needs by comparing them on topics such as popularity, third party software
support, operating systems that can be outputted, development languages and ease of use, speed -

performance. In the study, it was observed that Flutter and React Native gave more successful

results.

This is an open access article under the CC BY-SA 4.0 license.

(https://creativecommons.org/licenses/by-sa/4.0/)

Keywords:

Cross Platform,

Mobile Development,

Mobile Frameworks,

One Code

1. Introduction

As it is known, there are many mobile operating systems

used in the market such as Android, IOS, Windows Phone,

Blackberry, Ubuntu, Symbian, RIM OS, BADA, Palm,

Maemo, Meego, Verdict, KaiOS, Open WebOS [1].

Considering the programming processes of the programs

that will run on these operating systems, it is observed that

the software languages and platforms of all three are

completely independent from each other. Therefore, each

application should be developed in accordance with the

language and template determined by the operating system

it will run on. This necessity forces mobile application

developers to have a very difficult, time consuming and

costly process.

With the effect of developing technology in recent

years, a solution has been developed that will provide

revolutionary convenience in developing applications for

mobile devices. Thanks to these tools, which are called

cross platform mobile application development tools,

software can be developed on only one platform and

output can be obtained in accordance with the software

development languages and templates determined by all

these operating systems. While using these tools, it will be

sufficient to develop software by only complying with the

software language and format determined by the specified

tool. In this way, with the code written using the

environment provided by the selected platform,

application output can be obtained to the platforms needed

faster, easier and with less cost. The previous studies on

this subject are given below.

In the study conducted by Allen et al (2010);

Frameworks such as PhoneGap and Rhomobile were

compared and the processes of creation and publishing in

app stores were mentioned [2].

Palmieri et al. (2012) has discussed a comparison

between four frameworks: Rhodes, PhoneGap,

http://www.dergipark.org.tr/ijamec
https://doi.org/10.18100/ijamec.832673
https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0000-0001-8200-5654
https://orcid.org/0000-0002-2737-2360

Işıtan and Köklü, International Journal of Applied Mathematics Electronics and Computers 08(04): 273-281, 2020

- 274 -

DragonRad, MoSync. Comparison was made according to

application interfaces, programming languages, supported

mobile operating systems, market share, licenses and

integrated development environments [3].

Heitkötter et al. (2013), in their studies; they evaluated

web applications, applications developed with PhoneGap

or Titanium Mobile and native applications. With this

evaluation, it is concluded that PhoneGap product is more

suitable for applications using native interfaces [4].

Dalmasso et al. (2013) conducted a survey for

PhoneGap, Titanium, and Sencha Touch. Comparisons

have been made in terms of CPU, memory usage and

power consumption. Test applications have been

developed on the Android operating system using these

tools. It has been determined that PhoneGap consumes less

memory, CPU and power since it does not contain special

interface components [5].

Amatya et al. (2013) with their study; They argued that

although cross platform frameworks are not fully mature,

they show great potential. As a result of the study, it is

concluded that the web-based approach offers the best for

cross-platform mobile application development [6].

In the study by Gültürk Karlı (2014), a new software

framework developed to help developers using cross

platform mobile application tools is proposed. The

proposed software framework has provided various

features to increase the efficiency and quality of the

resulting application. The developed software framework

has been experimentally applied on data mining

applications [7].

Charkaoui et al. (2014) stated that the choice of cross-

platform mobile application development framework

depends on the following two factors in their study; what

kind of mobile application is needed and the requirements

of the targeted platforms. It is concluded that the existing

tools are insufficient for high capacity applications [8].

Dhillon et al (2014); they compared PhoneGap,

Appcelerator Titanium, Adobe Air and MoSync tools. As

a result of the study, they stated that Adobe Air and

Appcelerator Titanium gave the best results and PhoneGap

gave the worst results [9].

Tunali et al. (2015) compared the PhoneGap, Xamarin,

Appcelerator Titanium, and Smartface App Studio tools on

a theoretical table [10].

In the study conducted by Boushehrinejadmoradi et al.

(2015); a testing tool called X-Checker has been

developed. Xamarin, a popular framework that enables

Windows Phone applications to be cross compiled on

native Android and iOS applications, has been tested [11].

Jiang (2016); It has evaluated Xamarin and Cordova

tools by scoring them with parameters such as ease of use,

setup, productivity, memory and power consumption,

security, project size and achieved total scores close to

each other [12].

