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Weak A-frames and weak A-semi-frames
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ABSTRACT. After reviewing the interplay between frames and lower semi-frames, we introduce the notion of lower
semi-frame controlled by a densely defined operator A or, for short, a weak lower A-semi-frame and we study its proper-
ties. In particular, we compare it with that of lower atomic systems, introduced by one of us (GB). We discuss duality
properties and we suggest several possible definitions for weak A-upper semi-frames. Concrete examples are pre-
sented.
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1. INTRODUCTION AND BASIC FACTS

We consider an infinite dimensional Hilbert space H with inner product 〈·|·〉, linear in the
first entry, and norm ‖ · ‖. GL(H) denotes the set of all invertible bounded operators onHwith
bounded inverse. Given a linear operator A, we denote its domain by D(A), its range byR(A)
and its adjoint by A∗, if A is densely defined. Given a locally compact, σ-compact space (X,µ)
with a (Radon) measure µ, a function ψ : X 7→ H, x 7→ ψx is said to be weakly measurable if for
every f ∈ H the function x 7→ 〈f |ψx〉 is measurable. As a particular case, we obtain a discrete
situation if X = N and µ is the counting measure. Given a weakly measurable function ψ, the
operator Cψ : D(Cψ) ⊆ H → L2(X, dµ) with domain

D(Cψ) :=

{
f ∈ H :

∫
X

|〈f |ψx〉|2 dµ(x) <∞
}

and (Cψf)(x) = 〈f |ψx〉, f ∈ D(Cψ), Cψ is called the analysis operator of ψ.

Remark 1.1. In general, the domain of Cψ is not dense, hence C∗ψ is not well-defined. An example of
function whose analysis operator is densely defined can be found in [10, Example 2.8], where D(Cψ)
coincides with the domain of a densely defined sesquilinear form associated to ψ. Moreover, a sufficient
condition for D(Cψ) to be dense inH is that ψx ∈ D(Cψ) for every x ∈ X , see [3, Lemma 2.3].

Proposition 1.1. [3, Lemma 2.1] Let (X,µ) be a locally compact, σ-compact space, with a Radon
measure µ and ψ : x ∈ X 7→ ψx ∈ H a weakly measurable function. Then, the analysis operator Cψ is
closed.
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Consider the set D(Ωψ) = D(Cψ) and the mapping Ωψ : D(Cψ)×D(Cψ)→ C defined by

(1.1) Ωψ(f, g) :=

∫
X

〈f |ψx〉〈ψx|g〉dµ(x).

Ωψ is clearly a nonnegative symmetric sesquilinear form which is well defined for every f, g ∈
D(Cψ) because of the Cauchy-Schwarz inequality. It is unbounded in general. Moreover, since
D(Cψ) is the largest domain such that Ωψ is defined on D(Cψ)×D(Cψ), it follows that

(1.2) Ωψ(f, g) = 〈Cψf |Cψg〉, ∀f, g ∈ D(Cψ),

where Cψ is the analysis operator defined above. Since Cψ is a closed operator, the form Ωψ is
closed, see e.g. [16, Example VI.1.13]. IfD(Cψ) is dense inH, then by Kato’s first representation
theorem [16, Theorem VI.2.1], there exists a positive self-adjoint operator Tψ associated to the
sesquilinear form Ωψ on

(1.3) D(Tψ) =

{
f ∈ D(Ωψ) : h 7→

∫
X

〈f |ψx〉〈ψx|h〉dµ(x) is bounded in D(Cψ)

}
defined by

(1.4) Tψf := h

with h as in (1.3). The density of D(Ωψ) ensures the uniqueness of the vector h. The operator
Tψ is the greatest one whose domain is contained in D(Ωψ) and such that

Ωψ(f, g) = 〈Tψf |g〉, f ∈ D(Tψ), g ∈ D(Ωψ).

The set D(Tψ) is dense in D(Ωψ), see [16, p. 279]. In addition, by Kato’s second representation
theorem [16, Theorem VI.2.23], we have D(Ωψ) = D(T

1/2
ψ ) and

Ωψ(f, g) = 〈T1/2
ψ f |T1/2

ψ g〉, ∀f, g ∈ D(Ωψ),

hence, comparing with (1.2), we deduce Tψ = C∗ψCψ = |Cψ|2 on D(Tψ).

Definition 1.1. The operator Tψ : D(Tψ) ⊂ H → H defined by (1.4) will be called the generalized
frame operator of the function ψ : x ∈ X → ψx ∈ H.

Now, we recall a series of notions well-known in the literature, see e.g. [1, 3, 15]. A weakly
measurable function ψ is said to be

• µ-total if 〈f |ψx〉 = 0 for a.e. x ∈ X implies that f = 0;
• a continuous frame ofH if there exist constants 0 < m ≤ M <∞ (the frame bounds) such

that
m‖f‖2 ≤

∫
X

|〈f |ψx〉|2 dµ(x) ≤ M ‖f‖2 , ∀ f ∈ H;

• a Bessel mapping ofH if there exists M > 0 such that∫
X

|〈f |ψx〉|2 dµ(x) ≤ M ‖f‖2 , ∀ f ∈ H;

• an upper semi-frame ofH if there exists M <∞ such that

0 <

∫
X

|〈f |ψx〉|2 dµ(x) ≤ M ‖f‖2 , ∀ f ∈ H, f 6= 0,

i.e., if it is a µ-total Bessel mapping;
• a lower semi-frame ofH if there exists a constant m > 0 such that

(1.5) m ‖f‖2 ≤
∫
X

|〈f |ψx〉|2 dµ(x), ∀ f ∈ H.
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Note that the integral on the right hand side in (1.5) may diverge for some f ∈ H, namely, for
f 6∈ D(Cψ). Moreover, if ψ satisfies (1.5), then it is automatically µ-total.

