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SOME CLASSES OF ¢-ANALYTIC FUNCTIONS AND THE
¢-GREEN’S FORMULA

ILKER GENCTURK, SERMIN HOKELEKLI, AND KERIM KOCA

ABSTRACT. In this paper, we first give two new definitions for g-analytic func-
tions. We also define a new line g-integral. Finally, using these g-integrals we
obtain a version of complex g-Green’s formula.

1. INTRODUCTION AND PRELIMINARIES

In complex analysis, g-analogues of classical analytic (holomorphic) functions are
defined by several mathematicians in different ways [1, 2, 3, 4]. Moreover, there are
many articles where various g-integrals were defined for complex discrete functions
on complex discrete sets, and ¢-Green integrals were obtained using these discrete
integrals [2, 5, 6].

In this paper we define a discrete ¢-line integral for g-analytic functions in the
sense of Pashaev-Nalci, and we present a g-analogue of the Green’s formula on the
complex plane using this type of an integral.

Now, we will recall some basic definitions in ¢- calculus:

Let 0 < ¢ < 1 and a € R. The g-analogue of a is defined as
1.1 L
(1.1) [a]q = 1—q°

For z € R and n € N, we use the shorthand notation
(1.2) I+a)n=1+2)(l+gr)-(1+q""2); (I+a)=1,
(14+2)oo = lim (14 2),.

n— oo

For m,n € N and n > m, the g-factorial and the g-analogues of the binomial
numbers are defined respectively as

(1.3) (]! = 1402y .- [0l = 8:327
o [n]q! . (1—=q)n
(1‘4) [m:|q - [m]q! [TL - m}q! B (1 - Q)m (1 - Q)n—m.

Other definitions and concepts will be introduced in the course of the text.
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Let us now consider the discrete set
(1.5) Q={(q"z,q"y) =q"x+i¢g"y : m,ne€Z; x>0, y>0}
Definition 1.1 ([2]). Given z; = z; +iy; € Q. If 24, is one of
(q5,95), (a" w5,95), (25,q95), (25,9 ),
then z; and z;41 are called adjacent points.
Definition 1.2. For adjacent points z;, z;4+1 € @), the expression
(1.6) v = (20,21, 2n)

defines a g-discrete curve in Q. If z; # z; for i # j, the curve is called a simple
discrete curve. If zg = z,, it is called a simple closed discrete curve.

Definition 1.3. Let us consider the curve v as defined in (1.6). The curve
(1.7) v V=20, 201, ...y 21, 20)

is called the opposite-oriented ~.

Definition 1.4. For z = z + iy € @, the discrete set

(1.8) S(2)={z=x+iy, z1 =x+iq 'y, 20 =qr+iy, 23 =qr+iqg 'y}
is called a fundamental set with respect to z.

Let us denote the elements of @ lying in the discrete closed curve v := (20,215 -y 20 =
20) by C, and let C' := C U~. Then, every finite subset of ) can be written as the
union of fundamental sets

N
(1.9) C = S).
i=1
Let us also consider the subset
(1.10) T(z)={z=a+iy, 21 =x+iqg 'y, 20 = qv +iy} C S(2).
For C as in (1.9), let us define the subset
(1.11) Cyi={z:2:€8(z); i=12,...,N} CQ.

2. CLASSES OF g-ANALYTIC FUNCTIONS

Let f(z) be a discrete function defined on the discrete set Q. We define the
discrete partial differential operators
f(z) = flgz,y). f(z) = fz,qy)

(1-qz (1-q)y

We note that in [4], complex g-differential operators D, ., and D,z are defined

(2.1) Dq,a:f(z) = Dq,yf(z) =

as

‘ 1 ‘
(22)  Dysi=3 Dy —iM{Dyy |5 Dyzi=35 [Dyw+iMID,, ]

1
2
where M{ f(z,y) = f(z,qy) is the dilatation operator.
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Definition 2.1 ([4]). If a complex valued discrete function f(z,y) satisfies
1 .
(23 Dyiaf (@.y) = 5 [Daacf (@) +iMY Dy f(z,9)] = 0
for z € T(2), then f(x,y) is called a g-analytic function at point z in the sense of
Pashaev—Nalci.

