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Abstract 

In this paper, complex arithmetic in polar form, briefly sectors arithmetic is discussed. The fact 

that the family of sectors is not closed under addition and subtraction gives rise to the need of an 

optimized approximation. Precisely, the problem discussed, is to determine the smallest possible 

sector that contains the sum of two sectors. An efficient algorithm that is solving this problem is 

introduced and compared with existing algorithms in the literature. The algorithms are 

implemented in MATLAB R2020a and tested for all cases. It is also shown by examples that the 

proposed algorithms perform much better than their ancestors and avoid their errors.  
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1. INTRODUCTION 

 

In complex interval arithmetic three different types of intervals are introduced: rectangular [1-3], circular 

[4], and sector representation [5]. All these representations suffer from not being closed under one or more 

of the basic operations addition, subtraction, multiplication and division. 

Whenever an operation fails to be closed for a given representation, the issue is to obtain the smallest 

possible rectangle, circle or sector respectively that just includes the result. 

 

Representations based on sectors fail to be closed under addition and subtraction. Klatte and Ulrich [5] first 

introduced arithmetic operations on sectors. They proposed sector arithmetic as an alternative to rectangular 

and circular arithmetic in the complex interval space. They defined six different alternatives; all of them 

are based on mapping sectors to rectangles or circles, performing the operations on the chosen domain, and 

then returning to the original representation. Obviously, this forth and back transformations between 

rectangular and polar forms introduces a good deal of pessimism and is in no way optimal. Then, Flores [6] 

proposed algorithms for performing basic arithmetic operations on sectors; he called complex fans 

arithmetic. Even though all algorithms in [6] are proven mathematically and verified empirically, they 

require a significant amount of computation and moreover, they fail in the case where the origin is a 

boundary point of the sum of two sectors. Finally, Candau et al. in [7] derived analytical algorithms for the 

computation of the smallest sector circumscribing the sum of two sectors. Unfortunately, we realized that 

the algorithm 3. MinAngle proposed in [7] may not work correctly in some scenarios and we demonstrated 

this by presenting some counter-examples. These facts motivated this work: the research for an effective 

algorithm to perform addition and subtraction. 
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Since the basic operations multiplication and division of sectors are defined flawlessly using real interval 

arithmetic our focus is addition and subtraction. For polar complex interval addition (subtraction) we will 

introduce a highly efficient and low cost algorithm compared to the algorithms in [6] and [7]. Sectors, from 

a different perspective, are two dimensional intervals on the real or complex plane. Therefore all results 

obtained in this work can be used not only for complex intervals but also for 2-D real intervals. 

 

The rest of the paper is organized as follows: Section 2 presents the definition and arithmetic of polar 

intervals. The proposed algorithm is introduced in Section 3. In Section 3 we preferred to analyze the 

problem and summarize the results in an algorithm at the end rather than delivering the material in theorem-

proof form. Section 4 contains the implementation of the proposed algorithms and the comparison with the 

available algorithms in the literature. Finally, Section 5 concludes the work. 

 

2. POLAR COMPLEX INTERVALS 

 

Hereafter 𝕀(ℝ) denotes the set of closed real intervals. Similarly, 𝕀(ℝ+) will denote the set of non-

negative real intervals. 

 

Definition 1 Let [𝜌] = [𝜌−, 𝜌+] ∈ 𝕀(ℝ+) and [𝜑] = [𝜑−, 𝜑+] ∈ 𝕀(ℝ); the set defined by  

𝑆 = {𝑠 ∈ ℂ: 𝑠 = 𝜌𝑒𝑖𝜑, 𝜌 ∈ [𝜌], 𝜑 ∈ [𝜑]} is called a polar complex interval (or sector), with magnitude 

interval [𝜌] and angle interval [𝜑] denoted by [𝜌]𝑒𝑖[𝜑].  

 

For simplicity, and without loss of generality, we will restrict our study to the case in which  

[𝜑] = [𝜑−, 𝜑+] ∈ 𝕀(ℝ+), since all other cases can be reduced to the study of this one. 

 

2.1. Classification of Sectors According to Angle Intervals 

 

It is important to distinguish between types of sectors according to their angle intervals [𝜑]. It turns out to 

be sufficient to distinguish according to whether 𝜑+ ≤ 2𝜋 or 𝜑+ > 2𝜋. 

     • The set 𝑆(ℂ) is defined as the set of sectors with angle interval [𝜑] satisfying 𝜑+ ≤ 2𝜋. Thus, for all 

[𝜌]𝑒𝑖[𝜑] in 𝑆(ℂ), we have 𝜑+ − 𝜑− ≤ 2𝜋, 0 ≤ 𝜑− < 2𝜋 and 0 < 𝜑+ ≤ 2𝜋 (see Figure 1). 

 

 

 

Figure 1. Some members of the set 𝑆(ℂ) 

 

    • The set 𝑆∗(ℂ) is defined as the set of sectors with angle interval [𝜑] satisfying 𝜑+ > 2𝜋. Thus, for all 

[𝜌]𝑒𝑖[𝜑] in 𝑆∗(ℂ), we have 𝜑+ − 𝜑− ≤ 2𝜋, 0 ≤ 𝜑− < 2𝜋 and 2𝜋 < 𝜑+ < 4𝜋 (see Figure 2).  
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Figure 2. Some members of the set 𝑆∗(ℂ) 

 

2.2. Operations on Sectors 

 

Definition 2 Let 𝑆1 = [𝜌1]𝑒
𝑖[𝜃1], 𝑆2 = [𝜌2]𝑒

𝑖[𝜃2] be two sectors, and ∗∈ {+,−,⋅,∕}. Then we define the 

corresponding operations for 𝑆1 and 𝑆2 by 𝑆1 ∗ 𝑆2: =Ⓢ{𝑆1⊛𝑆2}, where  

𝑆1⊛𝑆2:= {𝑠1 ∗ 𝑠2: 𝑠1 ∈ 𝑆1, 𝑠2 ∈ 𝑆2} and Ⓢ{𝑆1⊛𝑆2} is the smallest sector that encloses 𝑆1⊛𝑆2.  

 

Let 𝑆1 = [𝜌1]𝑒
𝑖[𝜃1] = [𝜌1

−, 𝜌1
+]𝑒𝑖[𝜃1

−,𝜃1
+] and 𝑆2 = [𝜌2]𝑒

𝑖[𝜃2] = [𝜌2
−, 𝜌2

+]𝑒𝑖[𝜃2
−,𝜃2

+] be given sectors. If the 

set 𝑆1⊛𝑆2 is already a sector, then clearly Ⓢ{𝑆1⊛𝑆2} = 𝑆1⊛𝑆2. Some important properties of  

𝑆1⊛𝑆2 are summarized below. 