Latif et al (2016); worked on a questionnaire to

investigate the basic requirements of cross platform

mobile application development tools. It is concluded that

the MDA (Model Driven Architecture) approach is

superior [13].

In the study conducted by Öberg (2016), Xamarin and

Cordova tools were evaluated on an application called

Teknisk Förvaltning. CPU and RAM usage, development

speed, application launch speed and the views of tools such

as DatePicker and AlertDialog were compared [14].

Cristiane et al. (2018) conducted a study involving

comparison between PhoneGap, Sencha Touch and

Titanium frameworks and native applications. With the

research, they aimed to measure their current maturity

status. Memory usage and performances were measured

with an application that takes photographs and accesses

multimedia sources. It is concluded that native

applications perform better in all respects and the Titanium

framework is slower than others [15].

In the study of Shah et al. (2019), native applications

and applications written with cross platform frameworks

were compared theoretically. As a result, it has been

concluded that while the desired kind of applications can

be developed with native applications, it is concluded that

large-scale applications such as the Asphalt game cannot

be developed with cross platform frameworks. [16].

Application developers spend a lot of time to determine

which mobile application development tool is the most

suitable for them. Because after the developers choose one

of these tools, they first enter the learning and

professionalization process, and then the application

development process.

In this study, the pros and cons of each of them,

including the recently released cross-platform mobile

application development tools, have been evaluated

separately on the basis of distinctive parameters. An

application was developed and measured on the empty

foundation of each platform. It is also aimed to help

developers find out which mobile application development

tool is more suitable for their needs by comparing the

processor, memory, battery and network usage, the

platforms it supports, popularity, third party software

support, rendering and opening time, speed-performance.

2. Material and Method

There are many frameworks for developing cross

platform mobile applications. Some of them are React

Native, Flutter, Xamarin, Nativescript, Ionic Framework,

Unity 3D, Cocos 2D, Titanium, Phonegap, Sencha Touch,

Appcelerator Titanium, Apache Cordova, Rhodes, Onsen

UI, Framework 7, Kony, Jasonette, iFactr, FeedHenry, Qt

Corona [17]. The use of many of them has decreased

considerably in recent years and a few of them have started

to be preferred. In this study, first of all, frameworks that

are trending in the last period will be determined and then

Işıtan and Köklü, International Journal of Applied Mathematics Electronics and Computers 08(04): 273-281, 2020

- 275 -

performance tests will be made between the applications

to be developed. In order to determine the most preferred

ones, the 3 systems from which the developers get the most

help will be used. These; GitHub is Stackoverflow and

Google Trends.

StackOverflow (SO) is the most popular community for

getting answers to software development questions and is

a rapidly growing knowledge base on topics ranging from

algorithms to languages and tools [18]. The graph showing

the cross platform mobile application development tools

that have been the most sought after in SO in recent years

is given in Figure 1.

Figure 1. Trending frameworks of recent years on the
Stackoverflow site [19]

According to the data announced by SO, Flutter is the

3rd and React Native is the 8th in the list of the most

popular frameworks by developers. The complete list is

given in Figure 2. According to these data, the number of

records opened on the SO about the trending frameworks

of recent years is given in Figure 3.

Figure 2. List of most popular frameworks based on
Stackoverflow 2019 data [20]

Figure 3. Number of records opened on Stackoverflow about
frameworks specified so far

Google Trends (GT) gives the number of searches done

on Google. When the same research is done on GT, the

graphic in Figure 4 is obtained. According to this graph, it

can be easily seen that the development tools that software

developers use the most and seek support the most in

recent years are React Native and Flutter.

Figure 4. Comparison of the last 5 years according to Google
Trends

GitHub is the most popular web-based collaboration

platform for software developers. It is the world's largest

open source software platform with over 28 million users

[21]. The number of 3rd party applications shared on

GitHub and calculated based on the keyword are given in

Table 1 [22].

Table 1. Number of projects on GitHub [22]

Platform name Number of projects on GitHub

React Native 21,832

Flutter 15,140

Nativescript 687

Xamarin 3,129

On GitHub, users star the applications they like and

inform other users that they are useful. Accordingly, the

number of stars is also of great importance. The star

numbers of these platforms shared with open source are

given in Table 2 below.