2. FROM SEMI-FRAMES TO FRAMES AND BACK

Starting from a lower semi-frame, one can easily obtain a genuine frame, albeit in a smaller
space. Indeed, we have proved a theorem [8, Prop.3.5], which implies the following:

Proposition 2.2. A weakly measurable function φ on H is a lower semi-frame of H whenever D(Cφ)

is complete for the norm ‖f‖2Cφ =
∫
X
|〈f |φx〉|2 dµ(x) = ‖Cφf‖2, continuously embedded into H and

for some α,m,M > 0, one has

α ‖f‖ ≤ ‖f‖Cφ and(2.1)

m ‖f‖2Cφ ≤
∫
X

|〈f |φx〉|2 dµ(x) ≤ M ‖f‖2Cφ , ∀ f ∈ D(Cφ).(2.2)

Note that (2.2) is trivial here. Following the notation of our previous papers, denote by

H(T
1/2
φ ) the Hilbert space D(T

1/2
φ ) with the norm ‖f‖21/2 =

∥∥∥T1/2
φ f

∥∥∥2, where Tφ is the general-

ized frame operator defined in (1.4). In the same way, denote byH(Cφ) the Hilbert spaceD(Cφ)

with the inner product 〈·|·〉Cφ = 〈Cφ·|Cφ·〉, and the corresponding norm ‖f‖2Cφ = ‖Cφf‖2.

Then, clearly H(T
1/2
φ ) = H(Cφ). What we have obtained in Proposition 2.2 is a frame in

H(Cφ) = H(T
1/2
φ ). Indeed, assume that D(Cφ) is dense. Then, for every x ∈ X , the map

f 7→ 〈f |φx〉 is a bounded linear functional on the Hilbert space H(Cφ). By the Riesz Lemma,
there exists an element χφx ∈ D(Cφ) such that

〈f |φx〉 = 〈f |χφx〉Cφ ∀ f ∈ D(Cφ).

By Proposition 2.2, χφ is a frame. Actually, one can say more [8]. The norm ‖f‖21/2 =
∥∥∥T1/2

φ f
∥∥∥2

is equivalent to the the graph norm of T
1/2
φ . Hence, 〈f |φx〉 = 〈f |χφx〉Cφ = 〈f |Tφχφx〉 for all

f ∈ D(Cφ). Thus, χφx = T−1φ φx for all x ∈ X , i.e., χφ is the canonical dual Bessel mapping of φ
(we recall that φ may have several duals).

Proposition 2.3. Let φ be a lower semi-frame ofH with D(Cφ) dense. Then, the canonical dual Bessel
mapping of φ is a tight frame for the Hilbert spaceH(Cφ).

Conversely, starting with a frame χ ∈ D(Cφ), does there exists a lower semi-frame η of H
such that χ is the frame χη constructed from η in the way described above. The answer is
formulated in the following [13, Prop. 6].

Proposition 2.4. Let χ be a frame ofH(Cφ) = H(T
1/2
φ ). Then,

(i) there exists a lower semi-frame η ofH such that χ = χη if and only if χ ∈ D(Tφ);
(ii) if χ = χη for some lower semi-frame η ofH, then η = Tφχ.

So far, we have discussed the interplay between frames and lower semi-frames. But, one
question remains: how does one obtain semi-frames? A standard construction is to start from
an unbounded operator A and build a lattice of Hilbert spaces out of it, as described in [4]
and in [8]. As we will see in Section 6 (1) and (2) below, this approach indeed generates a
weak lower A-semi-frame. Before that, we need a new ingredient, namely the notion of metric
operator. Given a closed unbounded operator S with dense domain D(S), define the operator
G = I + S∗S, which is unbounded, with G > 1 and bounded inverse. This is a metric operator,
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that is, a strictly positive self-adjoint operatorG, that is,G > 0 or 〈Gf |f〉 ≥ 0 for every f ∈ D(G)

and 〈Gf |f〉 = 0 if and only if f = 0. Then, the norm ‖f‖G1/2 = ‖G1/2f‖ is equivalent to the
graph norm of G1/2 on D(G1/2) = D(S) and makes the latter into a Hilbert space continuously
embedded intoH, denoted byH(G). ThenH(G−1), built in the same way fromG−1, coincides,
as a vector space, with the conjugate dual ofH(G). On the other hand, G−1 is bounded. Hence,
we get the triplet

(2.3) H(G) ⊂ H ⊂ H(G−1) = H(G)×.

Two developments arise from these relations. First, the triplet (2.3) is the central part of the
discrete scale of Hilbert spaces VG built on the powers of G1/2. This means that VG := {Hn, n ∈
Z}, whereHn = D(Gn/2), n ∈ N, with a norm equivalent to the graph norm, andH−n = H×n :

. . . ⊂ H2 ⊂ H1 ⊂ H ⊂ H−1 ⊂ H−2 ⊂ . . . .

Thus H1 = H(G1/2) = D(S), H2 = H(G) = D(S∗S), and H−2 = H(G−1), and so on. What we
have obtained in this way is a Lattice of Hilbert Spaces (LHS), the simplest example of a Partial
Inner Product Spaces (PIP-space). See our monograph [2] about this structure.

One may also add the end spaces of the scale, namely,

(2.4) H∞(G) := ∩n∈ZHn, H−∞(G) :=
⋃
n∈Z
Hn.

In this way, we get a genuine Rigged Hilbert Space:

H∞(G) ⊂ H ⊂ H−∞(G).

In fact, one can go one more step farther. Namely, following [2, Sec. 5.1.2], we can use qua-
dratic interpolation theory [12] and build a continuous scale of Hilbert spacesHα, α ≥ 0, where
Hα = D(Gα/2), with the graph norm ‖ξ‖2α = ‖ξ‖2 + ‖Gα/2ξ‖2 or, equivalently, the norm∥∥(I +G)α/2ξ

∥∥2. Indeed, every Gα, α ≥ 0, is an unbounded metric operator. Next, we define
H−α = H×α and thus obtain the full continuous scale VG̃ := {Hα, α ∈ R}. Of course, one can re-
place Z by R in the definition (2.4) of the end spaces of the scale. A second development of the
previous analysis is that we have made a link to the formalism based on metric operators that
we have developed for the theory of pseudo-Hermitian operators, in particular non-self-adjoint
Hamiltonians, as encountered in the so-called pseudo-Hermitian or PT -symmetric quantum
mechanics. This is not the place, however, to go into details, instead we refer the reader to [4, 5]
for a complete mathematical treatment.