    1.  The results from multiplication 𝑆1⊙𝑆2 or division 𝑆1⊘𝑆2 are sectors. Therefore, Ⓢ{𝑆1⊙𝑆2} =

𝑆1⊙𝑆2 and Ⓢ{𝑆1⊘𝑆2} = 𝑆1⊘𝑆2. 

    2.  The results from addition 𝑆1⊕𝑆2 or subtraction 𝑆1⊖𝑆2 are not sectors in general.  

For this reason the addition of sectors has been handled with different approaches in the papers [5,6] and 

[7]. The method in [5] is to transform the sectors into rectangular regions, perform the addition exactly 

and map the result back into a sector. Obviously this method introduces a serious amount of pessimism 

and is far from being optimal. The method in [6] is optimal except for some certain cases but with high 

computational cost. Finally the algorithm introduced in [7] contains some errors as we will show in the 

sequel. 

 

 
Figure 3. Sectors are not closed under addition and subtraction  
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Consider the example, 𝑆1 = [1,2]𝑒
𝑖[30∘,60∘], 𝑆2 = [3,4]𝑒

𝑖[200∘,260∘]. Then, the resulting set from 𝑆1⊙𝑆2 

or 𝑆1⊘𝑆2 is a sector, while the results from 𝑆1⊕𝑆2 or 𝑆1⊖𝑆2 are not sectors. This can be seen in 

Figure 3. 

By the rules for arithmetic operations in 𝕀(ℝ) and the continuity of the exponential function the 

multiplication and division operations can easily performed as follows: 

 

    • Multiplication 

 

The multiplication of 𝑆1 and 𝑆2 is given by, 

 

 𝑆1 ⋅ 𝑆2: =Ⓢ{𝑆1⊙𝑆2} 

 =Ⓢ{𝜌1𝜌2𝑒
𝑖(𝜃1+𝜃2): 𝜌1 ∈ [𝜌1], 𝜌2 ∈ [𝜌2], 𝜃1 ∈ [𝜃1], 𝜃2 ∈ [𝜃2]} 

 = [𝜌1
−𝜌2

−, 𝜌1
+𝜌2

+]𝑒𝑖[𝜃1
−+𝜃2

−,𝜃1
++𝜃2

+]. 

 

Note that, from the definition of a sector, when (𝜃1
+ + 𝜃2

+) − (𝜃1
− + 𝜃2

−) ≥ 2𝜋 we have to set  

[𝜃1
− + 𝜃2

−, 𝜃1
+ + 𝜃2

+] = [0,2𝜋]. 

 

    • Division 

 

The division of 𝑆1 and 𝑆2 is given by, 

 

 𝑆1 ∕ 𝑆2: =Ⓢ{𝑆1⊘𝑆2} 

 =Ⓢ {
𝜌1

𝜌2
𝑒𝑖(𝜃1−𝜃2): 𝜌1 ∈ 𝜌1], 𝜌2 ∈ 𝜌2], 𝜃1 ∈ 𝜃1], 𝜃2 ∈ 𝜃2]} , 0 ∉ 𝜌2] 

 = {
[
𝜌1
−

𝜌2
+ ,
𝜌1
+

𝜌2
−] 𝑒

𝑖[𝜃1
−−𝜃2

++2𝑛𝜋,𝜃1
+−𝜃2

−+2𝑛𝜋], if𝜃1
− − 𝜃2

+ < 0

[
𝜌1
−

𝜌2
+ ,
𝜌1
+

𝜌2
−] 𝑒

𝑖[𝜃1
−−𝜃2

+,𝜃1
+−𝜃2

−],                  otherwise
, 

 

where 𝑛 is the smallest positive integer such that 𝜃1
− − 𝜃2

+ + 2𝑛𝜋 ≥ 0. Also we set  

[𝜃1
− − 𝜃2

+, 𝜃1
+ − 𝜃2

−] = [0,2𝜋] when (𝜃1
+ − 𝜃2

−) − (𝜃1
− − 𝜃2

+) ≥ 2𝜋.  

 

3. ADDITION AND SUBTRACTION OF TWO SECTORS 

 

In general there is no simple, direct way to add or subtract two sectors 𝑆1 and 𝑆2, but the minimal sector, 

Ⓢ{𝑆1⊛𝑆2} can be obtained from 𝑆1⊛𝑆2. In order to evaluate this hull, we have to compute the best 

possible lower and upper bounds for both [𝜌] and [𝜑] such that the sector they represent is the smallest 

possible sector that contains the set 𝑆1⊛𝑆2. 

 

The problem of subtraction can be transformed into addition. That is subtraction of 𝑆1 and 𝑆2 can be 

calculated as: 𝑆1 − 𝑆2 = 𝑆1 + (−𝑆2), where (−𝑆2):= {𝑤:−𝑤 ∈ 𝑆2}. Therefore, we can use addition to 

solve subtraction problems as well. 

 

In this section, the basis of a method for determining Ⓢ{𝑆1⊕𝑆2} will be presented. 

Let 𝑠1 ∈ 𝑆1, 𝑠2 ∈ 𝑆2 and formualte 𝑠1 + 𝑠2 = 𝑠 as: 

 

𝜌1𝑒
𝑖𝜃1 + 𝜌2𝑒

𝑖𝜃2 = 𝜌𝑒𝑖𝜑 . (1)  
 

To determine 𝜌, we simply take the complex absolute value of both sides of Equation (1). Hence, 
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 𝜌2 = |𝜌1𝑒
𝑖𝜃1 + 𝜌2𝑒

𝑖𝜃2| 

      = 𝜌1
2 + 𝜌2

2 + 2𝜌1𝜌2cos(𝜃1 − 𝜃2). 
 

Taking the positive square roots yields,

 

𝜌 = √𝜌1
2 + 𝜌2

2 + 2𝜌1𝜌2cos(𝜃1 − 𝜃2). (2) 

 

To determine 𝜑, from Equation (1), we have, 

 𝑅𝑒(𝑠) = 𝜌cos(𝜑) = 𝜌1cos(𝜃1) + 𝜌2cos(𝜃2), 
  𝐼𝑚(𝑠) = 𝜌sin(𝜑) = 𝜌1sin(𝜃1) + 𝜌2sin(𝜃2). 
 

