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Abstract 

This study aimed to determine the most suitable local geoid model based on 641 GNSS/leveling points 

within the borders of Kars Province in eastern Turkey using the generalized regression neural network (GRNN), 

weighted average (WA), multiquadric (MQ), inverse multiquadric (IMQ) function, and local polynomial (LP) 

method. Among these methods used in local geoid determination, the studies conducted with the GRNN method 

are very limited in the literature. To test the performance of the model, 169 GNSS/leveling points were selected 

as test data. When selecting reference points and test points, care was taken to distribute these points 

homogeneously within the study area. The criteria of root mean square error (RMSE), mean absolute error 

(MAE), and coefficient of determination (R2) were used to assess the accuracy and error rates of the results 

achieved using the different methods.  According the results of analysis, GRNN method yielded better results 

than other interpolation methods. These results have showed that GRNN method can be taken into account in 

modeling various geodesy problems. 

Keywords: Generalized regression neural network (GRNN), geoid undulation, GNSS/leveling, interpolation 

methods 

 

Genelleştirilmiş regresyon sinir ağı ve bazı enterpolasyon yöntemlerini kullanarak yerel jeoid 

belirleme: Kars, Türkiye'de bir vaka çalışması 

 

Öz 

Bu çalışmada Türkiye’nin doğusunda yer alan Kars il sınırları içerisinde bulunan 641 tane GNSS/nivelman 

noktasına dayalı olarak, genelleştirilmiş regresyon yapay sinir ağı (GRNN), ağırlıklı ortalama (WA), 

multikuadrik (MQ) fonksiyonu, ters multikuadrik (IMQ) fonksiyonu ve yerel polinom (LP) yöntemleri 

kullanılarak en uygun yerel jeoid modelinin belirlenmesi amaçlanmıştır. Lokal jeoid belirlemede kullanılan bu 

yöntemler arasından GRNN yöntemi ile yapılan çalışmaların sayısı literatürde oldukça sınırlıdır. Modelin 

performansını test etmek için 169 tane GNSS/nivelman noktası test verisi olarak seçilmiştir. Referans noktaları 

ve test noktaları seçilirken, bu noktaların çalışma alanı içerisinde homojen olarak dağılmasına   özen 

gösterilmiştir. Farklı yöntemlerden elde edilen sonuçların doğruluğunu ve hata oranlarını öğrenmek için, karesel 

ortalama hata (RMSE), ortalama mutlak hata (MAE) ve belirlilik katsayısı (R2) kriterleri kullanılmıştır. Analiz 

sonuçlarına göre GRNN metodu, diğer interpolasyon yöntemlerine göre daha iyi sonuçlar vermiştir. Bu 

sonuçlar, GRNN metodunun çeşitli jeodezi problemlerinin modellenmesinde dikkate alınabileceğini 

göstermiştir.. 

Anahtar Kelimeler:  Genelleştirilmiş regresyon sinir ağı, jeoid ondülasyonu, GNSS/nivelman, enterpolasyon 

yöntemleri 
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1. Introduction 

Despite scientific and technological advances, 

geometric leveling is still used as a more 

practical way of determining orthometric 

height (H). Currently, ellipsoidal heights can 

be determined with high accuracy using 

global navigation satellite system (GNSS) 

techniques. Ellipsoidal height is a geometric 

height, and since it has no physical meaning, 

orthometric heights are used in engineering 

studies (Featherstone, 1998). If geoid 

undulation values with a specific accuracy are 

known, they can be easily converted from the 

ellipsoidal heights obtained with GNSS to 

orthometric heights. A geoid can be defined as 

the equipotential surface of the gravitational 

field that coincides with the mean sea level. 

The geoid creates a reference surface for the 

physical heights of topographical points. This 

surface is formed under the gravitational force 

of the earth masses. Based on development 

methods and the data used, the different 

methods for geoid determination are generally 

divided into three types: gravimetric, astro-

geodetic, and geometric (Becker, 2012). The 

geometric method relies on the relationship 

between the GNSS and orthometric heights to 

determine the geoid undulation and 

interpolates this value for an unknown point. 

