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Abstract 
Purpose: In the present study, the ability of middle school prospective mathematics teachers to subtract integers with counters 
and a number line was investigated.   

Design/Methodology/Approach: A case study method was used for the investigation. The research was conducted with 37 
prospective teachers who were training in a state university’s undergraduate program on primary mathematics in northern 
Turkey. Four questions developed by the researcher for subtraction in integers were used as a data collection tool. The data of 
the study were analyzed in two stages. In the first stage, the answers of the prospective teachers were determined as right or 
wrong; subsequently, in the second stage, the mistakes that led to the wrong answers were determined. 

Findings: The prospective teachers were relatively successful with respect to both modeling types. The prospective teachers 
had the highest rates of success in modeling with counters, with a rate of approximately 97% in subtracting a negative integer 
from a positive integer ((+3) − (−5)), and the lowest rates of success in subtracting a negative integer from a negative integer, 
with a rate of around 89% for the operation ((−4) − (−7)). In modeling with the number line, the highest success rate was 
approximately 91% for subtracting a positive integer ((+2) − (+5)) from another positive integer, whereas the lowest success 
rate was around 86% for subtracting a negative integer from a negative integer in the operation of ((−4) − (−7)).  

Highlights: According to the results of the research, the prospective teachers were relatively successful in modeling the 
subtraction of integers using counters and a number line. 

Öz 
Çalışmanın amacı: Bu çalışmada ortaokul matematik öğretmeni adaylarının tam sayılarda çıkarma işlemini sayma pulları ve sayı 
doğrusu ile yapabilme durumları araştırılmıştır.  

Materyal ve Yöntem: Durum çalışması yöntemi kullanılmıştır. Araştırma Türkiye’nin kuzeyinde yer alan bir devlet üniversitesinin 
ilköğretim matematik öğretmenliği lisans programında eğitim gören 37 öğretmen adayı ile yürütülmüştür. Veri toplama aracı 
olarak araştırmacı tarafından geliştirilen ve tam sayılarda çıkarma işlemine yönelik 4 soru kullanılmıştır.  Çalışmanın verileri iki 
aşamada analiz edilmiştir. Birinci aşamada öğretmen adaylarının doğru veya yanlış cevaplara ulaşma durumları belirlenmiş, 
ikinci aşamada ise yanlış cevaplara sebep olan hatalar tespit edilmiştir.  

Bulgular: Çalışmada öğretmen adayları tam sayılarda çıkarma işlemlerini her iki modelleme türünde de oldukça başarılı 
olmuşlardır. Öğretmen adayları sayma pulları ile modellemede en yüksek başarıyı yaklaşık %97’lik oranla pozitif bir tam sayıdan 
negatif bir tam sayının çıkarılması ((+3)-(-5)), en düşük başarıyı ise yaklaşık %89’luk oranla negatif bir tam sayıdan negatif bir 
tam sayının çıkarılması ((-4)-(-7)) işleminde göstermişlerdir. Sayı doğrusu ile modellemede en yüksek başarıyı yaklaşık %91’lik 
oranla pozitif bir tam sayıdan pozitif bir tam sayının çıkarılması ((+2)-(+5)), en düşük başarıyı ise yaklaşık %86’lık oranla negatif 
bir tam sayıdan negatif bir tam sayının çıkarılması ((-4)-(-7)) işleminde göstermişlerdir. 

Önemli Vurgular: Araştırma sonuçlarına göre, öğretmen adayları tam sayılarda çıkarma işlemini sayma pulları ve sayı doğrusu 
ile modellemede oldukça başarılı olmuşlardır. 
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INTRODUCTION 

National and international mathematics teaching programs aim to develop students’ skills, such as problem-solving, 
communication, association, representation, reasoning, and providing evidence to learn and use mathematics effectively (Ministry 
of National Education [MEB], 2013; National Council of Teachers of Mathematics [NCTM], 2000). The skill of representation 
includes the effective use of manipulatives, diagrams, graphs, tables, and symbols, which are important indicators of expressing 
mathematical ideas and relationships (NCTM, 2000). There are various classifications for representations. One is a classification in 
which mathematical ideas are divided into external representation and internal representation (Hiebert & Carpenter, 1992). In 
this classification, external representations are divided into five categories by Lesh, Post, and Behr. (1987): concrete models, 
pictures, symbolic expression, spoken language, and real-life situations. The ability of students to switch between these different 
styles of representation improves their relational understanding (Lesh, Post, & Behr, 1987). Lesh et al. (1987) stated that multiple 
representations should be used in mathematics teaching. Some examples include moving from counters, fraction bars, and 
decimal base blocks to concrete models; from a number line model to a picture or a diagram; written symbols or symbolic 
representations, 5!, and a-1 <6 examples (Özdemir & İpek, 2020).  