0
10000
20000
30000
40000
50000
60000
70000
80000

Işıtan and Köklü, International Journal of Applied Mathematics Electronics and Computers 08(04): 273-281, 2020

- 276 -

Table 2. Star numbers on GitHub [22]

Platform name Number of stars on GitHub

React Native 90.7k

Flutter 105k

Nativescript 19.1k

Xamarin

Xamarin.Forms 4.9k

Xamarin-macios 1.9k

Xamarin-android 1.5k

In line with all these data, it was decided to compare

React Native, Flutter, Xamarin and Nativescript, which are

among the most preferred cross platform mobile

application development tools in recent years. Comparison

process; The same application will be written on each

mobile application development platform and the loading

performance of these applications will be measured on the

same device. These apps contain a customized list of 1000

elements in total with styles. The written applications will

be tested on the emulator of the Google Pixel 3 device with

Android 10 operating system. Results will be obtained

while viewing all of the objects in this application on the

screen.

In Figure 5, the basic function of the applications written

is given in the React Native platform. Then, screenshots of

the build.gradle files of these applications are given. The

basic implementation of the Xamarin framework does not

contain a build.gradle file. However, if desired, the basic

settings here can be changed later. Therefore, the gradle

settings in the basic application of all the specified

versions are the same.

Figure 5. Application codes written with React Native

Figure 6. React Native application's gradle.build file

Figure 7. Flutter application's gradle.build file

Figure 8. Gradle.build file of Nativescript application

Işıtan and Köklü, International Journal of Applied Mathematics Electronics and Computers 08(04): 273-281, 2020

- 277 -

3. Experimental Results

In this section, the applications written are run in debug

mode separately on each platform and measurements are

made based on parameters such as application size,

creation time, use of device resources.

3.1. Application Size

The applications developed in this section were made

operational and their sizes were examined.

3.1.1. The size of the application resource on disk

In this section, the size of the source files of the

application created in debug mode to a specified file path

is examined, excluding the resources of each mobile

application development tool. After the applications are

installed and run, the total dimensions of the application

resources on the computer are given in Table 3.

Table 3. The size of the source files on the disk in the
measurement platforms

Platform
Name

Source Files on Disk (MB) Version

React Native 467 0.63.3

Flutter 401 1.22.1

Nativescript 434 7.0.10

Xamarin 133 16.7.000.456

3.1.2. The size of the application's installation file

In this section, the dimensions of the setup files (.apk)

created in release mode of the most basic applications for

each platform are examined. Table 4 shows the dimensions

of the installation files of these applications for the

Android operating system.

Table 4. The size of the installation files of the applications
written

Platform Name Size of Setup Files (MB)

React Native 23.4

Flutter 15.2

Nativescript 23.5

Xamarin 11.1

3.2. Render Time

After this section (including this section), measurements

continued through the application mentioned in section 2

for comparison operations. The time from running the

mentioned applications in debug mode to seeing the last

element in the list is given in Table 5.

Table 5. Application render times

Platform Name Time(s)

React Native 51

Flutter 28

Nativescript 14

Xamarin 36

When the application written with React Native is run,

the elements in the list are created on the screen by default

as 20. As such, it takes 3 minutes and 26 seconds in total

to open the application and load the entire list. When the

settings were made that allow the entire list to be loaded at

the same time, this time was measured as 51 seconds.

When the last list item is displayed, the list still continues

to show the empty list downstream and after 3 seconds the

empty items at the bottom of the list are automatically

discarded and restricted to show the correct list. No such

problem has been encountered with others.

3.3. Use of Device Resources

In this section, device resource consumption was

measured while running mobile applications written

separately for each platform on the device and displaying

all objects on the screen. Profiler feature of Android Studio

application was used in the measurement process.

3.3.1. CPU usage

After the applications written with each of the cross

platform mobile application development tools were run

sequentially, a thread containing the name of the current

application was created in the list of threads running on the

device. Measurements have been made based solely on the

amount of CPU used by the current application thread.

Measurements were made until all the objects in the lists

in each application were loaded so that they could be

displayed on the screen.

First, the application written with React Native was run

and a thread called test (com.test) was created in the thread

list. This thread required a maximum of 79% of the

processor's resources for 51 seconds as shown in Figure 9.

The vertical axis in the graphs indicates the rate of the

CPU's resource used in percent, and the horizontal axis

indicates the time in seconds.

When the application written with Flutter was run, a

thread called flutter_app (ple.flutter_app) was created in

the thread list. This thread has used the processor for 28

seconds as shown in Figure 10 and needed a maximum of

75% resources.