In order to determine the local geoid, first, the 

points with both height values known are 

chosen as reference points. Creating and 

selecting the most appropriate and realistic 

model in geoid determination is extremely 

important for the practitioners using such 

models. In the literature to date, many 

interpolation and least square collocation 

methods have been used for the geometric 

modeling of local geoids (Zhan-ji and Yong-

qi, 1999; Yanalak and Baykal, 2001; 

Doganalp and Selvi, 2015; Doganalp, 2016; 

Karaaslan, et al., 2016; Şişman and Elevli, 

2018; Yılmaz and Kuru, 2019; Yılmaz, 2019). 

The artificial neural network (ANN) method 

is used in solving engineering problems 

because of its non-linear structure and error 

tolerance. In geodetic studies, ANNs have 

been successfully used in geoid undulation 

modeling for different regions (Güllü et al., 

2016; Kaloop, 2018; Fidancı and Abbak, 

2019; Albayrak et al., 2020; Erol and Erol, 

2020). For example, Seager et al. (1999) used 

a back propagation ANN to model the local 

geoid for an area of 2°×2°. As a result of the 

study, they found that this method could be 

used as a tool in geoid undulation modeling. 

Kavzoglu and Saka (2005) designed an ANN 

to model geoid undulation for Istanbul using 

190 GPS/leveling points. The results showed 

that the developed ANN model exhibited a 

lower error rate than the GPS/leveling data 

surface. Cakir and Yılmaz (2014) compared 

the geoid undulation estimates they carried 

out using the multilayer perceptron neural 

network (MLPNN) with polynomials and 

radial basis functions. According to the results 

of the study, they found that the MLPNN 

model gave more accurate results than the 

other methods tested.  

The aim of this study was to design a suitable 

geoid model for Kars Province (Turkey). Six 

different methods were used in the study: 

generalized regression neural network 

(GRNN) from artificial neural network 

(ANN) models, weighted average (WA), 

multiquadric (MQ) and inverse multiquadric 

(IMQ) radial basis functions, and local 

polynomial (LP) function. During the 

implementation of the methods, 641 geodetic 

points with known ellipsoidal and orthometric 

heights were divided into "reference" and 
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"test" data groups. The performances of the 

models were evaluated using root mean 

square error (RMSE), mean absolute error 

(MAE), and coefficient of determination (R2). 

The results showed that according to the 

known geoid undulation values, the GRNN 

method gave better results for estimated 

values than the other interpolation methods. 

2. Material and Methods 

2.1. Study area 

The province of Kars has the provinces of 

Ardahan to the north, Iğdır to the southeast, 

Ağrı to the south and Erzurum to the west, 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Study area 

with Armenia located to the East. Its total area 

is 10,139 km2 (Fig. 1).  

The orthometric and ellipsoidal height values 

of 641 C3 order control points used within the 

scope of the study were provided by the the 

Erzincan XXIV Regional Directorate of Land 

Registry and Cadastre. 

With attention given to their homogeneous 

distribution, 473 of the GNSS/leveling points 

were chosen as reference points and the 

remaining 169 as test points. The distributions 

of the reference and test points are shown in 

Figure 2. The ellipsoidal heights (h) of the 

points were determined in the ITRF96 datum 

at epoch 2005.0 using GNSS techniques and 

according to Turkey National Fundamental 

GPS Network (TNFGN).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The orthometric heights (H) of the 

same points were calculated by referencing 

the Turkish National Vertical Control 
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Network (TNVCN). The undulation (N) 

values of the geodetic points were obtained by 

subtracting the orthometric heights from the 

ellipsoidal heights of the points. 

 

Figure 2. Distribution of reference and test 

points in the study area 

Statistical properties (mean, maximum, 

minimum, and standard deviation) of the data 

(divided into reference and test data for the 

application) are shown in Table 1. The values 

of all statistical properties were nearly the 

same for the reference and test datasets. 