Example 2.2. For n € N, the complex ¢-binomial expansions

n
. . el n] k-1 g
24) B = 4 il +io) o+ = 3 7]
k=0 q

are g-analytic in the sense of Pashaev-Nalci. Moreover, they satisfy

Dy (" (x,y) = [n] @'~ (2, y).
Remark 2.3. In [2], the g-analyticity of f(z) is characterized by the equation
(2.5) Do f(2,y) = =iDqy f(2,y).

That is, f(z) is called g-analytic in the sense of Harman when the equation
[~ flry) _ f(z) - f=,qy)

(26) I-qz  (1-q)y

holds.
Example 2.4. Let n € N. The class of function given by

(27) Uy =3 W @y =3 m 29 (i)

|
=0 []]q~ =0

is g-analytic in the sense of Harman, but not in the sense of Pashaev-Nalci. The
functions @g")(a:,y) (n =2,3,...) defined in (2.4) are not g-analytic in the sense
of Harman.

A necessary and sufficient condition for a discrete function f(z) to be g-analytic
in the sense of Pashaev-Nalci is that

(2.8) Ly f(z,y) == (qz +iy) f(z,y) — iy f(qz,y) — qzf(z,q 'y) = 0.

This identity can easily be derived from (2.3).
Similarly, a necessary and sufficient condition for a discrete function f(z) to be
g-analytic in the sense of Harman is that

(2.9) Laf(z,y) :=2f(2) — 2f(x,qy) + iy f(qz,y) =0,
which be derived from (2.6).
Let p = ¢~!. Consider the differential operator
f(z) — f(pz,y)
- D —
(1 _p)fE ) p,yf(z)

f(z) = f(x,py)

(2.10) Dy f(2) = (I -ply

for a discrete function f(z).

Definition 2.5. If a complex-valued discrete function g(z,y) satisfies
(211) Dp,mg(x7y) = _Z'Mi!D;D,yg(xay)v
P

it is called p-analytic in the sense of Pashaev-Nalca.
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A necessary and sufficient condition for g(x,y) to be p-analytic on a suitable
discrete set @ is that

(2.12) Blg(z,y)] = (pr +1iy) f(,y) — iy f(pz,y) — prflz,p~'y) =0
which can be obtained from (2.11).
Example 2.6. g(z,y) = 2%+ (1+¢ 1)izy —q 1y? is p-analytic, but not g-analytic.

In this paper, we present another two classes of g-analytic functions.
Let Dy, and D, be the partial ¢-differential operators as given in (2.1). Using
these operators we can define complex differential operators
. 1 ,
D;.=3 (Mqu,z ~iDgy)
(2.13)

9,z

D= % (M’%”Dq,m + z’DM) .
Definition 2.7. If a discrete function h(z,y) defined on a suitable discrete set @
satisfies
(2.14) Dy zh(z,y) =0,
it is said to be g-analytic with respect to the operator Dy.

This definition of g-analyticity is different from previous definitions.
Example 2.8. The functions defined by
(2.15) P;”)(x, y) = (z+iy)(qz +iy) - (¢"tx+iy); n=12,...
are all g-analytic with respect to the operator Dy >. In other words, we have

D; P (x,y) = 0.
Moreover, the equality
D; Py (x,y) = n] Py~ (2, y)

holds.

Remark 2.9. A necessary and sufficient condition for h(x,y) to be g-analytic with
respect to Dy is that

(2.16) Elh(z,y)] = (x +igy)h(z,y) — zh(z, qy) — iqyh(a~ =, y)

which follows from (2.13) and (2.14).

Using equation (2.1) again, we can define complex differential operators

1 .
Dy i= 5 (MiDya + ZM%’DM) :
(2.17)
)% 1
Dy, = 3
Definition 2.10. If a discrete function k(z,y) defined on a suitable discrete set @
satisfies

(M%EDq,:v B Z.MZAJD‘LZ/) :

Dy% k(z,y) =0,
it is called g-analytic with respect to the operator Dg*.
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Example 2.11. All functions defined as
(2.18) R (z,y) =Y g7 m (iyYz"7; n=12,...
§=0 J1q
are g-analytic with respect to D7*.
In other words, we have

DyLR{(zy) = 5 {M%Dq,fol () + MY Dy, R )(:zr,y)} = 0.
Moreover, the equality
(2.19) D% Ry (x,y) = [n]y Ry ™V (@, y)

holds.