When the application written with Nativescript was run,

a thread called nativescriptIlk

(org.nativescript.nativescriptIlk) was created in the thread

list. This thread used the processor for 14 seconds as in

Figure 11 and needed a maximum of 70% resources. The

graphic of Xamarin with the same process is given in

Figure 12. This process took 36 seconds and required a

maximum of 62% of resources.

Işıtan and Köklü, International Journal of Applied Mathematics Electronics and Computers 08(04): 273-281, 2020

- 278 -

Figure 9. CPU rates used by the application written with React Native

Figure 10. CPU rates used by the application written with Flutter

Figure 11. CPU rates used by the application written with Nativescript

Figure 12. CPU rates used by the application written with Xamarin

3.3.2. Memory usage

In order to measure the memory usage, applications

written for each platform were run one by one and the

memory usage amount during the loading of all 1000

objects was measured.

In the application written with React Native, when this

process was performed, the graphic in Figure 13 appeared

and the application required a maximum resource of 33.2

MB. The green part in the graph shows the amount used

by the application. The vertical axis indicates the amount

of memory used, and the horizontal axis indicates the time

in seconds.

Figure 13. Memory rates used by the application written with
React Native

When the same operation was performed in the

application written with Flutter, the graphic in Figure 14

appeared and the application required a maximum

resource of 23.4 MB. The graph of Nativescript is given in

Figure 15 and it needs a maximum of 26.8 MB of resources,

and finally the graph of Xamarin is given in Figure 16 and

it needs a maximum of 18.3 MB of resources.

Işıtan and Köklü, International Journal of Applied Mathematics Electronics and Computers 08(04): 273-281, 2020

- 279 -

Figure 14. Memory rates used by the application written with
Flutter

Figure 15. Memory rates used by the application written with
Nativescript

Figure 16. Memory rates used by the application written with
Xamarin

3.3.3. Energy consumption

In order to measure energy consumption, or in other

words, battery usage, the status of applications during

loading all objects was examined.

Battery usage data during the loading of the content of

the application written with React Native is given in Figure

17. The vertical axis in this graph indicates the usage rate

of the battery and the horizontal axis indicates the time in

seconds. The graphic of Flutter is given in Figure 18,

Nativescript graphic is given in Figure 19 and finally the

graphic of Xamarin is given in Figure 20.

Figure 17. The amount of energy used by the application
written with React Native

Figure 18. The amount of energy used by the application
written with Flutter

Figure 19. The amount of energy used by the application
written with Nativescript

Figure 20. The amount of energy used by the application
written with Xamarin

3.3.4. Network usage

In this section, network usage was checked until the

whole list was loaded. No network request is included in

any of the applications. In this case, the application code is

expected not to make any network exchanges.

In the application written with React Native, network

requests are made intermittently. The related graphic is

given in Figure 21. In this graph, the vertical axis indicates

the amount of network usage per second, and the

horizontal axis indicates the time in seconds.

Figure 21. Network rates used by the application written with
React Native

Applications written with other mobile application

development tools did not perform any network

Işıtan and Köklü, International Journal of Applied Mathematics Electronics and Computers 08(04): 273-281, 2020

- 280 -

communication.

4. Results and Recommendations

Table 6. Some features of popular cross platform mobile app development tools

 React Native Flutter Xamarin Ionic Framework NativeScript

Open Source Yes Yes Yes, paid Yes, paid Yes, paid

Company Facebook Google Microsoft Drifty.co Telerik

Technologies
React.js,

Javascript
Dart

C# (Objective-C, Java and C++ based

libraries)

Javascript,

TypeScript

Javascript, Angular,

TypeScript

Target

platforms
iOS, Android

iOS,

Android
iOS, Android, Windows iOS, Android iOS, Android

Release date 2015 2017 2012 2013 2015

Looking at SO and GT data, it is seen that one of the

most preferred frameworks is Unity3D. Unity3D, unlike

other prominent development tools, is suitable for

developing applications that contain more games or

graphics. A developer who wants to develop such a cross-

platform mobile application is recommended to choose the

Unity3D framework. The theoretical comparison of

frameworks other than this framework is given in Table 6.

The two most important criteria for choosing the cross

platform mobile application development tool are the

application developed has a performance and error-free

operation and there is sufficient developer support behind

it. In this context, considering SO, GitHub and GT data,

React Native and Flutter have the biggest popularity and

developer support in recent years. According to this

criterion, Flutter has surpassed React Native in the last few

years. In terms of performance, it is seen that Flutter is

ahead of React Native.