The arithmetic of whole numbers is relatively intuitive for children because they can think of it in ways that are based on real-
world contexts (Carpenter et al., 1999). Children can learn by representing fractions, decimal notations, percentages, and non-
negative rational numbers in different ways and by associating them with aspects of daily life (Whitacre et al., 2017). Natural 
numbers are used to denote multiplicities. However, the set of natural numbers is insufficient in expressing quantities, such as 
temperature, height, average, and credit–debt; solving equations, such as x + 3 = 0; and doing subtraction operations, such as 3 − 
7 (wherein the minuend is less than the subtractive). To eliminate such deficiencies, a set of integers has been defined (Argün, 
Arıkan, Bulut, & Halıcıoğlu, 2014, p. 507; Baykul, 2009, p. 240; Van de Walle, Karp, & Williams, 2012, pp. 473–482). Integers have 
two components: direction and quantity. In expressions such as −3 and +7, the signs − and + indicate the direction, and 3 and 7 
indicate the quantity (multiplicity or size). 

Integers comprise an important and challenging issue in the transition from arithmetic to algebra (Peled & Carraher, 2007). 
Students experience various difficulties while processing integers (Avcu & Durmaz, 2011; Stephan & Akyüz, 2012). Hativa and 
Cohen (1995) identified five types of mistakes related to the addition and subtraction of integers. The first is an mistake in 
subtracting a positive number from zero. For example, in the process of 0 − 6, answers such as 4, 0, or 6 can be given by considering 
it to mean 10 − 6. The second is an mistake in subtracting a larger positive integer from a positive integer. For example, answers 
such as 5, 11, −11, 3, or 8 might be given for the operation (+3) − (+8). The third type of mistake is an mistake made with the sum 
of two negative integers. For example, in the operation (−3) + (−8), the answers of −5, 3, 5, or 11 can be given. The fourth is the 
mistake of adding an integer and its reverse according to the addition operation. For example, answers such as 6 or 3 might be 
given for the (−3) + (+3) operation. Finally, the fifth type of mistake is an mistake in adding a positive integer and the number with 
the reverse sign. For example, answers such as 5, 11, −11, 3, or 8 can be given in the operation (+3) + (−8). (In the study by Hativa 
and Cohen (1995), mistakes that could be made with negative numbers in addition and subtraction, such as (−4) − (−7), were not 
mentioned because only a + b, a-b, -a + b, -a-b (with a > 0 and b > 0) operations were included.) The reasons for mistakes and 
difficulties when dealing with integers include the meanings of the arithmetic operations in integers (Vlassis, 2004), the different 
meanings of the minus sign (Gallardo & Rojano, 1994; Janvier, 1985; Vlassis 2004; Vlassis, 2008), an inability to physically model 
negative numbers (Stephan & Akyüz, 2012), transferring the operations and generalizations in natural numbers to integers (Hativa 
& Cohen, 1995; Kilhamn, 2011), the opposite relationship between negative numbers and size notation (Fischbein, 1987), and all 
the algebraic properties of negative numbers. 

Contexts and models are used when teaching integers. The contexts can be divided into two categories: those that contain 
quantity and those that contain linearity. Debt-receivable and profit–loss contexts include quantity, whereas contexts related to 
temperatures, altitudes, elevators, and timelines include linearity. Further, models can also be divided into two as either 
quantitative or linear. Counters can be given as an example of a quantitative model and a number line as that of the linear model 
(Van de Walle, Karp, & Williams, 2012). Janvier (1983) defined two models for teaching integers: the equilibrium model and the 
number line. The equilibrium model can be said to correspond to the quantitative model in the classification of Van de Walle et 
al. (2012). In the equilibrium model, numbers are represented by elements of two opposite types, such as black and white marbles 
and negative-positive electric charges. In this model, the addition process is defined as merging and the extraction process as 
removing or vice versa. In the number line model, numbers are represented either by their position on the number line or by their 
displacement. Here, addition is a “combination of two movements” or a “displacement from one location to another”; subtraction 
is defined as “moving in the opposite direction” or a “difference between two positions” (Hativa & Cohen, 1995; Janvier, 1983). 