3. COMPLEX LINE ¢-INTEGRALS

Let z; = z; + 1y, 2j4+1 = Tj+1 + 141 € Q be two adjacent points. We define
the integral of a discrete function f(z) from z; to z;4+1 by

Zj+1

f(z)dez = (zj41 — 2;) f(z5) if 2j41 = qzj +iy; or zj41 = xj +iq 'y,
a? = . . i |

Zj

(3.1)
In this case, on a simple discrete curve
Y ={20,21,---2n)

lying in the discrete set @ the g-integral of f(z) on v can be defined as

(3.2) /f(z) dyz = 7f(z) dyz = nf 71f(z) dyz.
¥ e I=0

This integral in (3.2) satisfies the classical properties of line integrals such as
additivity, linearity, and orientation-dependence.

Remark 3.1. In [2], the discrete line g-integral is defined (under the same hypothe-
ses) as

Zj+1
f(2)dgz = (zj11 — z))f(z)  if 241 = quj + iy; or zj41 = x; + iqy;
q (2341 = 2)f(z541) i 20 = ¢ 7l +iy; or zj = 35 iy,

(3]3)
and
Zn n—1 1
f(2)dgz= | f(2)dgz = f(z)dyz.
[rase= ey |

The integrals in (3.2) and (3.3) are similar but not identical.
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Definition 3.2. Let z € C, be a fixed point, and let z € C,, represent a variable
point. The expression

(3.4) F(z) = / £(0) dyc

is called the indefinite g-integral of f(z).

Theorem 3.3. If a discrete function f(z) is q-analytic on C, in the sense of
Pashaev-Nalci, then the integral in (3.4) is path-independent.

Proof. This can be easily seen from the definition (3.1) and the equality (2.8).
For example, let

n=(n=x+iy, z2=1+iq 'y, 23 =qr +iq 'y),
Vo= (21 =T +1y, 22 =qr+1iy, 25 =23 = qr +iq 'y).

In this case, we have

(35 A= / F(2)dgz = (@ — Vigf (@, 9) + (g — D f(e.qy),

(36)  B= / F(2)dgz = (a7 = Vigf gz, y) + (g - D f(.y),

and hence, by using (2.8),

(3.7) qrf(z,q”'y) = (qz +iy) f(z,y) — iy flqz,y).
If we substitute this in (3.5), we see that A = B. O

Theorem 3.4. If f(z) is g-analytic on C, in the sense of Pashaev-Nalci, and if
v = (20,21, .,2n) is a simple discrete curve in C, then

(3.8) / F(2)dyz = F(z0) — Fz0)

where F(z) is as given in (3.4).

Zn
Proof. This is true since F(z9) = 0 and F(z,) = [ f(¢) dC. O
£
Theorem 3.5. If f(z) is g-analytic on C, in the sense of Pashaev-Nalci, and if
v = (20,21, -, 2n) is a simple discrete curve in C, then
(3.9 /Dq,zf(z) dgz = f(zn) — f(20).
¥

Proof. Let us prove the statement for n = 1. For zo = z + iy and z; = x +iq~ 'y
we have

Dyufea) = g {2 U = Sta] = 2 ™) - sG]}
= (p(.’l?,y)

from (2.1) and (2.2).
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Thus, using (3.2) we see that

1—g¢q

[ Daci(edyz = a1 = 20)p(an) =+ Ligotany)

1

= {Hﬂaw—fmaww—jwuwlw—f@wﬂ}

q x
(3.10) = % Bq‘liyf(w,y) - %Q‘liyf(qx, y) + flz,qy) — f(x,y)}

where 2o = = + 1y.
From (2.8) we have

(3.11) g 'yf(qw,y) = xf(z,y) +ig "y f(z,y) — af(z,q ).
Using (3.11) in (3.10) we obtain

z1
612 [ D)y = S ) - Sa) = fa1) - TG0,
zZ0
Considering the property in (3.12) with (3.2), we see that the statement holds

true for all n € N. O

Remark 3.6. We observe that
(3.13) [1@dz == [ e,
¥

,Y—l

from (1.7) and (3.2).
Theorem 3.7. For F(z) as in (3.4) we have
Dy - F(2) = f(2).

