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Abstract: In spite of being a common method for estimating the model parameters, 

Maximum Likelihood (ML) method may give bias results for small sample sizes. 

To overcome this problem, Bayesian method is usually utilized to obtain the 

estimates of the model parameters as an alternative to the ML method. In this study, 

a real data set was analyzed by using the binary logistic regression model. 

Parameters of the binary logistic regression model were estimated by using ML and 

Bayesian methods. Modeling performance of the binary logistics regression model 

based on the Bayesian estimates was compared with the model based on the ML 

estimates. Well-known information criteria such as AIC and BIC were used in this 

comparison. 
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AnahtarKelimeler 

İki durumlu lojistik regresyon, 

En çok olabilirlik yöntemi, 

Bayesci Metot 

 

Öz: En çok olabilirlik metodu model parametrelerini tahmin etmek için yaygın 

bir yöntem olmasına rağmen, küçük örneklem büyüklükleri için yanlı sonuçlar 

verebilir. Bu problemin üstesinden gelmek için, en çok olabilirlik yöntemine 

alternatif olarak model parametrelerinin tahmininde genellikle Bayes yöntemi 

kullanılmaktadır. Bu çalışmada, iki durumlu lojistik regresyon modeli 

kullanılarak gerçek bir veri seti analiz edilmiştir. İki durumlu lojistik regresyon 

modelinin parametreleri, en çok olabilirlik ve Bayesci yöntemler kullanılarak 

tahmin edilmiş, elde edilen sonuçlar Akaike bilgi kriteri (AIC) ve Bayesci bilgi 

kriteri (BIC) gibi kriterler kullanılarak karşılaştırılmıştır. 

  

1. Introduction 

 

Generalized linear models (GLM) are widely-used to define relationship between dependent 

and independent variables. The GLM is differed basing on the utilized function in defining the 

relationship between dependent and independent variables. For example, GLM becomes binary logistic 

regression model when dependent variable is binary and logarithmic function is utilized in defining the 

relationship between dependent and independent variables (Hair et al.,2006; Agresti & Hitchcock, 

2005). In spite of being a common method for estimating the model parameters, Maximum Likelihood 

(ML) method may give bias results for small sample sizes. To overcome this problem, Bayesian method 
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usually considered in obtaining the estimates of the model parameters as an alternative to the ML method 

(Griffiths, 1973; Tektaş & Günay, 2008). 

There exist many studies considering the Bayesian method in estimation procedure of the model 

parameters. For example, Albert & Chib, 1993 proposed a new algorithm by using the latent variables. 

Groenewald & Mokgatlhe, 2005 used a method suggested by Albert & Chib, 1993 to obtain a sample 

by using coefficients of posterior distribution through Gibbs sampling. Zelner & Rossi, 1984 considered 

numeric integration method and Monte Carlo integration method to obtain the posterior distribution of 

the model parameters in small and large sample sizes, respectively. Rashwan & El Dereny, 2012 used 

logistic regression model in analyzing the prostate cancer data in which Bayesian methods were used 

for obtaining the estimates of the model parameters. Ghosh &Mitra, 2017 investigated Bayesian logistic 

regression under different Cauchy prior distributions. Huggins et al., 2017 developed an efficient coreset 

construction algorithm for Bayesian logistic regression models. Spyroglou, et al., 2018 used Bayesian 

logistic regression method in analyzing the asthma persistence prediction. Dagliati, et al., 2017 proposed 

hierarchical Bayesian logistic regression to forecast metabolic control in type 2 DM patients. Lukman 

et al., 2021 used Bayesian logistic regression to analyze the hypothyroid prediction in post-radiation 

nasopharyngeal cancer patients. Suleiman et al., 2019 used Bayesian logistic regression approaches to 

predict incorrect DRG assignment. 

In this study, Organization for Economic Cooperation and Development (OECD) data were 

analyzed via binary logistic regression model. Estimates of the model parameters were obtained using 

ML and Bayesian methods. Modeling performance of the model based on the Bayesian estimates was 

compared with the model based on the ML estimates. In this comparison, well-known information 

criteria Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) were used.   

The rest of the paper as follows: in section 2, binary logistic regression model is briefly 

introduced. ML method and Bayesian method are given in section 3. In the application part, a real data 

set from OECD is analyzed by using the binary logistic regression model. Here, estimates of the model 

parameters are obtained via the ML and the Bayesian methods. Finally, section 5 is reserved for the 

conclusion. 

 

2.  Materials and Methods 

 

In this section, information for the binary logistic regression, model the ML and the Bayesian 

methods are given briefly.  

 

2.1. Binary logistic regression model 

 

In binary logistic regression, dependent variable y follows a Bernoulli distribution since 

assumed that it takes only values 0 and 1. Here, the probability of occurrence of an event is denotes by 

( )1i iP y = =  and probability of non-occurrence of an event is denotes by ( )0 1i iP y = = − . If n  

observations are obtained for the dependent variable, i.e. ( )1,2,...iy i n=  binary logistic regression 

model can be expressed as follows:  
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where 1iy =  if the interest response is observed for the i-th individual and 0iy =  otherwise.