Table 1. Statistical properties of reference and 

                test data 

 

 

 

 

 

2.2. Generalized Regression Neural 

Network (GRNN) 

The GRNN consists of a total of four layers: 

an input layer, a pattern layer, a summation 

layer, and an output layer. 

The general structure of the GRNN is given in 

Figure 3. In the GRNN method, developed by 

Donald Specht in 1991, the estimation 

function is created by using the input and 

output data.  

 

Figure 3. General GRNN structure  

The GRNN is a radial basis feed-forward 

ANN model that does not require an iterative 

training procedure (Specht, 1991). Equation 

(1) shows the regression of the dependent 

variable y with respect to the independent 

variable x, if the joint probability density 

function f (x, y) is known. 

𝐸[𝑦|𝑋] =
∫ 𝑦𝑓(𝑋,𝑦)𝑑𝑦

∞
−∞

∫ 𝑓(𝑋,𝑦)𝑑𝑦
∞

−∞

           (1)

          

 

 

 

 

 

 

When the density function is unknown, it must 

be usually be estimated a sample of 

observations of x and y. The probability 

Data set Coordinates Mean Maximum Minimum 
Standard 

Deviation 

Reference 

Latitude (˚) 40.382 41.093 39.942 0.269 

Longitude (˚) 42.943 43.497 42.167 0.338 

Undulation (m) 25.761 35.614 23.372 1.027 

Test 

Latitude (˚) 40.385 41.025 39.990 0.258 

Longitude (˚) 42.974 43.468 42.218 0.318 

Undulation (m) 25.681 27.352 23.584 0.860 
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estimator 𝑓 (𝑥, 𝑦) is based on sapmle values  

Xi and Yi of random variables x and y. 

𝑓(𝑋, 𝑦) =
1

(2𝜋)(𝑝+1) 2⁄ 𝜎(𝑝+1)

1

𝑛
×

∑ 𝑒𝑥𝑝 [
−(𝑋−𝑋𝑖)

𝑇
(𝑋−𝑋𝑖)

2𝜎2 ]𝑛
𝑖=1 𝑒𝑥𝑝 [

−(𝑌−𝑌𝑖)
2

2𝜎2 ]   (2) 

In this equation, p is the size of the vector x, n 

is the number of data, and σ shows the spread 

parameter, with 𝐷𝑖
2 being a scalar function: 

𝐷𝑖
2 = (𝑋 − 𝑋𝑖)

𝑇
(𝑋 − 𝑋𝑖)          (3)

           

Equation (4) is obtained when the integrals in 

Equation (1) are solved: 

𝑌(𝑋) =
∑ 𝑌İ𝑒𝑥𝑝(

−𝐷𝑖
2

2𝜎2 )𝑛
𝑖=1

∑ 𝑒𝑥𝑝(
−𝐷𝑖

2

2𝜎2 )𝑛
𝑖=1

          (4)

          

2.3. Local Polynomial (LP) Interpolation 

In the LP method, calculation of interpolation 

values is performed by the weighted least 

squares (WLS) method. When calculating the 

height values of the interpolation points, the 

fulcrum points to be used are defined by a 

predetermined search ellipse. Using only the 

data within the scope of the search ellipse, all 

of the fulcrum points are weighted to generate 

the surface data and a local bivariate 

polynomial is generated. The uncertain 

coefficients in the polynomial produced are 

resolved according to the least squares 

method. The height values of the formed 

surface are calculated by the LP method 

(Solmaz, 2019). The degree of the most 

suitable polynomial to be used in the method 

is generally sought via experimental methods. 

The higher the degree of the polynomial, the 

closer the model and the data in the model to 

each other (Üstün, 2001). However, in 

practice, sensitivity losses in the estimated 

parameters as the degree of the model 

increases may cause increases in model error. 

Therefore, it would be appropriate to choose 

the degree of the polynomial as one degree 

lower in cases where the error in the model 

starts to rise (Ceylan et al., 2011). In the 

interpolation process using polynomials, it 

does not mean that increasing the degree of 

the polynomial will increase its sensitivity. 