When examining the literature, it is evident that no consensus exists as to which of the two models of the number line and 
counters are more useful in the teaching of integer and integer operations. Some studies recommended the use of the number 
line model (Cemen, 1993; Cunningham, 2009; Fischbein, 1977; Peled, Mukhopadahyay, & Resnick, 1989; Thompson & Dreyfus, 
1988), while others recommended the use of the counting scale model (Battista, 1983; Hart, 1981; Liebeck, 1990). 

Cemen (1993) argued that the most effective method among the monetary model, the two-color tile model, and the number 
line model in teaching the addition and subtraction of integers is that of the number line. The monetary model includes receiving 
and giving the money that is owed, which does not make a clear distinction between negative numbers and subtraction. In the 
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two-color tile model, one color is used for positive numbers and a different color for negative numbers, which helps explain the 
distinction between negative numbers and subtraction by using various colors. In this approach, operation −2 − (−5) involves 
removing five negative counters, and the −2 + 5 process requires the addition of five positive counters. However, describing that 
the removal of five negative counters and the addition of five positive counters give both processes the same result, and these 
processes remain abstract. In the number line model, positive numbers are considered to represent a forward movement while 
and negative numbers represent a backward movement. Here, addition is defined as “preserving its direction,” and subtraction is 
defined as “turning in the opposite direction.” Thus, it is argued that these properties make the number line model the most useful 
one. 

Liebeck’s (1990) “score and forfeits” model and Battista’s (1983) “positive and negative charge” model can be regarded to be 
the same as that of counters because the implementation of both models is done with concrete objects. These researchers argued 
that the counting scale model was more effective than the number line model because counters are concrete, whereas the number 
line is pictorial; because counters are appropriate for four integer operations, whereas there are different restrictions with the 
number line; and so on.  

Almeida and Bruno (2014) investigated the strategies used by prospective middle schoolteachers to solve verbal problems 
requiring addition with negative numbers. From their results, it was determined that the prospective teachers used six different 
strategies: using operations with positive numbers, using operations with negative numbers, using number lines, counting in 
order/over, verbal explanations, and drawings. It was observed that the prospective teachers preferred the strategy of “making 
operations with negative numbers” for the problems they found easy to solve and other strategies for more complex problems; 
the rate of reaching the correct answers ranged from 76% to 97%. 

Durmaz (2017) investigated the situation for teachers and prospective teachers in modeling four processes for integers with 
counters. Teachers and prospective teachers were more successful in modeling the addition process than in modeling other 
operations. Moreover, it was determined that teachers were more successful in all types of modeling than prospective teachers. 

Kubar and Çakıroğlu (2017) investigated the knowledge of middle-school mathematics prospective teachers about the possible 
mistakes and mistakes of middle-school students in defining integers. It was observed that prospective teachers had a general 
knowledge of students’ mistakes but lacked detailed information in terms of content and pedagogical aspects.  

Research Significance and Problems 

Students, prospective teachers, and even teachers are known to experience some difficulties in performing the addition and 
subtraction operations for integers with number lines and counters (Battista, 1983; Durmaz, 2017; Liebeck, 1990). The lack of 
studies investigating both the number line and the counting counter model together reveals a gap in the field. Furthermore, 
prospective teachers might develop misunderstandings or a limited understanding of different basic mathematical concepts (Ball, 
1988; Ma, 1999). Such understandings are often passed on by prospective teachers to their future students (Reeder & Bateiha, 
2016). This situation reveals the importance of detecting and eliminating the incorrect or limited understandings, if such 
understandings exist, of prospective teachers. Accordingly, this study investigated the ability of prospective teachers to subtract 
integers using the counters and number line models. It is thought that the study will contribute to filling the gap in this area and 
to enhance the knowledge of prospective teachers, teachers, and, consequently, students. For this purpose, the following research 
problems were identified. 