Proof. Let zg be a fixed point. Since

H@:H%w:/ﬂd%a

we have
DyF() = g { 3 W) = Flaa] = 2 [Floaa™y) = Flo) |
) ) (z,y) (qz,y)
et RO L
. | (zq " 'y) i (z,9)
(3.14) S [ r©d— [ r©dg

using (2.2).



8 ILKER GENCTURK, SERMIN HOKELEKLI, AND KERIM KOCA

On the other hand, if we let 2o = x¢ +iyo and z = z + iy, we get from (3.1) that

(gz,y) z z (qz,y)

L= /f dc—/ Qs = [ 1@~ [ 11~ [ 1) dg

(qz,y)
—— [ 1Qdg =G+ iy -z = i) f) = (- @) f ().
Similarly, we have

y)

IL— / f(C)dq<=1;qiyf(z)-

20

(z,q~

If we substitute I; and I in (3.14), we obtain

Dy F(z) = [(1=9)f(2) + 1 =) f(2)] = f(2).

2(1—q)
0

Remark 3.8. For z = x +1iy, 21 = qx + 14y, and 23 = x+1g 'y, it is easy to see that

71”(() deC = 7f(<)qu+7f(C) dqC

Theorem 3.9. Given a simple closed discrete curve v = (29, 21,...,2n—1,%n =
20) C @ and a g-analytic function f(z) in the sense of Pashaev- Nalcz Then

(3.15) /f dy¢ = 0.

from (3.1).

Proof. This follows easily from Theorem 3.4. O

Example 3.10. On the discrete set @, let us consider the discrete curve
(3.16) Y=7Ur2UrUn
where
<z =x+iy, nn=x+iqg Yy, zo=x+iq 2y, z3=a+ iq_3y>
<23—3:—|—zq Y, 24 = qT +1q" y, 25 =( J:—|—zq y, 26 = ( 1:+zq y>
<Z qx+zq y7 27:q$+“] yu 28:(155“‘“1 y7 29=qx+2y>,
Y4 = <29 =@r+iy, nio=q¢c+iy, 211 =qr+iy, zio=x+iy = zo>.
The set that is contained by the simple closed curve 7 is
Cy= {23 =gz +iq" "y, 210 =gz +iq %y, z15 =’z +iq %y, 216 = Cx +iq 'y} .
From (1.11) we have
Cy=C,U{z, 21,22,210, 211} -
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Using (3.1) and (3.2) we see that for any discrete function f(z) we have
11 %t
[1@de=3 [ 1d,
ol J=0 Zj
1—
= Tq [L1f(2) + L1f(z1) + L1 f(22) + L1 f(210) + L1f(211)

+Ly1f(213) + L1f(214) + L1 f(215) + L1 f(216)] -

If f(2) is g-analytic in the sense of Pashaev-Nalci, we have L1 f(zx) = 0, k =
0,1,..., 2z € 6q, and therefore,

/ £(2)dyz = 0.

Remark 3.11. Theorem 3.9 can bg thought of as the g-analog of Cauchy’s Theorem
for analytic functions in classical complex analysis.

Definition 3.12. Given discrete functions f(z,y), g(x,y) and a discrete curve
v = (20,21, ..., 2n) on the discrete set Q). Let us consider the integral

(3.17)

Zj+1 = qTj +1y; or

#it1 (zj+1 — 21) f(2))9(2j+1); o — a4y
j+1 — &y Bl

JRECRY OIS T
s ,

% (zj41 — %) F(zi11)g(z); 3 7T ! !

Zj41 = q '@+ iy
The integral given by
Zj+1

n—1
(318) Ju@gelaz=Y [ 7)) de
¥ =0z
is called the conjoint integral of f(z) and g(z) over ~.
Our definition of the conjoint integral is different from the one given in [2].

Theorem 3.13. On C, C Q, let f(z,y) be g-analytic in the sense of Pashaeuv-
Naler, and g(x,y) in the sense of D;. Then, for any closed discrete simple curve

v = (20,21, ,2n = 20) C C, we have

(3.19) [5G+ dyz =0
¥
Proof. Let us prove the statement for the closed simple discrete curve
v=(0=a+iy, 21 =x+iq 'y, za=qr+ig 'y, z3=qr+iy).