From the last two equations we get, 

 

tan(𝜑) =
𝜌1 sin(𝜃1) + 𝜌2 sin(𝜃2)

𝜌1 cos(𝜃1) + 𝜌2 cos(𝜃2)
. (3) 

 

3.1. Computing The Bounds of Angle Interval [𝝋] 
 

Recall that tan𝜑 was given in Equation (3) and thus: 

 

𝜑 = arctan(
𝜌1sin(𝜃1) + 𝜌2sin(𝜃2)

𝜌1cos(𝜃1) + 𝜌2cos(𝜃2)
) . (4) 

 

where 𝜑 ∈]
−𝜋

2
,
𝜋

2
[ and the quadrant in which it falls is determined by the signs of 𝜌1sin(𝜃1) + 𝜌2sin(𝜃2) 

and 𝜌1cos(𝜃1) + 𝜌2cos(𝜃2). If 𝜌1cos(𝜃1) + 𝜌2cos(𝜃2) = 0, then 

 

 𝜑 = {

𝜋

2
,        if𝜌1sin(𝜃1) + 𝜌2sin(𝜃2) > 0,

3𝜋

2
,      if𝜌1sin(𝜃1) + 𝜌2sin(𝜃2) < 0.

 

 

Hence for each 𝑠 ∈ 𝑆1⊕𝑆2 we can compute the corresponding value of 𝜑, except when 𝑠 = 0. 

Our goal is to compute the bounds 𝜑− and 𝜑+ such that [𝜑−, 𝜑+] is the least interval that encloses all 

possible angles of 𝑆1⊕𝑆2. This means that we have to compute the minimum and the maximum of the 

function 𝜑 with respect to all points (𝜌1, 𝜌2, 𝜃1, 𝜃2) ∈ Ω = [𝜌1] × [𝜌2] × [𝜃1] × [𝜃2]. 
Differentiating 𝜑 we obtain: 

 

 
𝜕𝜑

𝜕𝜌1
=
𝜌2sin(𝜃1−𝜃2)

𝜌2
, 

 
𝜕𝜑

𝜕𝜌2
=
−𝜌1sin(𝜃1−𝜃2)

𝜌2
, 

 
𝜕𝜑

𝜕𝜃1
=
𝜌1𝜌2cos(𝜃1−𝜃2)+𝜌1

2

𝜌2
, 

 
𝜕2𝜑

𝜕𝜃1
2 =

𝜌1𝜌2sin(𝜃1−𝜃2)(𝜌1
2−𝜌2

2)

𝜌4
, 

 
𝜕𝜑

𝜕𝜃2
=
𝜌1𝜌2cos(𝜃1−𝜃2)+𝜌2

2

𝜌2
, 

 
𝜕2𝜑

𝜕𝜃2
2 =

𝜌1𝜌2sin(𝜃1−𝜃2)(𝜌1
2−𝜌2

2)

𝜌4
. 

 

Note that ∇𝜑(𝜌1, 𝜌2, 𝜃1, 𝜃2) is defined whenever 𝜑 is. Thus, it is easy to check that the function 𝜑 has no 

critical points on its domain of definition. 

 

We will find two points 𝑥min, 𝑥max ∈ Ω such that, 

 min𝜑 = 𝜑− = 𝜑(𝑥min) ≤ 𝜑(𝑥) ≤ 𝜑(𝑥max) = 𝜑
+ = max𝜑 for all 𝑥 ∈ Ω.  
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From 
𝜕𝜑

𝜕𝜌1
 and 

𝜕𝜑

𝜕𝜌2
 we note that the possible values of 𝜌1 and 𝜌2 are {𝜌1

+, 𝜌1
−} and {𝜌2

+, 𝜌2
−}, respectively. 

Hence the optimal point (𝑥min or 𝑥max) must fall into one of the following types of points: 

  

    • 𝑋1 = {(𝜌1, 𝜌2, 𝜃1, 𝜃2): 𝜌1 ∈ {𝜌1
+, 𝜌1

−}, 𝜌2 ∈ {𝜌2
+, 𝜌2

−}, 𝜃1 ∈]𝜃1[, 𝜃2 ∈ {𝜃2
+, 𝜃2

−}}, where 𝜃1 is given by 

solving the equation 
𝜕𝜑

𝜕𝜃1
= 0. 

 

    • 𝑋2 = {(𝜌1, 𝜌2, 𝜃1, 𝜃2): 𝜌1 ∈ {𝜌1
+, 𝜌1

−}, 𝜌2 ∈ {𝜌2
+, 𝜌2

−}, 𝜃1 ∈ {𝜃1
+, 𝜃1

−}, 𝜃2 ∈]𝜃2[}, where 𝜃2 is given by 

solving the equation 
𝜕𝜑

𝜕𝜃2
= 0. 

 

    • 𝑋3 = {(𝜌1, 𝜌2, 𝜃1, 𝜃2): 𝜌1 ∈ {𝜌1
+, 𝜌1

−}, 𝜌2 ∈ {𝜌2
+, 𝜌2

−}, 𝜃1 ∈ {𝜃1
+, 𝜃1

−}, 𝜃2 ∈ {𝜃2
+, 𝜃2

−}}. Notice that we 

only need to select 𝜃1 and 𝜃2 because the signs of 
𝜕𝜑

𝜕𝜌1
 and 

𝜕𝜑

𝜕𝜌2
 are determined by the sign of sin(𝜃1 − 𝜃2). 

In what follows we identify the optimality conditions of 𝜃1 and 𝜃2.  

 

Minimality condition: 

 

𝜃1 = {
𝜃1
−,        if 𝜌1𝜌2cos(𝜃1

− − 𝜃2) + 𝜌1
2 ≥ 0,

𝜃1
+ ,       if 𝜌1𝜌2cos(𝜃1

+ − 𝜃2) + 𝜌1
2 < 0

, 𝜃2 = {
𝜃2
−,        if 𝜌1𝜌2cos(𝜃1 − 𝜃2

−) + 𝜌2
2 ≥ 0,

𝜃2
+,        if 𝜌1𝜌2cos(𝜃1 − 𝜃2

+) + 𝜌2
2 < 0.

  

 

 

Maximality condition: 

 

𝜃1 = {
𝜃1
+,        if 𝜌1𝜌2cos(𝜃1

+ − 𝜃2) + 𝜌1
2 ≥ 0,

𝜃1
−,        if 𝜌1𝜌2cos(𝜃1

− − 𝜃2) + 𝜌1
2 < 0

 , 𝜃2 = {
𝜃2
+        if 𝜌1𝜌2cos(𝜃1 − 𝜃2

+) + 𝜌2
2 ≥ 0,

𝜃2
−        if 𝜌1𝜌2cos(𝜃1 − 𝜃2

−) + 𝜌2
2 < 0.