3. WEAK LOWER A-SEMI-FRAMES

The following concept was introduced and studied in [10].

Definition 3.2. LetA be a densely defined operator onH. A (continuous) weakA-frame is a function
φ : x ∈ X 7→ φx such that, for all u ∈ D(A∗), the map x 7→ 〈u|φx〉 is a measurable function on X and,
for some α > 0,

(3.1) α ‖A∗u‖2 ≤
∫
X

|〈u|φx〉|2 dµ(x) <∞, ∀u ∈ D(A∗).

If X = N and µ is the counting measure, we recover the discrete situation (so that the word
"continuous" is superfluous in the definition above). We get a simpler situation when A is
bounded and φ is Bessel. This is in fact the construction of Găvruţa [14]. Now, we introduce
a structure that generalizes both concepts of lower semi-frame and weak A-frame. We follow
mostly the terminology of [10] and keep the term "weak" because the notion leads to a weak
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decomposition of the range of the operator A (see Theorem 4.2). We begin with giving the
following definitions.

Definition 3.3. Let A be a densely defined operator onH, φ : x ∈ X 7→ φx a function such that, for all
u ∈ D(A∗), the map x 7→ 〈u|φx〉 is measurable on X . We say that a closed operator B is a φ-extension
of A if

A ⊂ B and D(B∗) ⊂ D(Cφ).
We denote by Eφ(A) the set of φ-extensions of A.

Remark 3.2. It is worth noting that, if A has a φ-extension, then A is automatically closable.

Definition 3.4. Let A and φ be as in Definition 3.3. Then φ is called a weak lower A-semi-frame if
A admits a φ-extension B such that φ is a weak B-frame.

Let us put D(A, φ) := D(A∗) ∩ D(Cφ). If φ and A are as in Definition 3.3, and B :=
(A∗ � D(A, φ))

∗ is a φ-extension of A, it would be the smallest possible extension for which φ is
a weak B-frame, but in general, we could have a larger extension enjoying the same property.
Indeed, if B is a closed extension of A such that φ is a weak B-frame, we have

A ⊂ A∗∗ ⊂ (A∗ � D(A, φ))
∗ ⊂ B.

Remark 3.3.
(1) If A is bounded, D(A∗) = H and we recover the notion of lower semi-frame, under some minor

restrictions on A, hence the name (see Proposition 5.5).
(2) If A is a densely defined operator on H such that the integral on the right hand side of (3.1) is

finite for every f ∈ D(A∗), then D(A∗) ⊂ D(Cφ) and the weak lower A-semi-frame φ is, in
fact, a weak A-frame, in the sense of Definition 3.2.

(3) Let us assume that φ is both a lower semi-frame and a weak A-frame, then we have simultane-
ously

m ‖f‖2 ≤
∫
X

|〈f |φx〉|2 dµ(x), ∀ f ∈ H,

α ‖A∗f‖2 ≤
∫
X

|〈f |φx〉|2 dµ(x) <∞, ∀ f ∈ D(A, φ) = D(A∗) ∩ D(Cφ).

It follows that

(3.2) α′(‖f‖2 + ‖A∗f‖2) ≤
∫
X

|〈f |φx〉|2 dµ(x) <∞, ∀ f ∈ D(A∗) ∩ D(Cφ)

with α′ ≤ 1
2 min{m, α}. If we consider the domain D(A∗) with its graph norm

(‖f‖A∗ = (‖f‖2 + ‖A∗f‖2)1/2, f ∈ D(A∗)), we are led to the triplet of Hilbert spaces

H(A∗) ⊂ H ⊂ H(A∗)×,

as discussed in Section 2. Let us consider the sesquilinear form Ωφ defined in (1.1) and suppose
in particular that D(A∗) = D(Ωφ) = D(Cφ). Then, using Proposition 1.1, it is not difficult
to prove that Ωφ is closed in H(A∗) and then bounded. Thus, there exists γ > 0 such that, for
every f ∈ D(A∗),

α′(‖f‖2 + ‖A∗f‖2) ≤
∫
X

|〈f |φx〉|2 dµ(x) ≤ γ(‖f‖2 + ‖A∗f‖2).

One could notice that (3.2) is similar to a frame condition. The inequality (3.2) says that the
sesquilinear form Ωφ defined in (1.1) is coercive on H(A∗) and thus the Lax-Milgram theorem
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applies [16, VI §2, 2] or [18, Lemma 11.2]. This means that for every F ∈ H(A∗)× there exists
w ∈ H(A∗) such that

〈F |f〉 = Ωφ(w, f) =

∫
X

〈w|φx〉〈φx|f〉dµ(x), ∀f ∈ H(A∗).

Therefore, in the case under consideration, we get expansions in terms of φ of elements that do
not belong to the domain of A∗; in particular, those of H. The price to pay is that the form of
this expansion is necessarily weak since vectors ofH do not belong to the domain of the analysis
operator Cφ.

In the sequel, we will need the following:

Lemma 3.1. [11, Lemma 3.8] Let (H, ‖ · ‖), (H1, ‖ · ‖1) and (H2, ‖ · ‖2) be Hilbert spaces and T1 :
D(T1) ⊆ H1 → H, T2 : D(T2) ⊆ H → H2 densely defined operators. Assume that T1 is closed and
D(T ∗1 ) = D(T2). If ‖T ∗1 f‖1 ≤ λ‖T2f‖2 for all f ∈ D(T ∗1 ) and some λ > 0, then there exists a bounded
operator U ∈ B(H1,H2) such that T1 = T ∗2U .

Remark 3.4. Lemma 3.1 is still valid if we replace closedness of T1 by its closability, and in this hy-
pothesis, T1 = T ∗2U .