The proof can be repeated similarly for other closed discrete curves.
Since f(z) is g-analytic in the sense of Pashaev-Nalci, the equality in (2.8) is
satisfied. Thus,

(3.20) (qz +iy) f(z,y) — iy flgz,y) — gz f(z,q"y) = 0.
Since g(z,y) is g-analytic in the sense of D}, we have

(3.21) Eg(xz,y) = (z +iqy)g(z,y) —iqyg(q ' z,y) —xg(x,qy) =0



10 ILKER GENCTURK, SERMIN HOKELEKLI, AND KERIM KOCA

by (2.16).
Moreover, from (3.21) we can write

(322)  Egler,q"'y) = (az +iy)g(az,q"'y) — qz g(qz,y) — iy g(z,q"'y) = 0.
Using the definition of the integral in (3.17) we have

Zj+1

3
[ seiaz =3 [ 1)o@l
- — L f(@y) gz glqz,y) +iy gz, g7 y)]
(3.23) —g(qz,q"y) [az f(x,q7y) +iy f(gz,y)] } -

By using (3.20) and (3.22) in (3.23) we obtain

/[f(Z) *g(2)] dgz = %{f@,y) lqz g(qz,q "y) + iy g(qz,q"'y)

;
—iyg(z,q 'y) +iyg(z,q 'y)]

(3:24) — glaz,a~'y) (g +iy) fw,y)] } =0,

O

Theorem 3.14. Let C be and C, be discrete sets as defined in (1.9) and (1.11),
respectively. Let f(z) and g(z) be two discrete functions on C. For any closed
discrete curve v = (20,21, .., 2n = 20) on C = C, U~y we have

(3.25) /m*g( dyz = ‘qz (42,07 W) L1 f(2) — F()E gqzq )]

y 2€Cy

where the operators Ly and E are defined in (2.8) and (2.16).
Proof. Let us prove the statement for the closed simple discrete curve

v = <zo =x+1y, z1 =2+ itfly7 Zo =+ iq*Qy,
23 = qr+iq Y,z = Cx +iq 2y, 2 = ¢Cx +ig My,
26 :q2l'+7,y7 27:qCC—|—’I,y, z8 :x+zy:zo>

The proof can be completed by repeating the same argument for other closed
discrete curves. From (1.11) we have

Co=(0=x+iy, z1 =x+iq 'y, 23 =qu+iq %y, 24 =z +iq %y,
25 =q’x+iq 'y, 2 =qr+iy, 29 =qz+ig 'y).
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From (3.17) and (3.18) we obtain

JECE ij / 0(2)) dy2

- %{ gz glz0) + iy g(0)] 7(2) + iy F(z1)a(2)
— qx f(22)9(z3) — ¢*x f(23)9(2a) — g~ 'y f(25)9(24)
(3.26) — iy f(z6)9(z5) + 40 S (27)9(z6) }.

On the other hand, using (2.16) and the L; operator we can compute that
[9(z0) L1 f(2) — f(2)Eg(20)] + [9(24) L1 f(20) — [(20) Eg(24)]
+l9(z5) L1 f(27) — f(21)Eg(2s5)] + [9(23) L1f(21) — f(21)Eg(zs3)]
F(2) gz g(z0) + iy g(20)] +ig~ "y f(21)g(22) — gz [(22)g(23) — ¢° f(23)9(2a)
—iq "y f(25)9(2a) — iy f(26)9(25) + ¢*x f(27)9(26)

q
fq [f(2) * g(2)]dy2

(3.27)
Comparing (3.26) with (3.27) we see that (3.24) holds true. O

Corollary 3.15. The formula (3.24) is the g-analogue of the classical Green’s formula
with respect to the integrals (3.17) and (3.18).

4. CONCLUSION

Various different definitions were given for g-integrals in the literature. The ¢-
Green formula (3.24) takes different forms as the definition of the ¢g-integral changes.
For example, in [6], a Green’s formula similar to (3.24) was obtained using the well-
known Jackson Integral in g-analysis.

In this paper, we define a discrete g-line integral for g-analytic functions in the
sense of Pashaev-Nalci. Then using this type of an integral, we present a g-analogue
of Green’s formula on the complex plane.

Corollary 4.1. If f(z) is g-analytic on a discrete set @ in the sense of Pashaev-Nalci,
then for any discrete function g(z) we have

[l =gl = 11 Y HEg(ana )
v zEC
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