'

0 1 2... j     =   is the vector of an unknown model parameters and
'

11 ...i ijx x x =   is the vector of 

measurements of the i-th individual for the j-th independent variable. 
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2.2. ML method 

 

 The likelihood function (L) in binary logistic regression can be expressed as follows: 
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The log-likelihood equations are the first derivation of the logarithm of the likelihood function 

(log L) with the parameter of the interest as given below. 
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(3) 

 

The ML estimates of the model parameters are the simultaneous solutions of the log L equations 

given in Equation (3). Here, Newton-Raphson method is utilized to obtain the simultaneous solutions of 

these equations.  

 

2.3. Bayesian method 

 

ML methodology usually needs large sample size to obtain accurate estimates of the parameters. 

However, in some science fields such as medicine and agriculture small sample size is commonly 

encountered. Unlike the ML methodology, the Bayesian methodology does not need large sample size, 

i.e. it has not limitations regarding the size of sample. This is why the Bayesian methodology is an 

alternative for the ML methodology (Acquah, 2013; Tektaş & Günay 2008; Santos, 2009). 

In the Bayesian methodology, there are three key parts in estimation procedure. These are (i) the prior 

distribution, (ii) the likelihood function, and (iii) posterior distribution. The posterior distribution is 

written as follows: 

 

                    ( ) ( ).posterior distribution prior distribution likelihood function=           (4) 

 

Here, prior distribution summarizes the information obtained from other sources. There are 

two types of prior distribution, namely, informative and non-informative prior distribution, (Acquah, 

2013). In this study, we assume a normal prior on .k  
 

                                                    ( )0,10000 , 1,2,... .k N k j =
        

(5) 

 

The above expression is equivalent to non-informative priors of these parameters. 

 

The likelihood function involves the information about the sample. The posterior distribution 

contains all the available knowledge for the model parameters. From (4), the posterior distribution is 

obtained by multiplying the prior distribution in (5) by the likelihood function in (3) as given below: 
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Equation (6) represents the posterior probability density function of the model parameters, and 

analytical solution for it cannot be obtained explicitly. The computational difficulties in obtaining the 

posterior distribution are disadvantage of the Bayesian method; however this problem can be solved by 

using the Markov Chain Monte Carlo (MCMC) simulation technique. The aim of the MCMC is to create 

a stationary Markov process to obtain the statistical inference for the posterior distribution. Therefore, 

the Markov Chain Monte Carlo (MCMC) simulation method is widely-used for getting statistical 

inference about the posterior distribution (Acquah, 2013). 

Using the MCMC in complicated statistical problems brings some problems such as not 

converge to the desirable posterior distribution and determination of iteration size to obtain the stationary 

Markov process. The convergence to posterior distribution is necessary in the Bayesian methodology to 

obtain the accurate estimates of the model parameters. See (Geyer, 1992) for detailed information for 

the methods provides convergence in this context. 

 

3. Results 

 

In this section a real data set was analyzed using the binary logistic regression model. The 

estimates of the model parameters were obtained via the ML and the Bayesian methods. The data set 

includes various demographic and economic data from 34 countries which were member of the OECD. 

The data set was obtained from the official website of the OECD. 

Following binary logistic regression model given in Equation (7) is used to analyze the data set: 

 

0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8log , 1,2,...34
1

i

i

x x x x x x x x i


         


 
= + + + + + + + + + = 

− 
       (7)        

 

Here, dependent variable is European Union (EU) membership (member:1, not member:0) and 

independent variables ( )1 2 8, ,...,x x x  are total number of people living, ratio of female parliamentarians, 

participation level of women between the ages 15 and 64 to labor force, ratio of imports,  ratio of exports, 

life satisfaction or satisfaction with life, share allocated for health expenditure from the gross domestic 

product, average number of children per women between the ages 15 and 49 in each OECD country in 

2013, respectively. 

The estimates of the model parameters, given in Equation (7), were obtained by using the ML 

and the Bayesian methods and the analyses are conducted through R 3.0.3 software program. The ML 

estimates of the model parameters, standard errors (SEs), test statistics (z), and significant values (p) 

with corresponding to parameter estimates are given in Table 1. 

 

Table 1. The statistics obtained with ML estimators 

Variables ˆ
ML  Exp( ˆ

ML ) SE z p 

Intercept  10.0493 23.139 7.57530 1.327 0.088 

1x  0.38593 1.470 0.23629 1.633 0.066 

2x  -0.06910 0.933 0.15646 -0.442 0.687 

3x  0.08177 1.085 0.08394 0.974 0.413 

4x  0.20735 1.230 0.16268 1.275 0.290 

5x  -5.69552 0.003 3.24655 -1.754 0.031 

6x  1.55750 4.746 1.05062 1.482 0.405 

7x  0.04387                       1.044 0.02705 1.622 0.140 

8x  -0.80534 0.446 2.87410 -0.280 0.644 

 

It can be seen from Table 1 that all parameter estimates for the independent variables, except 

5x , are not statistically significant, since p values are greater than 0.05.  
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The Bayesian estimates of the model parameters along with the standard deviations (SDs), 

Monte Carlo simulation errors (MC Error), and confidence interval (CI) between (%2.5-%97.5) of the 

parameter estimates are given in Table 2. 