  

 

Without loss of generality, we will assume that 𝜌1
− ≤ 𝜌2

−. We write 𝑖𝑛𝑡(𝑆1⊕𝑆2) and 𝜕(𝑆1⊕𝑆2) to 

denote the interior of 𝑆1⊕𝑆2 and the boundary of 𝑆1⊕𝑆2, respectively and split the problem into two 

cases. 

 

Case 1. [𝜌1] ∩ 𝜌2] = ∅. 

 

In this case neither 0 ∈ 𝑖𝑛𝑡(𝑆1⊕𝑆2) nor 0 ∈ 𝜕(𝑆1⊕𝑆2), i.e., 0 ∉ 𝑆1⊕𝑆2. Also, since 𝜌1 < 𝜌2 for all 

𝜌1 ∈ [𝜌1], 𝜌2 ∈ [𝜌2], we have 𝑋2 = ∅ because 
𝜕𝜑

𝜕𝜃2
≠ 0 for any (𝜌1, 𝜌2, 𝜃1, 𝜃2) ∈ Ω. 

 

In fact we always have 
𝜕𝜑

𝜕𝜃2
> 0, and accordingly 𝜑 reaches its minimum (maximum) value when 𝜃2 is 

minimum (maximum). Therefore we have 

 

 𝜑− = min𝜑(𝜌1, 𝜌2, 𝜃1, 𝜃2
−), 

 𝜑+ = max𝜑(𝜌1, 𝜌2, 𝜃1, 𝜃2
+). 

 

Hence the optimal point falls in 𝑋1 or 𝑋3 and rules out 𝑋2. 

 

Points of type 𝑋1 

 

Suppose that [𝜃1] is not a degenerate interval (i.e., 𝜃1
+ > 𝜃1

−). We have 
𝜕𝜑

𝜕𝜃1
= 0 when, 

 𝜌1𝜌2cos(𝜃1 − 𝜃2) + 𝜌1
2 = 0, from which it follows that cos(𝜃1 − 𝜃2) =

−𝜌1

𝜌2
. Using the fact that, 

 sin2 + cos2 = 1, we get sin(𝜃1 − 𝜃2) = ±√1 − (
𝜌1

𝜌2
)2. 

Since 
𝜕2𝜑

𝜕𝜃1
2 > 0 when sin(𝜃1 − 𝜃2) < 0 and 

𝜕2𝜑

𝜕𝜃1
2 < 0 when sin(𝜃1 − 𝜃2) > 0, it follows that 𝜑 is 
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minimum (maximum) when sin(𝜃1 − 𝜃2) < 0 (sin(𝜃1 − 𝜃2) > 0). 

Thus, since 
𝜕𝜑

𝜕𝜌1
< 0 and 

𝜕𝜑

𝜕𝜌2
> 0 when sin(𝜃1 − 𝜃2) < 0, we conclude that the minimum of 𝜑, among all 

points of 𝑋1, is attainable at the point 𝑥1min = (𝜌1
+, 𝜌2

−, 𝜃1, 𝜃2
−) if sin(𝜃1 − 𝜃2

−) < 0, where 𝜃1 can be 

determined as follows 

 

 𝜃1 − 𝜃2
− = arctan (

sin(𝜃1−𝜃2
−)

cos(𝜃1−𝜃2
−)
) + 𝜋 

 = arctan

(

 
 
−√1−(

𝜌1
+

𝜌2
−)2

−
𝜌1
+

𝜌2
−

)

 
 
+ 𝜋 

i.e, 

 𝜃1 = 𝜃2
− + arctan(

√(𝜌2
−)2−(𝜌1

+)2

𝜌1
+ )+ 𝜋 ± 2𝜋𝑘, 

 

where 𝑘 ∈ {0,1} (Throughout the rest of the paper 𝑘 will be in {0,1}). 
Similarly, assuming 𝜃2 = 𝜃2

+, the maximum of 𝜑, among all points of 𝑋1, is attainable at the point 

𝑥1max = (𝜌1
+, 𝜌2

−, 𝜃1, 𝜃2
+) if sin(𝜃1 − 𝜃2

+) > 0, where 𝜃1 is given by 

 

 𝜃1 = 𝜃2
+ − arctan(

√(𝜌2
−)2−(𝜌1

+)2

𝜌1
+ )+ 𝜋 ± 2𝜋𝑘. 

 

The above analysis can be summarized as follows. 

  

    1.  If there exists 𝜃1 ∈]𝜃1[ such that cos(𝜃1 − 𝜃2
−) =

−𝜌1
+

𝜌2
−  and sin(𝜃1 − 𝜃2

−) < 0, then,  

𝜑(𝑥1min) ≤ 𝜑(𝑥1) for all 𝑥1 ∈ 𝑋1. 

 

    2.  If there exists 𝜃1 ∈]𝜃1[ such that cos(𝜃1 − 𝜃2
+) =

−𝜌1
+

𝜌2
−  and sin(𝜃1 − 𝜃2

+) > 0, then, 

𝜑(𝑥1max) ≥ 𝜑(𝑥1) for all 𝑥1 ∈ 𝑋1.  

 

Points of type 𝑋3 

 

In general, 𝑋3 contains 16 points. Among these 16 points, we will determine the pair 𝑥3min and 𝑥3max 
such that 𝜑(𝑥3min) ≤ 𝜑(𝑥3) ≤ 𝜑(𝑥3max) for all 𝑥3 ∈ 𝑋3. 