Sudden decreases and increases in the created 

surface may cause altitude data changes that 

are not correct for the real surface (İnal et al., 

2002). The local polynomials stated above are 

represented as first, second, and third degree 

polynomials. 

If the function is expressed as first degree, it 

can be formulated as: 

F(X,Y) = a + bX + cY            (5)

          

where a to c are the three coefficients of 

transformation. If the function is expressed as 

second degree, it can be formulated as: 

F(X,Y) = a + bX + cY + dXY + eX2 + fY2  

              (6) 

where a to f are the six coefficients of 

transformation. If the function is expressed as 

third degree, it can be formulated as: 

F(X,Y) = a + bX + cY + dXY + eX2 + fY2+ 

gX2Y + hXY2 + iX3 + jY3             (7) 

where a to j are the ten coefficients of 

transformation. The basis of the WLS method 

used here is to give more weight to the 

fulcrum points close to the point to be 

interpolated and less weight to the points that 

are far from the point to be interpolated. The 

search ellipse in the weight function depends 

on the weight parameter and the distribution 
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of the data. For the calculation of actual 

weights, first, the TXX, TXY, TYX, and TYY 

parameters are calculated using Equation (8). 

TXX = 
cos(∅)

𝑅1
, TXY = 

sin(∅)

𝑅1
, TYX = 

−sin(∅)

𝑅2
, TYY = 

cos(∅)

𝑅2
                        (8) 

where ∅ is the counter-clockwise angle 

between the principal axis and the minor axis 

of the ellipse; R1 is the first axis of the search 

ellipse and R2 refers to the second axis of the 

search ellipse. The TXX, TXY, TYX, and TYY 

parameters are used in the calculation of AXX, 

AXY, and AYY, which are functions of the 

parameters in the search ellipse. These 

parameters are calculated using Equations (9-

11). 

AXX = 𝑇𝑋𝑋
2  + 𝑇𝑌𝑋

2
                (9)  

AXY = 2(TXX TXY + TYX TYY)         (10)  

AYY = 𝑇𝑋𝑌
2  + 𝑇𝑌𝑌

2           (11)

         

These values (AXX, AXY and AYY) are the same 

for all fulcrum points. The differences 

between the fulcrum (Xi, Yi) points and grid 

(X0, Y0) points are then calculated as dX and 

dY. 

dX = Xi – X0               (12)

         

dY = Yi – Y0            (13)

        

By means of these values, Ri is used when 

calculating the weight using Equation (14). 

Ri = √𝐴𝑋𝑋𝑑𝑋2 + 𝐴𝑋𝑌𝑑𝑋𝑑𝑌 +  𝐴𝑌𝑌𝑑𝑌2   

          (14) 

The i in this result is used to calculate the 

weight of the fulcrum point wi using Equation 

(15). 

wi = (1-Ri)
p , i = 1;….;N          (15)

             

The p value in the equation indicates the 

weight force that takes values between 0 and 

20. Local least squares parameters are 

calculated with the minimized conflicting 

residual sum of squares using Equation (16) 

(Surfer 19, 2020). 

Minimize ∑ 𝑤𝑖
𝑁
𝑖=1 [F(xi, yi) – zi]

2            (16)
          

2.4. Weighted average (WA) Interpolation 

The basis of the method is that the weights of 

nearby points to be interpolated are greater 

than for distant points (Keçeci, 2011). The use 

of the WA interpolation method is highly 

preferred due to the simplicity of its algorithm 

and its easy programming. Although the 

method is termed simple, it gives accurate 

results in many applications. Surface values at 

interpolation points are used by calculating 

the weighted average of the surface values at 

the reference points. The same weights are not 

given for all dimensions because weighting is 

expressed by a function that depends on the 

distance between the interpolation point and 

the reference point. Less weight is given to 

points farther from the interpolation point, and 

more to points closer to the interpolation point 

(Kuru, 2018). In the WA method, the Nk geoid 

height value corresponding to any k point is 

found with the the Ni geoid height value of n 

(i = 1,2,…., n) for the fulcrum points by using 

Equations (17-19). 
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Ńk = 

𝛴𝑖=1
𝑛 𝑁𝑖

ℎ
𝑖𝑘
𝛽

𝛴𝑖=1
𝑛 1

ℎ
𝑖𝑘
𝛽

         (17) 