1. How are the prospective teachers' success in modeling subtraction with integers with number lines and counters? 
2. What are the mistakes that prospective teachers make in modeling the subtraction of integers with number lines and 

counters?  

Subtracting Integers with the Number Line and Counters 

According to the model considered in this analysis, processing begins by looking at the zero point on the number line in the 
positive direction (to the right). Positive numbers have been defined as a “move forward,” whereas negative numbers as a 
“backward movement.” The addition process is considered a process where you “keep your current direction,” and the subtraction 
process is considered one where you “reverse your current direction” (Billstein et al., 2016, p. 230; Cemen, 1993; Teppo & Heuvel-
Panhuizen, 2014). 

 
Figure 1. Operation of (+2) − (+5) with the number line 
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According to this model, the operation of (+2) − (+5) is as follows. On the number line, the zero point is looked at in the positive 

direction. Because the value +2 is given, we move two units forward. Owing to the subtraction, it is turned from the current point 
(from the +2 point) to the opposite direction (i.e., the negative axis). Because of the value of +5, we move five units forward from 
the current point. The point of arrival is −3. Therefore, the result of (+2) − (+5) operation is −3. 

 
Figure 2. Operation of (+3) − (−5) with the number line 

According to this model, the operation of (+3) − (−5) is as follows. The positive direction is looked at from the zero point on the 
number line. Because of the value of +3, we move three units forward. Owing to the subtraction process, we return to the opposite 
direction (i.e., the negative axis) from the current point (point +3). Because of the −5 value, we move back five units from the 
current point. The reached point is +8. Therefore, the result of (+3) − (−5) is +8. 

 
Figure 3. Operation of (−3) − (+4) with the number line 

According to this model, the operation of (−3) − (+4) is as follows. The positive direction is looked at from the point of zero on 
the number line. Because of the −3 value, we move back three units. Owing to the subtraction operation, we turn from the current 
point (from −3 point) to the opposite direction (i.e., the negative axis). Because of the value of +4, we move four units forward 
from the current point. The reached point is −7. Therefore, the result of (−3) − (+4) is −7. 

 
Figure 4. Operation of (−4) − (−7) with the number line 

According to this model, the operation of (−4) − (−7) is as follows. On the number line, the positive direction is looked at from 
the point of zero. Owing to the value of −4, we move four units back. Because of the subtraction operation, we turn from the 
current point (point −4) to the opposite direction (i.e., the negative axis). Because of the −7 value, we move seven units back from 
the current point. The reached point is +3. Therefore, the result of (−4) − (−7) is +3. 

In this study, in modeling the subtraction of whole numbers with counters, the model used by Billstein et al. (2016, p. 229) has 
been considered. White scales are used to represent negative integers; blue scales are used to represent positive integers. The 
addition process is considered to involve adding counters to the box, while the subtraction process involves removing counters 
from the box. These operations can also be done with electrical charges instead of counters (Battista, 1983; Billstein et al., 2016, 
p. 229). 

 
Figure 5. Operation of (+2) − (+5) with counters 
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According to this model, the operation of (+2) − (+5) is as follows. There are two blue counters inside the box. For subtraction, 

the counter must be removed from the box. Because of the value of +5, five blue counters must be removed from the box. Since 
there are five blue counters in the box, three blue and three white scales are added. (This can be expressed as “3 zero pairs or 3 
neutral pairs are added”). There are five blue and three white scales in the box. Subsequently, five blue counters are removed 
from the box, and three white counters remain in the box. Therefore, the result of (+2) − (+5) operation is −3. 

 
Figure 6. Operation of (+3) − (−5) with counters 

According to this model, the operation of (+3) − (−5) is as follows. There are three blue counters inside the box. For subtraction, 
the counter must be removed from the box. For the value of −5, five white counters should be removed from the box. Since there 
are no white counters in the box, five white and five blue counters are added. (This can be expressed as “5 zero pairs or 5 neutral 
pairs are added”). In this case, there are eight blue and five white counters in the box. When five white counters are removed, 
eight blue counters remain in the box. Therefore, the result of (+3) − (−5) is +8. 