To find the point 𝑥3min, recall that 𝜑− = min𝜑(𝜌1, 𝜌2, 𝜃1, 𝜃2
−). Since 𝜃1 has two possible values (i.e., 

𝜃1 ∈ {𝜃1
+, 𝜃1

−}), we have 

 

 𝑥3min ∈ {(𝜌1, 𝜌2, 𝜃1
−, 𝜃2

−), (𝜌1, 𝜌2, 𝜃1
+, 𝜃2

−)}, 
 

where at least one of 𝜃1
+ and 𝜃1

− must achieve the minimality condition. If both 𝜃1
+ and 𝜃1

− achieve the 

minimality condition, then, 

 

 𝑥3min = {

(𝜌1, 𝜌2, 𝜃1
−, 𝜃2

−),                                            if sin(𝜃1
− − 𝜃2

−) < 0 and sin(𝜃1
+ − 𝜃2

−) ≥ 0,

(𝜌1, 𝜌2, 𝜃1
+, 𝜃2

−),                                            if sin(𝜃1
+ − 𝜃2

−) < 0 and sin(𝜃1
− − 𝜃2

−) ≥ 0,

min{(𝜌1, 𝜌2, 𝜃1
−, 𝜃2

−), (𝜌1, 𝜌2, 𝜃1
+, 𝜃2

−)},   otherwise

 

where 

 {
𝜌1 = 𝜌1

+, 𝜌2 = 𝜌2
−, if sin(𝜃1 − 𝜃2

−) ≤ 0,

𝜌1 = 𝜌1
−, 𝜌2 = 𝜌2

+   otherwise.
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Similarly, by fixing 𝜃2 at 𝜃2
+, we have, 𝑥3max ∈ {(𝜌1, 𝜌2, 𝜃1

−, 𝜃2
+), (𝜌1, 𝜌2, 𝜃1

+, 𝜃2
+)}, where 𝜃1 ∈ {𝜃1

+, 𝜃1
−} 

is determined according to the maximality condition. If both 𝜃1
+ and 𝜃1

− achieve the maximality 

condition, then, 

 

 𝑥3max = {

(𝜌1, 𝜌2, 𝜃1
−, 𝜃2

+),                                           if sin(𝜃1
− − 𝜃2

+) > 0 and sin(𝜃1
+ − 𝜃2

+) ≤ 0,

(𝜌1, 𝜌2, 𝜃1
+, 𝜃2

+),                                           if sin(𝜃1
+ − 𝜃2

+) > 0 and sin(𝜃1
− − 𝜃2

+) ≤ 0,

min{(𝜌1, 𝜌2, 𝜃1
−, 𝜃2

+), (𝜌1, 𝜌2, 𝜃1
+, 𝜃2

+)}   otherwise

 

where 

 {
𝜌1 = 𝜌1

+, 𝜌2 = 𝜌2
−, if sin(𝜃1 − 𝜃2

+) ≥ 0,

𝜌1 = 𝜌1
−, 𝜌2 = 𝜌2

+, otherwise.
 

 

Special subcase of Case1 

 

There remains a case in which the optimal bounds of 𝜑 can not be determined in the usual ways. Figure 4 

demonstrates two examples. 

 

 
Figure 4. Case of annulus 

 

It is clear that any sector, which encloses the set 𝑆1⊕𝑆2 or 𝑆3⊕𝑆4 is an annulus and has an angle 

interval [𝜑−, 𝜑+] = [0,2𝜋]. In this special case, one can check that one of the following holds: 

  

    • (𝜌1, 𝜌2, 𝜃1
−, 𝜃2

−) and (𝜌1, 𝜌2, 𝜃1
+, 𝜃2

−) are both candidates for 𝜑− with, 
|𝜑(𝜌1, 𝜌2, 𝜃1

−, 𝜃2
−) − 𝜑(𝜌1, 𝜌2, 𝜃1

+, 𝜃2
−)| > 𝜋, 

 

    • (𝜌1, 𝜌2, 𝜃1
−, 𝜃2

+) and (𝜌1, 𝜌2, 𝜃1
+, 𝜃2

+) are both candidates for 𝜑+ with,  
|𝜑(𝜌1, 𝜌2, 𝜃1

−, 𝜃2
+) − 𝜑(𝜌1, 𝜌2, 𝜃1

+, 𝜃2
+)| > 𝜋, 

 

    • 𝜑+ − 𝜑− <
𝜃2
+−𝜃2

−

2
.  

 

Case 2. [𝜌1] ∩ [𝜌2] ≠ ∅. 

 

In this case it may happen that 𝜌1cos(𝜃1) + 𝜌2cos(𝜃2) = 0 and 𝜌1sin(𝜃1) + 𝜌2sin(𝜃2) = 0. This clearly 

happens when either 𝜌1 = 𝜌2 = 0; or 𝜌1 = 𝜌2 and 𝜃1 − 𝜃2 = ±(2𝑘 + 1)𝜋. When this happens, we have 

either 0 ∈ 𝜕(𝑆1⊕𝑆2) or 0 ∈ 𝑖𝑛𝑡(𝑆1⊕𝑆2). The case of 0 ∈ 𝑖𝑛𝑡(𝑆1⊕𝑆2) needs special attention 

because 𝜑− and 𝜑+ cannot be determined in the usual way. That 0 ∈ 𝑖𝑛𝑡(𝑆1⊕𝑆2) occurs in the 

following two situations. 

 

    1.  [𝜌1] ∩ 𝜌2] = 𝜌1
+ = 𝜌2

− and both −(2𝑘 + 1)𝜋 ∈]𝜃1
− − 𝜃2

+, 𝜃1
+ − 𝜃2

−[ and  
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(2𝑘 + 1)𝜋 ∈]𝜃1
− − 𝜃2

+, 𝜃1
+ − 𝜃2

−[ provided that [𝜌1] and [𝜌2] are not both degenerate (thin) intervals. 

Figure 5 shows two examples. 

 
Figure 5. The origin as an interior point 

 

    2.  ]𝜌1[∩]𝜌2[≠ ∅ and either −(2𝑘 + 1)𝜋 ∈]𝜃1
− − 𝜃2

+, 𝜃1
+ − 𝜃2

−[ or (2𝑘 + 1)𝜋 ∈]𝜃1
− − 𝜃2

+, 𝜃1
+ − 𝜃2

−[. 
 It is obvious that under these conditions 𝜑− = 0,𝜑+ = 2𝜋.  

 

Now, we proceed to determine 𝜑− and 𝜑+ in cases where 0 ∉ 𝑖𝑛𝑡(𝑆1⊕𝑆2). We consider the following 

two subcases. 

 

Subcase 2.1. 𝜌1
+ = 𝜌2

−. 

 

Similar to Case 1, we have 
𝜕𝜑

𝜕𝜃2
> 0 for any (𝜌1, 𝜌2, 𝜃1, 𝜃2) in the domain of 𝜑. Therefore, 

 

 𝜑− = min𝜑(𝜌1, 𝜌2, 𝜃1, 𝜃2
−), 

 𝜑+ = max𝜑(𝜌1, 𝜌2, 𝜃1, 𝜃2
+). 

 

We distinguish two cases: 0 ∈ 𝜕(𝑆1⊕𝑆2) and 0 ∉ 𝜕(𝑆1⊕𝑆2). 
 

    • 0 ∈ 𝜕(𝑆1⊕𝑆2). 
 