In the literature [19], two measurable functions ψ and φ are said to be dual to each other if
one has

(3.3) 〈f |g〉 =

∫
X

〈f |φx〉〈ψx|g〉dµ(x), ∀f, g ∈ H.

If φ is a lower semi-frame of H, then its dual ψ is a Bessel mapping of H [8]. In addition, if
D(Cφ) is dense, its dual ψ is an upper semi-frame. However, this definition is too general, in
the sense that the right hand side may diverge for arbitrary f, g ∈ H. A more useful definition
will be given below, namely (5.3). A notion of duality related to a given operator G can be
formulated as follows.

Definition 3.5. Let G be a densely defined operator and φ : x ∈ X 7→ φx a function such that, for all
u ∈ D(G∗) the map x 7→ 〈u|φx〉 is a measurable function on X . Then a function ψ : x ∈ X 7→ ψx ∈ H
such that, for all f ∈ D(G) the map x 7→ 〈f |ψx〉 is a measurable function on X is called a weak G-dual
of φ if

(3.4) 〈Gf |u〉 =

∫
X

〈f |ψx〉〈φx|u〉dµ(x), ∀f ∈ D(G) ∩ D(Cψ),∀u ∈ D(G∗) ∩ D(Cφ).

This is a generalization of the notion of weak G-dual in [10].

Remark 3.5.
(i) The weak G-dual ψ of φ is not unique, in general. On the other hand, Definition 3.5 could be

meaningless. For instance, if either D(G) ∩ D(Cψ) = {0} or D(G∗) ∩ D(Cφ) = {0}, then
everything is "dual".

(ii) Note that, if φ is a weak G-frame, then there exists a weak G-dual ψ of φ such that relation (3.4)
must hold only for ∀f ∈ D(G),∀u ∈ D(G∗) indeed D(G∗) ⊂ D(Cφ) and by Theorem 3.20 in
[10], there exists a Bessel weak G-dual ψ of φ, hence D(G) ⊂ D(Cψ) = H.

Example 3.1. Given a densely defined operatorG on a separable Hilbert spaceH, we show two examples
of G-duality (see [10, Ex. 3.10]).

(i) Let (X,µ) be a locally compact, σ-compact measure space and let {Xn}n∈N be a covering of X
made up of countably many measurable disjoint sets of finite measure. Without loss of general-
ity, we suppose that µ(Xn) > 0 for every n ∈ N. Let {en} ⊂ D(G) be an orthonormal basis
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of H and consider φ, with φx = Gen√
µ(Xn)

, x ∈ Xn,∀n ∈ N, then φ is a weak G-frame, see [10,

Example 3.10]. One can take ψ with ψx = en√
µ(Xn)

, x ∈ Xn,∀n ∈ N.

(ii) If φ := Gζ, where ζ : x ∈ X 7→ ζx ∈ D(G) ⊂ H is a continuous frame for H, then one can
take as ψ any dual frame of ζ.

4. LOWER ATOMIC SYSTEMS

Theorem 4.1. Let (X,µ) be a locally compact, σ-compact measure space, A a densely defined operator
and φ : x ∈ X 7→ φx ∈ H a map such that, for every u ∈ D(A∗), the function x 7→ 〈u|φx〉 is
measurable on X . Then, the following statements are equivalent:

(i) φ is a weak lower A-semi-frame forH;
(ii) Eφ(A) 6= ∅ and for every B ∈ Eφ(A), there exists a closed densely defined extension R of

C∗φ, with D(R∗) = D(B∗), such that B can be decomposed as B = RM for some M ∈
B(H, L2(X,µ)).

Proof. We proceed as in [10, Theor. 3.16].
(i)⇒(ii): If φ is a weak lower A-semi-frame for H, by definition, there exists B ∈ Eφ(A). Con-
sider E : D(B∗) → L2(X,µ) given by (Eu)(x) = 〈u|φx〉, ∀u ∈ D(B∗), x ∈ X which is a
restriction of the analysis operator Cφ. E is closable and densely defined.

Apply Lemma 3.1 to T1 := B, and T2 := E, noting that ‖Eu‖22 =
∫
X
|〈u|φx〉|2 dµ(x), u ∈

D(B∗). Thus, there exists M ∈ B(H, L2(X,µ)) such that B = E∗M . Then the statement is
proved by taking R = E∗, indeed R = E∗ ⊇ C∗φ and D(R) ⊃ D(C∗φ) is dense because Cφ is
closed and densely defined. Note that, we have D(B∗) = D(R∗); indeed D(R∗) = D(E),

D(B∗) ⊂ D(E) = D(M∗E) ⊂ D((E∗M)∗) = D(B∗),

hence, in particular, E is closed, recalling that D(E) = D(B∗).
(ii)⇒(i): Let B ∈ Eφ(A). For every u ∈ D(B∗) = D(R∗),

‖B∗u‖2 = ‖M∗R∗u‖2 ≤ ‖M∗‖2‖R∗u‖2 = ‖M∗‖2
∫
X

|〈u|φx〉|2 dµ(x) <∞

since R∗ ⊂ Cφ. This proves that φ is a weak lower A-semi-frame. �

Generalizing the notion of continuous weak atomic system for A [10], we consider the fol-
lowing:

Definition 4.6. Let A be a densely defined operator onH. A lower atomic system for A is a function
φ : x ∈ X 7→ φx ∈ H such that

(i) for all u ∈ D(A∗), the map x 7→ 〈u|φx〉 is a measurable function on X ;
(ii) the operator A has a closed extension B such that D(B∗) ⊂ D(Cφ); i.e., Eφ(A) 6= ∅;

(iii) there exists γ > 0 such that, for every f ∈ D(A), there exists af ∈ L2(X,µ), with ‖af‖2 =(∫
X
|af (x)|2 dµ(x)

)1/2 ≤ γ‖f‖ and

〈Af |u〉 =

∫
X

af (x)〈φx|u〉dµ(x), ∀u ∈ D(B∗).