 
Figure 7. Operation of (−3) − (+4) with counters 

According to this model, the operation of (−3) − (+4) is as follows. There are three white counters inside the box. For 
subtraction, the counter must be removed from the box. Because of the +4 value, four blue counters should be removed from the 
box. Since there is no blue counter in the box, four white and four blue scales are added. (This can be expressed as “4 zero pairs 
or 4 neutral pairs are added”). In this case, there are four blue and seven white counters in the box. When four blue counters are 
removed, seven white counters remain in the box. Therefore, the result of (−3) − (+4) is −7. 

 
Figure 8. Operation of (−4) − (−7) with counters 

According to this model, the operation of (−4) − (−7) is as follows. There are four white counters inside the box. For subtraction, 
the counter must be removed from the box. Because of the value of −7, seven white counters should be removed from the box. 
Since there are seven white counters in the box, three white and three blue counters are added. (This can be expressed as “3 zero 
pairs or 3 neutral pairs are added”). There are three blue and seven white counters in the box. Next, seven white counters are 
removed from the box, and three blue counters remain in the box. Therefore, the result of (−4) − (−7) is +3.  

 

METHOD/MATERIALS  

A case study design was used in the study. Case studies aim to disclose findings regarding a specific situation. The main feature 
of a case study is an in-depth investigation of one or a few cases (Yıldırım & Şimşek, 2008). This method was used to reveal results 
concerning prospective teachers’ ability to subtract integers with counters and number lines.  

Study Group 
The research was conducted with 37 prospective teachers who were enrolled in an undergraduate program of a state 

university on mathematics education in middle school and were in the third grade. In the process of determining the study group, 
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criteria sampling and easily accessible situation sampling methods were used. Easily accessible situation sampling is preferred 
because it brings speed and practicality to the research (Yıldırım & Şimşek, 2008). Regarding the criteria sampling, the criteria 
were “to take the Special Teaching Methods 1 course and to be successful.” In the scope of this course, prospective teachers learn 
about the “basic concepts specific to the field, the relationship of these concepts with field teaching, and the tools and materials 
used in field teaching.” Moreover, an “examination of the relevant aspects of the curriculum in terms of acquisition, unit, activity, 
and so on” was also carried out. In the course, the concepts of counters, the number line, and zero pairs were introduced to 
prospective teachers. The information that the prospective teachers received in this course on modeling with integers was limited, 
and no special training was given in relation to modeling the subtraction process in integers. Prospective teachers who completed 
the Special Teaching Methods 1 course were informed about the contents of the present study. The study was conducted with 37 
prospective teachers who voluntarily agreed to participate after being informed about the research.  

Data Collection 
A subtraction of Integers Test (SoIT) was developed by the researcher and was used as a data collection tool. In the SoIT, four 

questions regarding subtraction in integers were included, and the prospective teachers were asked to solve the given questions 
using counters and number lines. The questions in SIT involved subtracting a positive integer from another positive integer ((+2) 
− (+5)), subtracting a negative integer from a positive integer ((+3) − (−5)), subtracting a positive integer from a negative integer 
((−3) − (+4)), and subtracting a negative integer from another negative integer ((−4) − (−7)). During the process of creating the 
questions, existing studies on integers were reviewed (Cemen, 1993; Gallardo & Romero, 1999; Stephan & Akyüz, 2012; Teppo & 
Heuvel-Panhuizen, 2014). The prospective teachers were given 40 minutes to complete the SoIT. The necessary arrangements 
were made in the classroom where the test was taken so that the prospective teachers would not be affected by each other’s 
solutions. 

Data Analysis 
The data were analyzed in two stages. In the first stage, the answers given by the prospective teachers for the questions in 