This case occurs when either −(2𝑘 + 1)𝜋 ∈ 𝜃1
− − 𝜃2

+, 𝜃1
+ − 𝜃2

−] or (2𝑘 + 1)𝜋 ∈ 𝜃1
− − 𝜃2

+, 𝜃1
+ − 𝜃2

−]. 
Figure 6 shows two examples. 

 

 
Figure 6. The origin as a boundary point 
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Notice that 𝜑 is undefined at 𝑥 = (𝜌1
+, 𝜌2

−, 𝜃1, 𝜃2) when 𝜃1 − 𝜃2 = ±(2𝑘 + 1)𝜋. Let us investigate how 𝜑 

behaves near the point 𝑥. Consider the function 

 

 ℎ1(𝜃1, 𝜃2) = 𝜑(𝜌1
+, 𝜌2

−, 𝜃1, 𝜃2) = arctan (
sin(𝜃1)+sin(𝜃2)

cos(𝜃1)+cos(𝜃2)
), 

 

where 𝜃1 ∈ [𝜃1] and 𝜃2 ∈ [𝜃2].  
 

We observe that the function ℎ1 reaches its minimum value when |𝜃1 − 𝜃2| approaches 𝜋 from the right-

hand side, and it reaches its maximum value when |𝜃1 − 𝜃2| approaches 𝜋 from the left-hand side. 

Assuming that 𝜃2 = 𝜃2
− we compute 𝜑− as follows. If there exists 𝜃1 ∈]𝜃1[ such that, 

 𝜃1
− = 𝜃2

− ± (2𝑘 + 1)𝜋, then sin(𝜃1 − 𝜃2
−) < 0, which makes 

𝜕𝜑

𝜕𝜌1
< 0 and 

𝜕𝜑

𝜕𝜌2
> 0, we compute the 

minimum of 𝜑 using 𝜌1 = 𝜌1
+ and 𝜌2 = 𝜌2

−. That is 𝜑 achieves its minimum at the point, 

 𝑥1min = (𝜌1
+, 𝜌2

−, 𝜃1, 𝜃2
−) ∈ 𝑋1, i.e., 

 

 𝜑− = 𝜑(𝜌1
+, 𝜌2

−, 𝜃1, 𝜃2
−) = arctan (

sin(𝜃1)+sin(𝜃2
−)

cos(𝜃1)+cos(𝜃2
−)
). 

 

If 𝜃2
− + 𝜖 ± (2𝑘 + 1)𝜋 ∉]𝜃1[ then clearly 𝜑 achieves its minimum at 𝑥3min ∈

{(𝜌1, 𝜌2, 𝜃1
−, 𝜃2

−), (𝜌1, 𝜌2, 𝜃1
+, 𝜃2

−)} ⊂ 𝑋3, where 𝑥3min is selected as in Case 1 provided that 𝜌1 = 𝜌1
− and 

𝜌2 = 𝜌2
+ when 𝜃1

+ − 𝜃2
− = ±(2𝑘 + 1)𝜋. 

Let us now compute 𝜑+. If there exists 𝜃1 ∈]𝜃1[ such that 𝜃1 = 𝜃2
+ − 𝜖 ± (2𝑘 + 1)𝜋, then, 

 sin(𝜃1 − 𝜃2
+) > 0, which makes 

𝜕𝜑

𝜕𝜌1
> 0 and 

𝜕𝜑

𝜕𝜌2
< 0, we compute the maximum of 𝜑 using 𝜌1 = 𝜌1

+ 

and 𝜌2 = 𝜌2
−. That is 𝜑 achieves its maximum at the point 𝑥1max = (𝜌1

+, 𝜌2
−, 𝜃1, 𝜃2

+) ∈ 𝑋1, i.e., 

 

 𝜑+ = 𝜑(𝜌1
+, 𝜌2

−, 𝜃1, 𝜃2
+) = arctan (

sin(𝜃1)+sin(𝜃2
+)

cos(𝜃1)+cos(𝜃2
+)
). 

 

If 𝜃2
+ − 𝜖 ± (2𝑘 + 1)𝜋 ∉]𝜃1[, then 𝜑 achieves its maximum at, 

 𝑥3max ∈ {(𝜌1, 𝜌2, 𝜃1
−, 𝜃2

+), (𝜌1, 𝜌2, 𝜃1
+, 𝜃2

+)} ⊂ 𝑋3, where 𝑥3max is selected as in Case 1 provided 

that  𝜌1 = 𝜌1
− and 𝜌2 = 𝜌2

+ when 𝜃1
− − 𝜃2

+ = ±(2𝑘 + 1)𝜋. 

 

We end this case with the following remark. 

 

Remark 3 After determining 𝜑− and 𝜑+, we have to check whether 𝜑+ − 𝜑− <
𝜃2
+−𝜃2

−

2
. If that is the case, 

we set 𝜑− = 0,𝜑+ = 2𝜋.  

 

    • 0 ∉ 𝜕(𝑆1⊕𝑆2). 
 

This case occurs when 𝜃1 − 𝜃2 ≠ ±(2𝑘 + 1)𝜋. Consequently, 

 

 𝜑− = 𝜑(𝑥3min), 
 𝜑+ = 𝜑(𝑥3max). 
 

In other words, 𝜑 achieves its maximum and minimum at points of type 𝑋3. In order to prove this, 

suppose that 𝑋1 ≠ ∅ with 𝑥1min, 𝑥1max ∈ 𝑋1 such that 𝜑(𝑥1min) ≤ 𝜑(𝑥1) ≤ 𝜑(𝑥1max) for all 𝑥1 ∈ 𝑋1. 

We want to show that 

 

 𝜑(𝑥3min) < 𝜑(𝑥1min), 
 𝜑(𝑥3max) > 𝜑(𝑥1max). 
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To prove 𝜑(𝑥3min) < 𝜑(𝑥1min), we have 𝑥1min = (𝜌1, 𝜌2, 𝛼, 𝜃2
−), where 𝛼 ∈]𝜃1[ such that, 

 cos(𝛼 − 𝜃2
−) =

−𝜌1

𝜌2
. If sin(𝛼 − 𝜃2

−) < 0, then 
𝜕𝜑

𝜕𝜌1
< 0 and 

𝜕𝜑

𝜕𝜌2
> 0, i.e., 𝑥1min = (𝜌1

+, 𝜌2
−, 𝛼, 𝜃2

−). But 

such a point does not exist in the domain of 𝜑. If sin(𝛼 − 𝜃2
−) > 0 we have 

𝜕𝜑

𝜕𝜌1
> 0 and 

𝜕𝜑

𝜕𝜌2
< 0, i.e., 

𝑥1min = (𝜌1
−, 𝜌2

+, 𝛼, 𝜃2
−). Consider the function, 

 

 ℎ2(𝜃1) = 𝜑(𝜌1
−, 𝜌2

+, 𝜃1, 𝜃2
−) = arctan (

𝜌1
−sin(𝜃1)+𝜌2

+sin(𝜃2
−)

𝜌1
−cos(𝜃1)+𝜌2

+cos(𝜃2
−)
). 