        

N(X,Y) = Ntrend – Ńk        (18) 

        

hik = √𝑑𝑖𝑘
2 +  𝛿2        (19) 

        

where β is the weight coefficient, δ is the 

smoothing parameter, hik is the weight value 

based on distance, and dik is the distance 

between the fulcrum and the cut-off point; 

Ntrend is expressed as the geoid height value 

determined from the fulcrum points. In this 

method, the weights of the fulcrums are 

expressed in relation to the distance. As the 

distance increases, the weight will decrease 

and approach zero, and after a specific point, 

it will become equal to zero. The fulcrum 

points with zero weight will have no effect on 

the estimation (Bolat, 2013). The difference 

between the estimated geoid height (Ńi) and 

the known geoid height (Ni) of the fulcrum 

points is calculated using Equation (20). 

dN = Ni - Ńi             (20)

         

The optimal number of points and coefficient 

for the area studied is the coefficient that 

yields the lowest sum of squares for the 

differences between the estimated geoid 

height and the known geoid height of the 

fulcrum points (Kuru, 2018).    

2.5. Radial Basis Functions (RBFs) 

Interpolation  

The theory of the RBF method is based on the 

interpolation of functions with multiple 

variables. The purpose here is to interpolate 

the expressions shown as (𝑥𝑠 , 𝑦𝑠)𝑠=1
𝑁 . In this 

case, it must be xs∈Rd. Since f is a function in 

linear space in this system of equations, in the 

theory of RBF, the interpolation function f can 

be seen as a linear combination of some major 

functions (Topaloğlu, 2007) and is 

represented as an interpolation function of the 

RBF method, shown as: 

F(x, y) = p(x, y) + 𝛴𝑖=1
𝑛 wi.∅(⃒(x, y) – (Xi, Yi)⃒)                             

                                  (21) 

where p (x, y) represents the polynomial, wi 

the actual weights, (⃒(x, y) – (Xi, Yi)⃒) the 

Euclidean length between points, and ∅ (r) the 

basic function. 

The application of interpolation begins with 

the polynomial regression step by 

incorporating the p (x, y) polynomial. After 

that, the linear equation system shown in 

Equation (22) is solved to determine the 

uncertain weights. 

Zj – p(x, y) = 𝛴𝑖=1
𝑛 wi.∅(⃒(x, y) – (Xi, Yi)⃒)  , j 

= 1,….,n                    (22) 

When the calculation of the weights is 

completed, the z values that enable the surface 

to be defined are calculated for all points using 

Equation (21) (Solmaz, 2019). The accuracy 

of the MQ and IMQ methods depends on the 

data structure and the smoothing parameter 

(R2) specified by the user (Carlson and Foley, 

1991) 

2.5.1. Multiquadric (MQ) Method 

This analytical method, first proposed by 

Rolland L. Hardy in 1971, is also used in 

solving many geodetic problems. The purpose 

of this interpolation technique is to define the 

surface via a single function created by using 

all known fulcrum points in the study area. 

The MQ method generally yields good results 
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because it represents the dataset well and 

creates soft surfaces (Doğruluk, 2013). In 

order to apply the method, a trend surface is 

first passed through using the fulcrum points. 

A first- or second-degree polynomial is used 

as the trend surface (Tetik, 2018). Next, the 

residual geoid height values (ΔNi) at the 

fulcrum points are calculated. For the MQ 

method, these values are used as the ℓ matrix; 

ΔNi now represents the geoid height values 

and is calculated using Equation (23). 

ΔNi = Ni – N(xi – yi) = Ni – Ntrend = 1,2,…..,m  

(23) 

If ΔNe at the (xe, ye) interpolation point is the 

residual geoid height value, it can be written 

as: 

ΔNe = Ne – N(xe – ye) = Ne – Ntrend                                              

                       (24) 

The values of ΔNe and Ne in this equation are 

unknown expressions. Finding one of these 

expressions allows the other to be calculated 

as well. Here, the geoid height values are now 

known as the multiquadric surface, and their 

coefficients can be calculated as the sum of 

defined second-degree equations. The 

multiquadric surface in its most general form 

is expressed by Equation (25) (Tetik, 2018). 