SoIT were coded as correct, incorrect, or blank. Operations with counters were carried out with the model of Billstein et al. (2016, 
p. 229). The execution of operations according to this model is given in Figures 5, 6, 7, and 8 with accompanying explanations. 
Models that were made as indicated in the figures were accepted as correct; the ones that were different were accepted as 
incorrect. Incorrect modeling examples are presented in Figures 15 and 16 in the Results section. The operations on the number 
line were evaluated according to the model used by Billstein et al. (2016), Cemen (1993), and Teppo and Heuvel-Panhuizen (2014). 
The operations according to this model are given in Figures 1, 2, 3, and 4 with accompanying explanations. Models that were made 
as indicated in the figures were accepted as correct; the ones that were different were accepted as incorrect. Incorrect modeling 
examples are presented in Figures 11, 12, 13, and 14 in the Results section. In the second stage, the mistakes that caused the 
wrong answers were determined. The next section of the present study provides some examples of the mistakes and explains the 
possible reasons for the mistakes. The two stages of the analysis were performed by two math educators. Differences in the 
analysis were discussed until a consensus was reached between the two experts (Miles & Huberman, 1994). To ensure the validity 
of the research, how the results obtained herein were acquired has been shown clearly (Yıldırım & Şimşek, 2008). Further, to 
increase the reliability of the case studies, researchers should clearly define the processes followed and support them with the 
relevant documents. Therefore, the prospective teachers, who were the sources of the research data, have been clearly defined 
herein, and the study group and process for determining the group have also been explained for other researchers who may 
conduct similar studies. The research method, stages, data collection methods, research analysis, and details regarding what was 
done in terms of obtaining and interpreting the research results have been clearly stated. The data were described in detail by 
providing direct quotations concerning the operations made by the prospective teachers in the SoIT (Yıldırım & Şimşek, 2008). 

 

FINDINGS  

In this section, the data obtained from the solutions of the prospective teachers in the SoIT are presented in accordance with 
the problems of the study. 

Findings Regarding the First Problem of the Study 

Table 1 shows the percentage frequency distribution of correct, blank, and incorrect answers given by the prospective teachers 
to the questions in the SoIT. 
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Table 1. Percentage frequency distribution of the answers given by the prospective teachers to the questions in the SoIT 

Question Number Line  Counters 
 C I B T C I B T 
 f (%) f (%) f (%) f (%) f (%) f (%) f (%) f (%) 

(+2) − (+5) 34 (91.8) 3 (8.1) 0 (0) 37 (100) 34 (91.8) 2 (5.4) 1 (2.7) 37 (100) 
(+3) − (−5) 33 (89.1) 4 (10.8) 0 (0) 37 (100) 36 (97.2) 1 (2.7) 0 (0) 37 (100) 
(−3) − (+4) 33 (89.1) 3 (8.1) 1 (2.7) 37 (100) 34 (91.8) 1 (2.7) 2 (5.4) 37 (100) 
(−4) − (−7) 32 (86.4) 3 (8.1) 2 (5.4) 37 (100) 33 (89.1) 1 (2.7) 3 (8.1) 37 (100) 

(C: Correct,  I:Incorrect, B: Blank, T: Total) 

Please It can be seen from Table 1 that the prospective teachers were relatively successful in both types of modeling. The 
prospective teachers showed the highest rate of success for the (+3) − (−5) operation with counters and the lowest rate of success 
for the operation of (−4) − (−7) with the number line. 

In relation to subtraction with the number line, the prospective teachers showed the highest success rate for the operation of 
(+2) − (+5) and the lowest for (−4) − (−7). Thus, it is understood that the problem that the prospective teachers had the lowest 
success in subtracting with counters and the number line concerned subtracting a negative integer from another negative integer. 
Moreover, it can be seen that the questions with which the prospective teachers showed the highest success in differ in terms of 
the models used. The highest successes were related to subtracting a negative integer from a positive integer with counters and 
subtracting a positive integer from a positive integer with the number line. 

When the solutions in the SoIT were examined, 35 prospective teachers supported the procedures that they expressed in 
writing with figures. An example of a solution is given in Figure 9. 

 
Figure 9. Modeling example for the operation of (+2) − (+5) 

 (English translation of the text in the figure: Yeşil = Green, Kırmızı = Red..As 5 green counters cannot be subtracted from 2 green 
counters, I added 3 green counters, and then, I added 3 red counters so as not to break the balance. I removed 5 green counters. 
There remained 3 red counters.) 

Furthermore, it was found that two prospective teachers solved the questions using only figures. Two examples of solutions 
are given in Figure 10. 

a)  

 

b)  

Figure 10. Modeling examples for the operation of (−3) − (+4) 
Prospective teachers made more mistakes in the subtraction of integers with a number line than with counters. The types of 

mistakes made using the number line and their frequencies are given in Table 2. 
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Table 2. Mistakes in modeling with the number line while subtracting integers 

Type of Mistake Frequency 

Not starting the modeling from the starting point (point 0) 7 
Ignoring the sign of the number 3 
Giving the same meaning to the operation sign and the number sign 1 
Ignoring the sign of the operation 5 
Arithmetic 1 

Table 1 shows that the prospective teachers gave 13 wrong answers when modeling with the number line; however, the 
number of mistakes in Table 2 is 17. This is because some of the prospective teachers made more than one mistake in solving a 
problem. 