If these tools are used to develop only one application,

one of the important criteria to look at is 3rd party software

support. The application to be developed should be divided

into modules and it should be checked whether these

modules were developed for the vehicle to be selected

before. If you already have web technologies development

experience, you should check out the development

languages to learn fast. In this sense, React Native is one

step ahead as it can be developed with Javascript. For

Flutter, Dart, its own development language, must be

learned.

As a result of all these evaluations, it is recommended

to choose any of the React Native and Flutter tools, but the

final decision belongs to the developer.

References

[1] NetMarketshare. (2020, 03.12.2020). Market Share Statistics

for Internet Technologies. Available:

https://netmarketshare.com/operating-system-market-
share.aspx?options=%7B%22filter%22%3A%7B%22%24and

%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in

%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C

%22dateLabel%22%3A%22Trend%22%2C%22attributes%2

2%3A%22share%22%2C%22group%22%3A%22platform%2

2%2C%22sort%22%3A%7B%22share%22%3A-
1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%

22dateInterval%22%3A%22Monthly%22%2C%22dateStart%

22%3A%222019-

11%22%2C%22dateEnd%22%3A%222020-

10%22%2C%22segments%22%3A%22-1000%22%7D

[2] S. Allen, V. Graupera, and L. Lundrigan, Pro smartphone

cross-platform development: iPhone, blackberry, windows

mobile and android development and distribution. Apress,
2010.

[3] M. Palmieri, I. Singh, and A. Cicchetti, "Comparison of cross-

platform mobile development tools," in 2012 16th

International Conference on Intelligence in Next Generation

Networks, 2012, pp. 179-186: IEEE.

[4] H. Heitkötter, S. Hanschke, and T. A. Majchrzak, "Evaluating

cross-platform development approaches for mobile

applications," in International Conference on Web Information
Systems and Technologies, 2012, pp. 120-138: Springer.

[5] I. Dalmasso, S. K. Datta, C. Bonnet, and N. Nikaein, "Survey,

Comparison and Evaluation of Cross Platform Mobile

Application Development Tools," (in English), 2013 9th

International Wireless Communications and Mobile

Computing Conference (Iwcmc), pp. 323-328, 2013.

[6] S. Amatya and A. Kurti, "Cross-platform mobile development:

challenges and opportunities," in International Conference on
ICT Innovations, 2013, pp. 219-229: Springer.

[7] G. KARLI, "Cross-platform mobile development," Dokuz

Eylül Üniversitesi, 2014.

[8] S. Charkaoui and Z. Adraoui, "Cross-platform mobile

development approaches," in 2014 Third IEEE International

Colloquium in Information Science and Technology (CIST),

2014, pp. 188-191: IEEE.
[9] S. Dhillon and Q. H. Mahmoud, "An evaluation framework for

cross ‐ platform mobile application development tools,"

Software: Practice and Experience, vol. 45, no. 10, pp. 1331-

1357, 2015.

[10] V. Tunali, S. J. C. B. U. F. o. T. D. o. S. E. Zafer, Maltepe

University: Faculty of Engineering, and N. S. D. o. S.

Engineering, "Comparison of popular cross-platform mobile

application development tools," 2015.

[11] N. Boushehrinejadmoradi, V. Ganapathy, S. Nagarakatte, and

L. Iftode, "Testing Cross-Platform Mobile App Development
Frameworks (T)," in 2015 30th IEEE/ACM International

Conference on Automated Software Engineering (ASE), 2015,

pp. 441-451.

[12] S. Jiang, "Comparison of native, cross-platform and hyper

mobile development tools approaches for iOS and Android

mobile applications," Department of Computer Science and

Engineering. University of Gothenburg, pp. 1-15, 2016.

[13] M. Latif, Y. Lakhrissi, E. H. Nfaoui, and N. Es-Sbai, "Cross
platform approach for mobile application development: A

survey," in 2016 International Conference on Information

Technology for Organizations Development (IT4OD), 2016, pp.

1-5: IEEE.

https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D

Işıtan and Köklü, International Journal of Applied Mathematics Electronics and Computers 08(04): 273-281, 2020

- 281 -

[14] L. Öberg, "Evaluation of Cross-Platform Mobile Development

ToolsDevelopment of an Evaluation Framework," ed, 2016.

[15] C. M. S. Ferreira et al., "An Evaluation of Cross-Platform

Frameworks for Multimedia Mobile Applications

Development," IEEE Latin America Transactions, vol. 16, no.