We have chosen not to call φ a weak lower atomic system for A for brevity, even if it leads
to a weak decomposition of the range of the operator A. Theorem 3.20 of [10], gives a char-
acterization of weak atomic systems for A and weak A-frames. The next theorem yields the
corresponding result for weak lower A-semi-frames.
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Theorem 4.2. Let (X,µ) be a locally compact, σ-compact measure space, A a densely defined operator
in H and φ : x ∈ X 7→ φx ∈ H a function such that, for all u ∈ D(A∗), the map x 7→ 〈u|φx〉 is
measurable on X . Then, the following statements are equivalent:

(i) φ is a lower atomic system for A;
(ii) φ is a weak lower A-semi-frame forH;

(iii) Eφ(A) 6= ∅ and for every B ∈ Eφ(A), φ has a Bessel weak B-dual ψ.

Proof.
(i)⇒(ii): Consider a φ-extension B of A. By the density of D(A), we have, for every u ∈ D(B∗)

‖B∗u‖ = sup
f∈H,‖f‖=1

|〈B∗u|f〉| = sup
f∈D(A),‖f‖=1

|〈B∗u|f〉|

= sup
f∈D(A),‖f‖=1

|〈u|Bf〉| = sup
f∈D(A),‖f‖=1

|〈u|Af〉|

= sup
f∈D(A),‖f‖=1

∣∣∣∣∫
X

af (x)〈u|φx〉dµ(x)

∣∣∣∣
≤ sup
f∈D(A),‖f‖=1

(∫
X

|af (x)|2 dµ(x)

)1/2(∫
X

|〈u|φx〉|2 dµ(x)

)1/2

≤ γ
(∫

X

|〈u|φx〉|2 dµ(x)

)1/2

<∞

for some γ > 0, the last but one inequality is due to the fact that φ is a lower atomic system for
A and the last one to the inclusion D(B∗) ⊂ D(Cφ). Then, φ is a weak lower A-semi-frame.
(ii)⇒(iii): Following the proof of Theorem 4.1, for every φ-extension B of A, there exists a
closed densely defined extension R of C∗φ, with D(R∗) = D(B∗), such that B = RM for some
M ∈ B(H, L2(X,µ)). By the Riesz representation theorem, for every x ∈ X there exists a unique
vector ψx ∈ H such that (Mh)(x) = 〈h|ψx〉, for every h ∈ H. The function ψ : x ∈ X 7→ ψx ∈ H
is Bessel. Indeed, ∫

X

|〈h|ψx〉|2 dµ(x)=

∫
X

|(Mh)(x)|2 dµ(x)

=‖Mh‖22 ≤ ‖M‖2‖h‖2, ∀h ∈ H.

Hence D(Cψ) = H. Moreover, for f ∈ D(B)∩D(Cψ) = D(B), u ∈ D(B∗) = D(R∗) ⊂ D(Cφ)

〈Bf |u〉 =〈RMf |u〉 = 〈Mf |R∗u〉2

=

∫
X

〈f |ψx〉〈φx|u〉dµ(x).

(iii)⇒(i): It suffices to take, for every fixed φ-extensionB ofA, af : x ∈ X 7→ ax(f) = 〈f |ψx〉 ∈ C
for all f ∈ D(B). Indeed, af ∈ L2(X,µ) and, for some γ > 0, we have

∫
X
|ax(f)|2 dµ(x) =∫

X
|〈f |ψx〉|2 dµ(x) ≤ γ‖f‖2, since ψ is a Bessel function. Moreover, by definition of weak B-

dual, we have 〈Bf |u〉 =
∫
X
af (x)〈φx|u〉dµ(x), for f ∈ D(Cψ)

⋂
D(B) = D(B), u ∈ D(B∗) ⊂

D(Cφ). Indeed, we note that D(Cψ) = H since ψ is a Bessel function. �

Remark 4.6. We don’t know if ψ is a weak upper A-semi-frame, in the sense of Definition 5.7, indeed
ψ need not be µ-total, that is,

∫
X
|〈f |ψx〉|2 6= 0 for every f ∈ H, f 6= 0.
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5. DUALITY AND WEAK UPPER A-SEMI-FRAMES

IfC ∈ GL(H), a frame controlled by the operatorC orC- controlled frame [9] is a family of vectors
φ = (φn ∈ H : n ∈ Γ), such that there exist two constants mA > 0 and MA <∞ satisfying

(5.1) mA ‖f‖2 ≤
∑
n

〈f |φn〉〈Cφn|f〉 ≤ MA ‖f‖2 ,∀ f ∈ H

or, to put it in a continuous form:

(5.2) mA ‖f‖2 ≤
∫
X

〈f |φx〉 〈Cφx|f〉dµ(x) ≤ MA ‖f‖2 , ∀ f ∈ H.

According to Proposition 3.2 of [9], an A-controlled frame is in fact a classical frame when the
controlling operator belongs to GL(H). A similar result holds true for a weak lower A-semi-
frame ifA is bounded as we show in Proposition 5.5. From there it follows that, ifA is bounded,
a weak lower A-semi-frame has an upper semi-frame dual to it.

Remark 5.7. We recall that a bounded operator A is surjective if and only if A∗ is injective andR(A∗)
is norm closed (if and only if A∗ is injective andR(A) is closed) [17, Theor. 4.14 and 4.15].

Proposition 5.5. Let A ∈ B(H) and φ be a weak lower A-semi-frame. Assume that anyone of the
following assumptions is satisfied:

(i) A∗ injective, withR(A∗) norm closed or
(ii) A∗ injective, withR(A) closed or

(iii) A surjective.
Then,

(a) φ is a lower semi-frame ofH in the sense of (1.5),
(b) there exists an upper semi-frame ψ dual to φ.

Proof. (a) By Remark 5.7, it suffices to prove (iii). By Theorem 4.15 in [17], A is surjective if and
only if there exists γ > 0 such that ‖A∗f‖ ≥ γ‖f‖, for every f ∈ H, then

γ2α‖f‖2 ≤ α‖A∗f‖2 ≤
∫
X

|〈f |φx〉|2 dµ(x), ∀ f ∈ H.