 
Figure 11. Example of the “giving the same meaning to the operation sign and the number sign” mistake 

(English translation of the text in the figure: (+3) − (-5) the number with line >>> I am at point 0 and facing the positive 
direction. I am moving forward because of the sign in front of the number 3. I see that the sign is (−), because of which, I should go 
back. When I do so, because of the sign (−) in front of the number 5, I arrive at point (+8).) 

When we look at Figure 11, it is evident that the sign of the operation and the number after the subtraction process are given 
the same meaning. In addition, if we move back five units while looking to the positive direction from +3, −2 instead of +8 would 
be reached. Thus, it can be understood that the prospective teacher did not check the action that they performed or took action 
according to the result. 

 
Figure 12. Example of the “ignoring the sign of the number” mistake 

(English translation of the text in the figure: I am at point 0 and facing the positive direction. Because the sign of the number is 
(−), I turn to face the negative direction and move forward 4 units. Because the sign of the process is (−), I should go back. I came 
back 7 units and now I am at point (+3).) 

In Figure 12, while modeling with the number line, the sign of the number seven is not taken into account. Moreover, the 
minus sign in front of the number has been given the meaning of turning to the negative axis and the subtraction to go backward. 
Giving such a meaning to the signs of the number and operation is the opposite of the model adopted in this study. The prospective 
teachers did not consider the number sign (or did not include it in the modeling process) regardless of whether the modeling was 
accurate or incorrect. 

 
Figure 13. Example of the “arithmetic” mistake 

(English translation of the text in the figure: I am facing the positive direction from the starting point. I go forward 3 units 
because of the number (+3). I change my direction to the negative because of the sign (−). I am facing the negative direction. I 
should go 5 units back because of the number (−5). This is because the distance from the starting point to the finish point is 5 units 
in the positive direction (+5).) 

Figure 13 shows that the prospective teacher reached the point of +5 when looking at the negative axis at the +3 point while 
moving five units back. The prospective teacher correctly applied all stages of modeling with the number line and found the answer 
to be +5 instead of +8. Thus, it is thought that the wrong answer in this case was reached owing to an arithmetic mistake. 
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a)  b)  
Figure 14. Examples of the “not starting the modeling from the starting point” and “ignoring the sign of the operation” mistakes 

In Figures 14a and 14b, the modeling was not started at the starting point (i.e., point 0). It was stated that the sign of the 
second number will move forward or backward by ignoring the operation signs. Depending on the direction, the concepts of 
“forward and backward” differ. Although the conclusions reached here were correct, the process was wrong. Clearly, these 
mistakes arise from not starting the model by looking in the positive direction at the zero point and not including the sign of the 
subtraction process in the modeling. 

Table 3 shows the types of mistakes made by the prospective teachers in modeling with counters and their frequencies. 

Table 3. Mistakes in modeling subtraction of integers with counters 

Type of Mistake Frequency 

Editing according to the result 3 
Arithmetic 2 

 
The prospective teachers used counters less frequently than the number line (see Table 1). Three of the mistakes made in 

modeling with counters were due to “editing according to the result,” while two of the mistakes were related to “arithmetic.” 

 
Figure 15. Example of an “arithmetic” mistake in modeling with counters 

(English translation of the text in the figure: I have 2 orange counters in my box. I want to remove 5 orange counters from the 
box. There are not enough orange counters in the box. So as not to break the balance, I add 3 orange counters and 3 green counters 
to the box. I remove 5 orange counters from the box. There remain 3 green counters in the box… + is because of its color …3 is 
because of the multiplicity.) 