 

Table 2. The statistics obtained with Bayesian estimators 

Variables Mean Exp(Mean) SD MC Error CI 

Intercept  11.90223 147.72 0.72646 0.02462 (-3.11615, 29.9593) 

1x  0.05229 1.053 0.00162 0.00067 (0.01377, 0.09980) 

2x  0.41872 1.520 0.15591 0.00421 (0.11763,0.78240) 

3x  0.05399 1.055 0.16803 0.00517 (-0.25042, 0.41285) 

4x  0.15183 1.163 0.09890 0.00257 (-0.00556, 0.37750) 

5x  0.16783 1.182 0.09245 0.00220 (-0.01837, 0.33160) 

6x  -6.84683 0.001 2.60164 0.06542 (-12.94350, -2.45507) 

7x  1.42337 4.151 0.03344 0.01588 (0.09428, 2.68094) 

8x  0.42022 1.522 3.54912 0.09246 (-0.89632, 5.20511) 

 

It can be seen from Table 2 that parameter estimates for the independent 
1 2 6, ,x x x  and 

7x  are 

statistically significant at 0.05 significance level, i.e. CI between (%2.5-%97.5) of these parameter 

estimates not include the value 0. 

According to Table 2, the ratio of the population of the OECD countries which are the member 

of EU to the non-member countries is 1.05. The ratio of women's participation in parliament in the 

OECD countries which are the member of EU to the non-member countries is 1.52. The ratio of life 

satisfaction of those who live in the OECD countries which are the member of EU to the non-member 

countries is 0.001. The ratio of health expenditures of the OECD countries which are member of EU to 

non-member countries is 4.52. 

Burn-in procedure is applied to the first 1000 iterations in the Markov Chain for providing 

convergence to the posterior distribution. Autocorrelation plots, trace plots and Geweke convergence 

test results are also utilized to guaranteed convergence for the posterior distribution; see, Figure 1, Figure 

2 and Table 3, respectively. 

Autocorrelations given in Figure 1 measure the dependence between each sample value in the 

Markov Chain. Low correlation means that the convergence has been achieved; see (Cowles & Carlin, 

1996). 
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Figure 1. Autocorrelation plots within each parameter logit model 
 

 

 

 

 

 

 
Figure 2.  The traceplots within each parameter logit model 
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From Figure 2, it also can be said that convergence has been achieved for each parameter of the 

corresponding variables.     

 

Table 3. Geweke convergence test results 

Variables:             Intercept        
1x            

2x              
3x             

4x             
5x            

6x              
7x           

8x  

z statistics:             0.693         -1.340       1.019        -1.755       0.317        0.362       0.019        -0.071      -0.990 

 

In this study all tests were conducted under %95 confident intervals that mean critical values of 

test statistics is  1.96. It can be seen from Table 3 that Geweke test statistics for all parameters with 

corresponding variable is between  1.96 which shows the convergence has been achieved for each 

parameter. 

 

4. Discussion and Conclusion 

 
In this study, a short literature review for Bayesian logistic regression is presented. Also, the 

estimates of the model parameters are derived by using maximum likelihood estimation and Bayesian 

estimation methods. Moreover, the real data set is analyzed at for better understanding of the methods 

presented. This data set taken from the OECD is modeled by using the binary logistic regression model. 

In the estimation procedure of the model parameters, the ML and the Bayesian methods are used. In 

Bayesian methods, burn-in procedure is applied to the first 1000 iterations in the Markov Chain for 

providing convergence to the posterior distribution. Also, autocorrelation plots, trace plots and Geweke 

convergence test results are utilized to guaranteed convergence for the posterior distribution. It can be 

seen from all convergence tests that convergence was provided for each parameter. Then, the modeling 

performances of these two models are compared by using the well-known information criteria such as 

AIC and BIC given in Table (4). Also, Mc Fadden 
2R and correct classification ratio values for each 

model are given in Table (4). It should be noticed that smaller values of the Mc Fadden
2R , AIC and 

BIC are mean better fitting. 

 

Table 4. Goodness of fit results 

Criteria 

Correct 

Classification 

Ratio 
Mc Fadden 2R  AIC BIC 

Model based on ML estimates 89.70 0.66 38.44 51.91 

Model based on Bayes estimates 94.20 0.53 32.74 46.21 

 

According to Table (4), it can be concluded that binary logistic regression model based on the 

Bayesian estimates has higher correct classification ratio and smaller Mc Fadden 
2R , AIC, and BIC 

values than the based on the ML estimates. The differences between ML and Bayesian estimates are 

occurred by the small sample size. Results show that for small sample size, as similar in application of 

this study, the Bayesian method shows better performance than the ML method based on the goodness 

of fit statistics given in Table (4). In this regard, it is seen that the Bayesian method is more preferable 

than the ML method for this data set. 
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