(b) The thesis follows from (a) and Proposition 2.1 (ii) in [7] (with {en} an ONB ofH).
As explained above, the notion of duality given in (3.3) is too general. Therefore, in what

follows ψ will be said to be dual to φ if one has

(5.3) 〈f |g〉 =

∫
X

〈f |φx〉〈ψx|g〉dµ(x), ∀f ∈ D(Cφ), g ∈ D(Cψ).

�

An interesting question is to identify a weak A-dual of a weak lower A-semi-frame. We
expect one should generalize to the present situation the notion of upper semi-frame. We first
consider the next definition and examine its consequences.

Definition 5.7. Let A be a densely defined operator on H. A weak upper A-semi-frame for H is a
function ψ : x ∈ X 7→ ψx ∈ H such that, for all f ∈ D(A), the map x 7→ 〈f |ψx〉 is measurable on X
and there exists a closed extension F of A and a constant α > 0 such that

(5.4)
∫
X

|〈u|ψx〉|2 dµ(x) ≤ α‖F ∗u‖2, ∀u ∈ D(F ∗).

Remark 5.8.
(i) From Definition 5.7, it is clear that D(F ∗) ⊂ D(Cψ).
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(ii) If A ∈ B(H), then ψ it is clearly a Bessel family.

Corollary 5.1. Let ψ be a Bessel mapping of H, and A ∈ B(H). Assume that anyone of the following
statements is satisfied:

(i) A∗ injective, withR(A∗) norm closed or
(ii) A∗ injective, withR(A) closed or

(iii) A surjective.
Then, ψ is a weak upper A-semi-frame.

Proof. By Remark 5.7, it suffices to prove (iii). By Theorem 4.15 in [17], we have just to note that∫
X

|〈f |ψx〉|2 dµ(x) ≤ γ‖f‖2 ≤ α2γ‖A∗f‖2, ∀ f ∈ H.

�

Remark 5.9. The previous result is true a fortiori if ψ is an upper semi-frame ofH.

Summarizing Proposition 5.5, Corollary 5.1 together with the preceding results we have that:

Corollary 5.2. Let A ∈ B(H). Assume that anyone of the following assumptions is satisfied:
(i) A∗ injective, withR(A∗) norm closed or

(ii) A∗ injective, withR(A) closed or
(iii) A surjective

and let φ be a weak lower A-semi-frame. Then, there exists a weak upper A-semi-frame ψ dual to φ.

Theorem 5.3. Let (X,µ) be a locally compact, σ-compact measure space, A a densely defined operator
and ψ : x ∈ X 7→ ψx ∈ H a map such that, for every f ∈ D(A), the function x 7→ 〈f |ψx〉 is measurable
on X . Then, the following statements are equivalent:

(i) ψ is a weak upper A-semi-frame forH;
(ii) For every closed, densely defined extension F of A such that (5.4) holds true, there exists a

closed, densely defined extension Q of C∗ψ such that Q = FN for some N ∈ B(L2(X,µ),H).

Proof.
(i)⇒(ii): Let ψ be a weak upper A-semi-frame, then for every closed extension F of A for which
(5.4) holds true, consider the operator E = Cψ � D(F ∗). It is densely defined, closable since Cψ
is closed. Define an operator O on R(F ∗) ⊆ H as OF ∗f = Ef ∈ L2(X,µ). Then, O is a well-
defined bounded operator by (5.4). Now, we extend O to the closure of R(F ∗) by continuity
and define it to be zero onR(F ∗)⊥. ThereforeO ∈ B(H, L2(X,µ)) andOF ∗ = E, i.e.,E∗ = FO∗

and the statement is proved by taking Q = E∗ and N = O∗.
(ii)⇒(i): From Q = FN , with Q a densely defined closed extension of C∗ψ , we have that Q∗ =

N∗F ∗ ⊂ Cψ . For every u ∈ D(F ∗) = D(N∗F ∗) = D((FN)∗) ⊂ D(Cψ),

‖Cψu‖22 =

∫
X

|〈u|ψx〉|2 dµ(x) = ‖N∗F ∗u‖22 ≤ α‖F ∗u‖2

for some α > 0. �

We can now prove the following duality result, which suggests that Definition 5.7 is conve-
nient in this context.

Proposition 5.6. Let A be a densely defined operator and ψ a weak upper A-semi-frame. Let F be a
closed extension of A satisfying (5.4) for some α > 0. Assume that φ ⊂ D(A) is a weak F -dual of ψ
such that

(a) F ∗D(F ∗) ⊂ D(Cφ),
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(b) the function x→ ‖Aφx‖ is in L2(X,µ).

Then, F ∈ EAφ(A) and Aφ is a weak lower A-semi-frame with F as (Aφ)-extension and lower bound
α−1, i.e.,

(5.5) α−1 ‖F ∗u‖2 ≤
∫
X

|〈u|Aφx〉|2 dµ(x), ∀u ∈ D(F ∗) ∩ D(Cφ).

Proof. For every u ∈ D(FF ∗),

‖F ∗u‖2 = 〈F ∗u|F ∗u〉 = 〈FF ∗u|u〉

=

∫
X

〈F ∗u|φx〉〈ψx|u〉dµ(x), by weak F -duality

≤
(∫

X

|〈u|ψx〉|2 dµ(x)

)1/2(∫
X

|〈F ∗u|φx〉|2 dµ(x)

)1/2

≤ α1/2 ‖F ∗u‖
(∫

X

|〈F ∗u|φx〉|2 dµ(x)

)1/2

.

The right hand side of the previous inequality is finite because of (a). Hence,

‖F ∗u‖ ≤ α1/2

(∫
X

|〈u|Aφx〉|2 dµ(x)

)1/2

, ∀u ∈ D(FF ∗).