Considering the second derivative, we see that for sin(𝛼 − 𝜃2
−) > 0 we have 

 

 
𝜕2ℎ2

𝜕𝜃1
2 =

𝜕2𝜑(𝑥1min)

𝜕𝜃1
2 < 0. 

 

So the graph of ℎ2 is concave downward about 𝜃1 = 𝛼. Therefore, based on the above discussion we 

conclude that the minimum of ℎ2 achieves at one of the end points of [𝜃1]. Consequently we have 

𝜑(𝑥3min) < 𝜑(𝑥1min). In the same manner, we can show that 𝜑(𝑥3max) > 𝜑(𝑥1max).  
 

Subcase 2.2. ]𝜌1[∩]𝜌2[≠ ∅. 

 

In this case we have 𝜌1
+ > 𝜌2

− and the only places where 𝜑 can have extreme values are points of type 𝑋3, 

or in other words 

 

 𝜑(𝑥3min) < {
𝜑(𝑥1),   for all 𝑥1 ∈ 𝑋1,
𝜑(𝑥2),   for all 𝑥2 ∈ 𝑋2,

 and 𝜑(𝑥3max) > {
𝜑(𝑥1),   for all 𝑥1 ∈ 𝑋1,
𝜑(𝑥2),   for all 𝑥2 ∈ 𝑋2.

 

 

To see that 𝜑(𝑥3min) < 𝜑(𝑥1), suppose that there exists 𝛼 ∈]𝜃1[ such that cos(𝛼 − 𝜃2) =
−𝜌1

𝜌2
.  

If sin(𝛼 − 𝜃2) > 0, then 𝑥1 = (𝜌1
−, 𝜌2

+, 𝛼, 𝜃2). So 
𝜕2𝜑(𝑥1)

𝜕𝜃1
2 < 0, showing that 𝜑(𝑥3min) < 𝜑(𝑥1). Now 

suppose that sin(𝛼 − 𝜃2) < 0, then 𝜌1 = 𝜌1
+ and 𝜌2 = 𝜌2

−. It follows that cos(𝛼 − 𝜃2) =
−𝜌1

+

𝜌2
− < −1, 

which is impossible. 

To see that 𝜑(𝑥3max) > 𝜑(𝑥1), suppose that there exists 𝛽 ∈]𝜃1[ such that cos(𝛽 − 𝜃2) =
−𝜌1

𝜌2
. If 

sin(𝛽 − 𝜃2) < 0, then 𝑥1 = (𝜌1
−, 𝜌2

+, 𝛽, 𝜃2). So 
𝜕2𝜑(𝑥1)

𝜕𝜃1
2 > 0, showing that 𝜑(𝑥3max) > 𝜑(𝑥1).  

If sin(𝛽 − 𝜃2) > 0, we have cos(𝛽 − 𝜃2) =
−𝜌1

+

𝜌2
− < −1, which is impossible. 

In the same way we can show that 𝜑(𝑥3min) < 𝜑(𝑥2) and 𝜑(𝑥3max) > 𝜑(𝑥2) for any 𝑥2 ∈ 𝑋2. 

Thus to compute 𝜑− and 𝜑+, it is sufficient to find 𝑥3min and 𝑥3max. We have, 

 

 𝑥3min ∈ {(𝜌1, 𝜌2, 𝜃1
−, 𝜃2

+), (𝜌1, 𝜌2, 𝜃1
−, 𝜃2

−), (𝜌1, 𝜌2, 𝜃1
+, 𝜃2

−)}, 
 𝑥3max ∈ {(𝜌1, 𝜌2, 𝜃1

−, 𝜃2
+), (𝜌1, 𝜌2, 𝜃1

+, 𝜃2
+), (𝜌1, 𝜌2, 𝜃1

+, 𝜃2
−)}. 

 

We will show that 𝑥3min ≠ (𝜌1, 𝜌2, 𝜃1
+, 𝜃2

+). If sin(𝜃1
+ − 𝜃2

+) < 0, then 𝜌1 = 𝜌1
+ and 𝜌2 = 𝜌2

−. Since 

𝜌1
+ > 𝜌2

−, we have 
𝜕𝜑

𝜕𝜃1
> 0, which violates the minimality condition for 𝜃1 = 𝜃1

+. If sin(𝜃1
+ − 𝜃2

+) > 0, 

then 𝜌1 = 𝜌1
− and 𝜌2 = 𝜌2

+. Since 𝜌1
− < 𝜌2

+, we have 
𝜕𝜑

𝜕𝜃2
> 0, which violates the minimality condition 

with respect to 𝜃2 = 𝜃2
+. 

 

In the same way we can show that 𝑥3max ≠ (𝜌1, 𝜌2, 𝜃1
−, 𝜃2

−). 
Before introducing algorithms for computing 𝜑− and 𝜑+ we remind that if 𝜑+ < 𝜑−, we just add 2𝜋 to 

𝜑+.  

 

We summarize all the results of the discussion in the following two algorithms: 
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Algorithm 1 (𝜑−): 

if 0 ∈ 𝑖𝑛𝑡(𝑆1⊕𝑆2) 
            𝜑− = 0 

else if ]𝜌1[∩]𝜌2[≠ ∅ 

            𝜑− = 𝜑(𝑥3min) 
else if 𝜌1

+ = 𝜌2
− 

         if 𝜃2
− + 𝜖 ± (2𝑘 + 1)𝜋 ∈]𝜃1[ 

             𝜑− = 𝜑(𝑥1min) 
         else 

                         𝜑− = 𝜑(𝑥3min) 
        end 

else 

        if |𝜑(𝜌1, 𝜌2, 𝜃1
−, 𝜃2

−) − 𝜑(𝜌1, 𝜌2, 𝜃1
+, 𝜃2

−)| >
𝜋 

                      𝜑− = 0 

         elseif 𝜃2
− + arctan(

√(𝜌2
−)2−(𝜌1

+)2

𝜌1
+ )+ 𝜋 ±

2𝜋𝑘 ∈]𝜃1[ and sin(𝜃1 − 𝜃2
−) < 0 

                             𝜑− = 𝜑(𝑥1min) 
         else 

                             𝜑− = 𝜑(𝑥3min) 
        end 

end  

 