ΔN = 𝛴𝑖=1
𝑛 Ci Q[xi, yi; x,y]         (25)

         

where Ci represents the unknown coefficients 

calculated from the known residual height 

values ΔNi of the fulcrum points, and Q(x, y, 

xi, yi) is the kernel function. 

2.5.2. Inverse Multiquadric (IMQ) 

Function 

The generalized IMQ function was defined by 

Franke in 1982. The function of this method is 

as follows (Tetik, 2018): 

Φ(r) = 
1

√𝑟2+𝜎2
 ≠0                                      (26)                                                                                 

3. Performance Metrics  

In order to evaluate the prediction accuracy of 

the methods, root mean square error (RMSE), 

mean absolute error (MAE), and coefficient of 

determination (R2) were used. 

RMSE = (
1

𝑛
∑ (𝑋𝐾,𝑖 − 𝑋𝑃,𝑖)

2𝑛
𝑖=1 )

1
2⁄

         (27)

        

MAE =
1

𝑛
∑ |𝑋𝐾,𝑖 − 𝑋𝑃,𝑖|

𝑛
𝑖=1           (28)

                   

R2 =

(∑ (𝑋𝐾,𝑖 − �̅�𝐾)𝑛
𝑖=1 (𝑋𝑃,𝑖 − �̅�𝑃) √∑ (𝑋𝐾,𝑖 − �̅�𝑃)

2
∑ (𝑋𝑃,𝑖 − �̅�𝑃)

2𝑛
𝑖=1

𝑛
𝑖=1⁄ )

2

 

    (29) 

In Equations (27), (28), and (29), n indicates 

the number of data, 𝑋𝐾,𝑖 and 𝑋𝑃,𝑖 are the 

known and predicted values, respectively, and 

�̅�𝐾 and �̅�𝑃, represent the mean values of the 

known and predicted values, respectively. The 

RMSE and MAE range from 0 to + ∞, while 

the range for R2 is from 0 to 1. Low RMSE 

and MAE values and high R2 indicate that the 

developed model is good. 

4. Results and Discussion 

The spread parameter that affects the accuracy 

of the GRNN prediction results should be 

suitably determined. The trial-and-error 

procedure was used to determine the optimum 

spread parameter. The power parameter (k) is 

an important factor in the WA method. In the 

study, k values between 1 and 5, respectively, 

were tried, the amount of error was observed, 

and five different results were obtained. For 

RBF modeling, MQ and IMQ functions were 

used. In order to prepare models using the LP 

function, 1, 5, 10, 15, and 20 were used as the 



Local geoid determination using a generalized regression neural network and interpolation methods: A case 

study in Kars, Turkey 

1432 

 

polynomial function degrees, respectively. 

The statistical values used to evaluate the 

performance of these methods are shown in 

Table 2. 

In order to determine the prediction accuracy 

of the five methods as a performance criterion, 

the minimum absolute difference, maximum 

RMSE = 1.215 cm, MAE = 0.467 cm, and R2 

= 0.99980 . The worst result was found with 

the model created by choosing the power 

parameter of 1 (p = 1) (RMSE = 14.160 cm, 

MAE = 11.237 cm, R2 = 0.97308). As shown 

in Table 2, the maximum absolute difference 

(57.375 cm) was obtained with the LP 

function and the minimum absolute difference

Table 2. Performance statistics for GRNN, WA, MQ, IMQ, and LP methods 

 

 

 

 

 

 

 

 

absolute difference, mean absolute difference, 

RMSE, MAE, and R2 were calculated. Table 

2 shows that the best result was obtained with 

the power parameter of 5 (k = 5) among the 

WA methods. On the other hand, the worst 

result was determined for the model in which 

the power parameter was chosen as 1 (k = 1). 