Now, we take into account that D(FF ∗) is a core for F ∗ by von Neumann’s theorem [16, The-
orem 3.24]. Therefore, for every u ∈ D(F ∗), there exists a sequence {un} ⊂ D(FF ∗) such that
‖un − u‖ → 0 and ‖F ∗un − F ∗u‖ → 0. This implies, of course, that 〈F ∗un|φx〉 → 〈F ∗u|φx〉, for
every x ∈ X . Moreover, since {un} is bounded, we have

|〈F ∗un|φx〉| = |〈un|Fφx〉| ≤M‖Fφx‖

for some M > 0 and for every x ∈ X . The assumption that x→ ‖Aφx‖ is in L2(X,µ) allows us
to apply the dominated convergence theorem and conclude that

‖F ∗u‖ ≤ α1/2

(∫
X

|〈u|Aφx〉|2 dµ(x)

)1/2

, ∀u ∈ D(F ∗).

The right hand side of the latter inequality is finite again by (a), hence D(F ∗) ⊂ D(CAφ). This
fact also implies that F ∈ EAφ(A) since, if u ∈ D(F ∗), we get∫

X

|〈u|Aφx〉|2 dµ(x) =

∫
X

|〈F ∗u|φx〉|2 dµ(x) = ‖CAφu‖2 <∞.

�

Remark 5.10.
(1) Note (5.5) can obviously be also written

α−1 ‖h‖2 ≤
∫
X

|〈h|φx〉|2 dµ(x), ∀h ∈ R(F ∗).

(2) For every f ∈ D(F ∗), with our new definition, by

α−1
∫
X

|〈f |ψx〉|2 dµ(x) ≤ ‖A∗f‖2 ≤ α
∫
X

|〈f |Aφx〉|2 dµ(x),

it follows that ‖Cψf‖ ≤ α‖CAφf‖, for every f ∈ D(F ∗). Since Cψ is closed, then D(C∗ψ) is
dense and (5.4) and (5.5) imply that D(CAφ) ⊆ D(F ∗) ⊆ D(Cψ), hence the latter is dense too.
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Another possibility is to mimic the notion of controlled frame (5.1) or (5.2), introduced in
[9, Definition 3.1]. Because the operator A is supposed to belong to GL(H), we end up with a
generalized frame (and actually a genuine frame). It would be interesting to extend the defini-
tion to an unbounded operator or at least to operators less regular than elements of GL(H). A
different strategy is to investigate the following generalization. Let B be a linear operator with
domain D(B). Suppose that ψn ∈ D(B) for all n. Put

ΩB(f, g) =
∑
n

〈f |ψn〉〈Bψn|g〉, ∀ f, g ∈ D(ΩB),

where D(ΩB) is some domain of the sesquilinear form defined formally on the rhs. Following
[13, Sec. 4], we may consider the form ΩB as the form generated by two sequences, {ψn} and
{Bψn}. Then, the operator associated to the form ΩB is precisely B, since one has 〈Bf |g〉 =
ΩB(f, g). A continuous version of (5.1) would be

mA ‖f‖2 ≤
∫
X

〈f |ψx〉〈Aψx|f〉dµ(x) ≤ MA ‖f‖2 , for all f ∈ H,

and the sesquilinear form becomes

ΩA(f, g) =

∫
X

〈f |ψx〉〈Aψx|g〉dµ(x) ≤ MA ‖f‖2 , for all f, g ∈ D(ΩA).

From the last relation, we might infer two alternative possible definitions of an upper A-semi-
frame, namely: ∫

X

|〈Af |ψx〉|2 dµ(x) ≤ M ‖f‖2 , ∀ f ∈ D(A),∫
X

〈f |ψx〉 〈ψx|Af〉dµ(x) ≤ M ‖f‖2 , ∀ f ∈ D(A).(5.6)

Actually the definition (5.6) leads to that of an A-Bessel map, provided that ψx ∈ D(A∗), for all
x ∈ X : ∫

X

〈f |ψx〉 〈A∗ψx|f〉dµ(x) ≤ M ‖f‖2 , ∀ f ∈ D(A).

Further, study will hopefully reveal which of the three definitions of an upper A-semi-frame is
the most natural one.

6. EXAMPLES

(1) A reproducing kernel Hilbert space. We start from the example of a lower semi-frame in a
reproducing kernel Hilbert space described in increasing generality in [6, 8]. Let HK be a
reproducing kernel Hilbert space of (nice) functions on a measure space (X,µ), with kernel
function kx, x ∈ X , that is, f(x) = 〈f |kx〉K , ∀f ∈ HK . Choose a (real valued, measurable)
weight function m(x) > 1 and consider the unbounded self-adjoint multiplication operator
(Mf)(x) = m(x)f(x),∀x ∈ X , with dense domainD(M). For each n ∈ N, defineHn = D(Mn),
equipped with its graph norm, and Hn := H−n = H×n (conjugate dual). Then, we have the
Hilbert scale {Hn, n ∈ Z}:

. . .Hn ⊂ . . . ⊂ H2 ⊂ H1 ⊂ H0 = HK ⊂ H1 ⊂ H2 . . . ⊂ Hn . . . .
As an operator on the scale, which is a partial inner product space [2], the operator M has
continuous representatives Mn+1 → Mn, n ∈ Z. Fix some n > 1 and define the measurable
functions φx = kxm

n(x), ψx = kxm
−n(x), for every x ∈ X . Then ψx ∈ Hn , for every x ∈ X ,

and ψ is an upper semi-frame, whereas φx ∈ Hn , for every x ∈ X , and φ is a lower semi-
frame. Also, Cψ : HK → Hn, Cφ : HK → Hn continuously. One has indeed, for every