Figure 15 shows that the prospective teacher represented positive integers with an orange counter and negative integers with 
a green counter, as indicated in the upper left of the figure. Although the prospective teacher provided the correct answer by 
stating that there were three green counters in the box using the counters model, they stated the answer was +3. At the last stage, 
it was understood that the green counters, which represented negative integers, had escaped the attention of the prospective 
teacher. 

a)  b)  
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Figure 16. Examples of the “editing according to the result” mistake in modeling with counters 

In Figure 16a, it is evident that the prospective teacher started modeling the counters to be used in the subtracting process by 
initially accepting them in the box. In the second stage, they added a positive counter for each negative counter, neutralized (or 
added a zero pair) the process, and then found the result to be +3. It can be seen that the prospective teacher performed 
operations to obtain +3, which is the result of (−4) − (−7). Figure 16b depicts a similar situation. 

DISCUSSION AND CONCLUSION  

Prospective teachers may develop misunderstandings or a limited understanding of different basic mathematical concepts 
(Ball, 1988; Ma, 1999). Moreover, prospective teachers often transfer their understandings to their future students (Reeder & 
Bateiha, 2016). Thus, identifying and amending their misunderstandings, if any exist, is essential. Thus, the present study 
investigated and analyzed the modeling abilities of prospective teachers of middle school mathematics for subtraction operations 
in integers with counters and number lines. 

In the study, the prospective teachers were relatively successful with respect to both modeling types. The prospective teachers 
had the highest rates of success in modeling with counters, with a rate of approximately 97% in subtracting a negative integer 
from a positive integer ((+3) − (−5)), and the lowest rates of success in subtracting a negative integer from a negative integer, with 
a rate of around 89% for the operation ((−4) − (−7)) (see Table 1). In modeling with the number line, the highest success rate was 
approximately 91% for subtracting a positive integer ((+2) − (+5)) from another positive integer, whereas the lowest success rate 
was around 86% for subtracting a negative integer from a negative integer in the operation of ((−4) − (−7)) (see Table 1). 
Accordingly, it was understood that the question type with which the prospective teachers showed the highest success differed 
across modeling types, while the question type with the lowest success was the same. One reason for the high success rate of the 
prospective teachers might be their success in the “special teaching methods 1” course, as efforts in courses on mathematical 
teaching methods might positively affect prospective teachers’ understanding of mathematical concepts and planned pedagogical 
practices (Reeder & Bateiha, 2016; Sowder, Phillip, Armstrong, & Schappelle, 1998). 

It was observed that the mistakes made by the prospective teachers in modeling the subtraction process with counters were 
caused by a lack of attention and resulted in an editing of the modeling according to the answer because they did not fully know 
or understand how the model worked. Specifically, prospective teachers who made the mistake of “editing according to the result” 
may have first found the answer of the process without using a model and then tried to model it with counters according to that 
answer. Taking Figures 16a and 16b into consideration, the steps of starting the modeling, adding a zero pair, and reaching the 
answer were not applied correctly; however, the answer itself was correct. This shows that the prospective teacher did not know 
how to model the procedure with counters and made arrangements according to the answer of the procedure. Furthermore, the 
prospective teachers made five different types of mistakes in modeling with the number line. These were (1) not starting the 
modeling at the zero point, (2) ignoring the sign of the resulting number, (3) giving the same meaning to the operation sign and 
the number sign, (4) ignoring the sign of the operation, and (5) arithmetic mistakes. The literature indicates that difficulties exist 
in relation to subtracting integers and working with negative numbers. The mistakes revealed in this study are also thought to 
stem from a lack of understanding of the different meanings of the minus sign (Gallardo & Rojano 1994; Janvier, 1985; Vlassis, 
2004) and the limitations of the models used (Battista, 1983; Cemen, 1993; Cunningham, 2009; Liebeck, 1990). 

 

RECOMMENDATIONS  

In this study, it was observed that prospective teachers made more mistakes in modeling with a number line than modeling 
with counters. More activities and studies should be conducted with prospective teachers to improve their ability to operate using 
the number line because this model is widely used in subjects related to fractions, natural numbers, integers, and real numbers. 
Thus, it should be ensured that prospective teachers use the number line effectively. 

Clinical interviews were not conducted with the prospective teachers in the present research, thereby limiting the information 
available with respect to their thought processes and sources of mistake in modeling the extraction process. Future studies can 
overcome this limitation by interviewing the participants regarding these aspects. 

The prospective teachers herein were considerably successful in modeling procedures with the number line and counters. 
Future research can explore teachers’ knowledge of the mistakes of middle school students while using these models for integers 
as well as the teachers’ suggestions for potential solutions for such mistakes. 
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