The LP functions model created with a power 

parameter of 20 (p = 20) yielded the best result 

within itself. The worst result was found to be 

in the model developed by choosing the power 

parameter of 1 (p = 1). The MQ and IMQ 

methods gave results similar to the WA 

method (k = 1, 2, 3, 4, 5). When the results 

were evaluated overall, the statistical indices 

for the GRNN showed the lowest RMSE and 

MAE and the highest R2; values equal to: 

 

 

 

 

 

 

 

 

 

 (4.08E-09 cm) with the GRNN method. In 

addition, the mean absolute difference (0.445 

cm) was obtained using the GRNN method. 

Moreover, the distribution diagrams of geoid 

undulations estimated against known geoid 

undulation values are given in Figure 4 for the 

WA method, in Figure 5 for the LP function, 

and in Figure 6 for the GRNN, IMQ, and MQ 

methods. 

 

 

Method 
Minimum 

(cm) 

Mean 

(cm) 

Maximum 

(cm) 

RMSE 

(cm) 

MAE 

(cm) 
R2 

GRNN 0.000 0.445 6.992 1.215 0.467 0.99980 

WA (k=1) 0.040 8.792 35.644 11.257 9.229 0.98339 

WA (k=2) 0.003 5.284 19.467 6.888 5.547 0.99359 

WA (k=3) 0.069 4.461 24.274 6.034 4.871 0.99532 

WA (k=4) 0.043 4.780 21.286 6.166 5.018 0.99532 

WA (k=5) 0.016 3.568 17.162 5.063 3.745 0.99508 

MQ 0.007 4.081 64.594 7.175 4.284 0.99361 

IMQ 0.007 3.624 19.001 5.175 3.807 0.99611 

LP (p=1) 0.001 10.705 57.375 14.160 11.237 0.97308 

LP (p=5) 0.061 7.485 34.554 9.833 7.857 0.98704 

LP (p=10) 0.018 5.532 23.241 7.371 5.807 0.99282 

LP (p=15) 0.030 4.676 31.807 6.472 4.909 0.99454 

LP (p=20) 0.148 22.703 84.363 6.117 4.448 0.99515 
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Figure 4. Scatter diagrams of known geoid undulation values estimated by weighted average 

(k = 1, 2, 3, 4, 5) 
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Figure 5. Scatter diagrams of known geoid undulation values estimated by local polynomial (p 

= 1, 5, 10, 20) 
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Figure 6. Scatter diagrams of known geoid undulation values estimated by GRNN, IMQ, and 

MQ methods 

From these Figures, it can be observed that 

prediction using GRNN show more scatter 

around the line of perfect agreement in 

comparison to other methods. Also, as seen 

from the fit line equations the slope and bias 

values of the GRNN are closer the 1 and 0 

than the WA, LP, IMQ, and MQ methods. 

5. Conclusions 

The purpose of this study was to determine a 

local geoid using the generalized regression 

artificial neural network (GRNN), weighted 

average (WA), multiquadric (MQ) and 

inverse multiquadric (IMQ), radial basis 

functions (RBF), and local polynomial (LP) 

methods and to compare the results. For this 

purpose, 473 GNSS/leveling points were 

chosen as reference points and 169 

GNSS/leveling points as test points. The same 

datasets were used for all methods. According 

to the results obtained, the GRNN, with the 

highest R2 (0.99980) and the lowest RMSE 

(1.215 cm) and MAE (0.467 cm), showed 

superiority over the other methods. The WA 

methods gave similar results among 

themselves, except for the model with a power 

parameter of 1 (k = 1). The MQ and IMQ 

methods also gave results similar to those of 

the WA method. Performance results of the 

LP functions were less accurate than those of 

the other methods. The accuracy achieved in 

this work is sufficient for many geodetic and 

surveying applications. The GRNN offers 

advantages over the back propagation neural 

network such as a single-pass learning 
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algorithm, fast generalization, and a flexible 

and high-tolerance network architecture. 

After evaluating the study results, the authors 

believe the GRNN to be worth considering in 

the modeling of a variety of geodesy 

problems. 
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