Algorithm 2 (𝜑+): 

if 0 ∈ 𝑖𝑛𝑡(𝑆1⊕𝑆2) 
        𝜑+ = 2𝜋 

else if ]𝜌1[∩]𝜌2[≠ ∅ 

        𝜑+ = 𝜑(𝑥3max) 
else if 𝜌1

+ = 𝜌2
− 

         if 𝜃2
+ − 𝜖 ± (2𝑘 + 1)𝜋 ∈]𝜃1[ 

               𝜑+ = 𝜑(𝑥1max) 
         else 

               𝜑+ = 𝜑(𝑥3max) 
        end 

else 

        if  |𝜑(𝜌1, 𝜌2, 𝜃1
−, 𝜃2

+) − 𝜑(𝜌1, 𝜌2, 𝜃1
+, 𝜃2

+)| >
𝜋 

            𝜑+ = 2𝜋 

        elseif 𝜃2
+ − arctan(

√(𝜌2
−)2−(𝜌1

+)2

𝜌1
+ )+ 𝜋 ±

2𝜋𝑘 ∈]𝜃1[ and sin(𝜃1 − 𝜃2
+) > 0 

                           𝜑+ = 𝜑(𝑥1max) 
         else 

                           𝜑+ = 𝜑(𝑥3max) 
        end 

end 

 

 

 

3.2. Computing The Bounds of Magnitude Interval [𝝆] 
 

Recall that, 

 

 𝜌 = √𝜌1
2 + 𝜌2

2 + 2𝜌1𝜌2cos(𝜃) 
where 𝜃 = 𝜃1 − 𝜃2 ∈ [𝜃1

− − 𝜃2
+, 𝜃1

+ − 𝜃2
−]. 

 

Since the square root function is an increasing function, we can minimize (maximize) 𝜌 by minimizing 

(maximizing) ℎ = 𝜌2, so the function that we are going to determine its extremes is, 

 

 ℎ: 𝐷 → (0,∞), where 𝐷 = [𝜌1] × [𝜌2] × [𝜃]. 
 

We aim to find two points 𝑣min, 𝑣max ∈ 𝐷 such that minℎ = ℎ(𝑣min),maxℎ = ℎ(𝑣max). The extremes of 

ℎ are located where ∇ℎ = 0, that means,  

 

 
𝜕ℎ

𝜕𝜃
= −2𝜌1𝜌2sin(𝜃) = 0, 

𝜕ℎ

𝜕𝜌1
= 2𝜌1 + 2𝜌2cos(𝜃) = 0, 

𝜕ℎ

𝜕𝜌2
= 2𝜌2 + 2𝜌1cos(𝜃) = 0. 

 

The analysis after here is routine compared with the angle optimization. We ommit the proof and propose 

the following two improved algorithms for computing maxℎ and minℎ respectively. 
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Algorithm 3 (max (ℎ = 𝜌2)): 
if 𝑏 ≥ 0 

                          maxℎ = ℎ(𝜌1
+, 𝜌2

+, 𝜃) 
else 

                          maxℎ
= max(ℎ(𝜌1

−, 𝜌2
+, 𝜃), ℎ(𝜌1

+, 𝜌2
−, 𝜃), ℎ(𝜌1

+, 𝜌2
+, 𝜃)) 

end  

 

Algorithm 4 (min (ℎ = 𝜌2)): 
if 𝑎 ≥ 0 

                          minℎ = ℎ(𝜌1
−, 𝜌2

−, 𝜃) 
else if 𝜌1 = 𝜌2 = 0 or [𝜌1] ∩ 𝜌2] ≠ ∅ and 

±(2𝑘 + 1)𝜋 ∈ [𝜃1
− − 𝜃2

+, 𝜃1
+ − 𝜃2

−] 
            minℎ = 0 

else if 𝜌1
∗ = −𝜌2

−𝑎 ∈]𝜌1[ 
                          minℎ = ℎ(𝜌1

∗, 𝜌2
−, 𝜃) 

else 

                          minℎ
= min(ℎ(𝜌1

−, 𝜌2
−, 𝜃), ℎ(𝜌1

−, 𝜌2
+, 𝜃), ℎ(𝜌1

+, 𝜌2
−, 𝜃)) 

end 

 

 

 

4. NUMERICAL EXAMPLES 

 

In this section, we provide numerical examples to show the efficiency and robustness of the proposed 

algorithms. We also compare our algorithms with the existing algorithms in [6]. 

 

Example 1. Consider the sectors,  

 

𝑆1 = [2,3]𝑒
[
5𝜋

9
,
4𝜋

3
]
 ,  𝑆2 = [3,5]𝑒

[0,
5𝜋

6
]
 

 

Using our algorithms we obtain, [𝜌] = [0,8],  [𝜑] = [4.71674,9.68658] (Figure 7). 

 

 
Figure 7. Graphs of Example 1 

  

If we use the introduced algorithms in [7] we obtain [𝜌] = [0,8], [𝜑] = [0.4,3.4034], a result that is not 

correct. 

 

Example 2. Consider the sectors,  

 

𝑆1 = [2,3.5]𝑒
[
5𝜋

9
,
11𝜋

9
]
,  𝑆2 = [4,5]𝑒

[
𝜋

18
,
5𝜋

6
]
 

 

Using our algorithms we obtain, [𝜌] = [0.5,8.5], [𝜑] = [5.39228,9.4654] (Figure 8). 
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Figure 8. Graphs of Example 2 

 

Using the proposed algorithms in [7] we obtain [𝜌] = [0.5,8.5] and [𝜑] = [0.555,3.1822], which is also 

not optimal. 

 

5. CONCLUSION 

From the results observed in the numerical examples, we conclude that the algorithms in [7] may fail to 

find the the optimal bounds for 𝜑. As an alternative we developed simple and efficient algorithms to 

perform the addition (subtraction) operation of sectors. Numerical results demonstrate the efficiency, 

robustness and accuracy of the proposed algorithms. The algorithms are implemented in MATLAB R2020a 

environment and tested for all possible cases. For each case the result is computed for 12,960,000 sample 

points and compared with the outputs of the proposed algorithms. Figure 9 shows the user interface of the 

computer implementation. 

 

 
Figure 9. User Interface of the implemented Algorithms 
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