116 Jean-Pierre Antoine, Giorgia Bellomonte and Camillo Trapani

g ∈ HK , 〈ψx|g〉K = g(x)m−n(x) ∈ Hn and 〈φx|g〉K = g(x)mn(x) ∈ Hn. Next, choose a real
valued, measurable function x 7→ a(x) such that a(x) ≤ mn(x),∀x ∈ X , and define A = A∗

as the multiplication operator by a : (Af)(x) = a(x)f(x),∀x ∈ X . Let D(A) = Hn. Then
A ∈ B(Hn) since ‖af‖ ≤ ‖mnf‖ < ∞, for every f ∈ Hn and since a(x)m−n(x) < 1 for every
x ∈ X and for every f ∈ Hn, then R(A) ⊂ D(Mn) = Hn. As an operator on the scale, A has
continuous representatives Ap,n+p : Hn+p → Hp. Then, we have, ∀f ∈ D(A) = Hn ⊂ D(Cφ),

‖Af‖2 =

∫
X

|f(x)|2 a(x)2 dµ(x) ≤
∫
X

|f(x)|2m2n(x) dµ(x) =

∫
X

|〈f |φx〉K |2 dµ(x) <∞,

that is, φ is a weak A-frame forHK . The same holds for every self-adjoint operator A′ which is
the multiplication operator by the measurable function x 7→ a′(x) such that a′(x) ≤ mn(x),∀x ∈
X , and D(A′) = Hn.

Let now the closed operator B be a φ-extension of A, that is,

A ⊂ B and Hn = D(A) ⊂ D(B∗) ⊂ D(Cφ)

and

‖B∗f‖2 ≤
∫
X

|〈f |φx〉K |2 dµ(x) <∞, ∀ f ∈ D(B∗).

Then, φ is a weak lower A-semi-frame forHK .

(2) A discrete example. A more general situation may be derived from the discrete example of
Section 5.2 of [6]. Take a weight sequence m := {|mn|}n∈N,mn 6= 0, where m ∈ `∞ has a
subsequence converging to zero (or m ∈ c0). Then consider the space `2m with norm ‖ξ‖`2m :=∑
n∈N |mnξn|2. Thus, we have the following triplet

`21/m ⊂ `
2 ⊂ `2m.

Next, for each n ∈ N, define ψn = mnen, where e := {en}n∈N is an orthonormal basis in
`2. Then ψ is an upper semi-frame and Cψ : H → `21/m, continuously. On the other hand,
φ := {(1/mn)en}n∈N} is a lower semi-frame and Cφ : H → `2m, continuously. In other words,
ψ = Me and φ = M−1e, where M is the diagonal operator Mn = mn, n ∈ N. In order to define
a weak lower A-semi-frame for `2, we take another diagonal operator A = {an} such that, for
each n ∈ N one has |an| ≤ |mn|−1. Then, ∀f ∈ D(A),

‖Af‖2 =
∑
n∈N
|an|2|fn|2 =

∑
n∈N
|an|2|〈f |en〉|2 ≤

∑
n∈N
|mn|−2|〈f |en〉|2

=
∑
n∈N
|〈f |φn〉|2.

Thus, φ is a weak A-frame for `2. As in Example (1), we get a weak lower A-semi-frame for `2

if we have a φ-extension B of A. The same result holds true if one replaces the ONB {en} by a
frame {θn}n∈N:

α ‖f‖2 ≤
∑
n

|〈f |θn〉|2 ≤ β ‖f‖2 , ∀f ∈ H,
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for some α, β > 0. Since m ∈ `∞, we can as well assume that |mn| < δ, ∀n ∈ N for some δ > 0.
Thus |1/mn| > 1/δ, ∀n. Then, for every f, g ∈ H, we have∑

n

|〈f |ψn〉|2 =
∑
n

|mn|2|〈f |θn〉|2 ≤ δ2
∑
n

|〈f |θn〉|2 ≤ δ2β ‖f‖2 ,

∑
n

|〈g|φn〉|2 =
∑
n

∣∣∣∣ 1

mn

∣∣∣∣2 |〈g|θn〉|2 ≥ 1

δ2

∑
n

|〈g|θn〉|2 ≥
1

δ2
α ‖g‖2 .

Thus, indeed, ψ is an upper semi-frame and φ is a lower semi-frame. The rest of the construc-
tion follows.

(3) A standard construction. As explained in Section 2, a standard construction of lower semi-
frames stems from the consideration of a metric operator induced by an unbounded operator.
Given a closed, densely defined, unbounded operator S with dense domain D(S), define the
metric operator G = I + S∗S, which is unbounded with bounded inverse. Then, if we take
an ONB {en} of D(G1/2) = D(S), contained in D(S∗S), then {φn} = {Gen} = {(I + S∗S)en}
is a lower semi-frame of H on D(S). Now, if A is a densely defined operator that satisfies the
equation

α ‖A∗f‖ ≤ ‖f‖Cφ , ∀ f ∈ D(A∗)

instead of (2.1), then φ is a weak A-frame for H. As for the equivalent of (2.2), it is of course
trivial.

7. CONCLUSION

In the search of expansions of certain functions into simpler ones, the usual strategy is to
pass from orthonormal bases (e.g. Fourier series or integral) to frames, and then to semi-frames,
lower or upper. In each case, one obtains more flexibility. The aim of this paper is to apply the
same philosophy to more recent structures.

Given a densely defined linear operator A on a Hilbert spaceH, the notion of weak A-frame
was introduced in [10], as explained in Def. 3.2. Following the strategy described above, we
obtain the notion of weak lower A-semi-frame given in Def. 3.4 and discussed in Section 3. A
parallel notion is that of weak atomic system for A, also introduced in [10], from which we
obtain that of lower atomic system for A. As explained in Section 4, the two original structures go
hand in hand and the equivalence extends to the new ones as well. In the same way, one defines
a weak upper A-semi-frame (Def. 5.7), although this definition is only tentative. Finally, there is a
recurrent property of duality, namely, a weak upperA-semi-frame generates by duality a lower
one.

The conclusion is that, in each case, one can obtain more flexibility for expansions by passing
from frames to semi-frames, as illustrated by the examples provided. Of course, more work is
needed. The results presented here are in fact a first step toward a generalization of the notions
of weak A-frames and weak atomic system to lower semi-frames.
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