4, pp. 1206-1212, 2018.

[16] K. Shah, H. Sinha, and P. Mishra, "Analysis of Cross-Platform
Mobile App Development Tools," in 2019 IEEE 5th

International Conference for Convergence in Technology

(I2CT), 2019, pp. 1-7.

[17] Statista. (2020, 03.12.2020). Cross-platform mobile

frameworks used by software developers worldwide in 2019

and 2020. Available:

https://www.statista.com/statistics/869224/worldwide-

software-developer-working-hours/
[18] A. Bosu, C. S. Corley, D. Heaton, D. Chatterji, J. C. Carver,

and N. A. Kraft, "Building reputation in StackOverflow: An

empirical investigation," in 2013 10th Working Conference on

Mining Software Repositories (MSR), 2013, pp. 89-92.

[19] Stackoverflow. (2020, 03.03.2020). Stackoverflow Trends.

Available:

https://insights.stackoverflow.com/trends?tags=react-

native%2Cflutter%2Cxamarin%2Cnativescript%2Cionic-
framework%2Cunity3d%2Ccocos2d-

x%2Ctitanium%2Cphonegap-build%2Csencha-

touch%2Cappcelerator%2Ccordova%2Ccoronasdk%2Cqt-

creator

[20] Stackoverflow. (2020, 03.03.2020). Most Loved, Dreaded, and

Wanted Other Frameworks, Libraries, and Tools. Available:

https://insights.stackoverflow.com/survey/2019#technology-
_-most-loved-dreaded-and-wanted-other-frameworks-

libraries-and-tools

[21] T. V. Varuna and A. Mohan, "Trend Prediction of GitHub using

Time Series Analysis," IEEE, 2019.

[22] GitHub. (2020, 19.10.2020). Topics on GitHub. Available:

https://github.com/topics/

https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/
https://insights.stackoverflow.com/trends?tags=react-native%2Cflutter%2Cxamarin%2Cnativescript%2Cionic-framework%2Cunity3d%2Ccocos2d-x%2Ctitanium%2Cphonegap-build%2Csencha-touch%2Cappcelerator%2Ccordova%2Ccoronasdk%2Cqt-creator
https://insights.stackoverflow.com/trends?tags=react-native%2Cflutter%2Cxamarin%2Cnativescript%2Cionic-framework%2Cunity3d%2Ccocos2d-x%2Ctitanium%2Cphonegap-build%2Csencha-touch%2Cappcelerator%2Ccordova%2Ccoronasdk%2Cqt-creator
https://insights.stackoverflow.com/trends?tags=react-native%2Cflutter%2Cxamarin%2Cnativescript%2Cionic-framework%2Cunity3d%2Ccocos2d-x%2Ctitanium%2Cphonegap-build%2Csencha-touch%2Cappcelerator%2Ccordova%2Ccoronasdk%2Cqt-creator
https://insights.stackoverflow.com/trends?tags=react-native%2Cflutter%2Cxamarin%2Cnativescript%2Cionic-framework%2Cunity3d%2Ccocos2d-x%2Ctitanium%2Cphonegap-build%2Csencha-touch%2Cappcelerator%2Ccordova%2Ccoronasdk%2Cqt-creator
https://insights.stackoverflow.com/trends?tags=react-native%2Cflutter%2Cxamarin%2Cnativescript%2Cionic-framework%2Cunity3d%2Ccocos2d-x%2Ctitanium%2Cphonegap-build%2Csencha-touch%2Cappcelerator%2Ccordova%2Ccoronasdk%2Cqt-creator
https://insights.stackoverflow.com/trends?tags=react-native%2Cflutter%2Cxamarin%2Cnativescript%2Cionic-framework%2Cunity3d%2Ccocos2d-x%2Ctitanium%2Cphonegap-build%2Csencha-touch%2Cappcelerator%2Ccordova%2Ccoronasdk%2Cqt-creator
https://insights.stackoverflow.com/survey/2019#technology-_-most-loved-dreaded-and-wanted-other-frameworks-libraries-and-tools
https://insights.stackoverflow.com/survey/2019#technology-_-most-loved-dreaded-and-wanted-other-frameworks-libraries-and-tools
https://insights.stackoverflow.com/survey/2019#technology-_-most-loved-dreaded-and-wanted-other-frameworks-libraries-and-tools
https://github.com/topics/

