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SOME CLASSES OF q-ANALYTIC FUNCTIONS AND THE

q-GREEN’S FORMULA

İLKER GENÇTÜRK, ŞERMIN HÖKELEKLI, AND KERIM KOCA

Abstract. In this paper, we first give two new definitions for q-analytic func-

tions. We also define a new line q-integral. Finally, using these q-integrals we

obtain a version of complex q-Green’s formula.

1. Introduction and Preliminaries

In complex analysis, q-analogues of classical analytic (holomorphic) functions are
defined by several mathematicians in different ways [1, 2, 3, 4]. Moreover, there are
many articles where various q-integrals were defined for complex discrete functions
on complex discrete sets, and q-Green integrals were obtained using these discrete
integrals [2, 5, 6].

In this paper we define a discrete q-line integral for q-analytic functions in the
sense of Pashaev-Nalcı, and we present a q-analogue of the Green’s formula on the
complex plane using this type of an integral.

Now, we will recall some basic definitions in q- calculus:
Let 0 < q < 1 and a ∈ R. The q-analogue of a is defined as

(1.1) [a]q =
1− qa

1− q
.

For x ∈ R and n ∈ N, we use the shorthand notation

(1 + x)n = (1 + x)(1 + qx) · · · (1 + qn−1x); (1 + x)0 = 1,(1.2)

(1 + x)∞ = lim
n→∞

(1 + x)n.

For m,n ∈ N and n ≥ m, the q-factorial and the q-analogues of the binomial
numbers are defined respectively as

[n]q! = [1]q[2]q . . . [n]q =
(1− q)n
(1− q)n

,(1.3) [
n

m

]
q

=
[n]q!

[m]q! [n−m]q!
=

(1− q)n
(1− q)m (1− q)n−m

.(1.4)

Other definitions and concepts will be introduced in the course of the text.
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Let us now consider the discrete set

(1.5) Q = {(qmx, qny) = qmx+ iqny : m,n ∈ Z; x > 0, y > 0}.

Definition 1.1 ([2]). Given zj = xj + iyj ∈ Q. If zj+1 is one of

(qxj , yj), (q−1xj , yj), (xj , qyj), (xj , q
−1yj),

then zj and zj+1 are called adjacent points.

Definition 1.2. For adjacent points zj , zj+1 ∈ Q, the expression

(1.6) γ := 〈z0, z1, . . . , zn〉

defines a q-discrete curve in Q. If zi 6= zj for i 6= j, the curve is called a simple
discrete curve. If z0 = zn, it is called a simple closed discrete curve.

Definition 1.3. Let us consider the curve γ as defined in (1.6). The curve

(1.7) γ−1 := 〈zn, zn−1, . . . , z1, z0〉

is called the opposite-oriented γ.

Definition 1.4. For z = x+ iy ∈ Q, the discrete set

(1.8) S(z) = {z = x+ iy, z1 = x+ iq−1y, z2 = qx+ iy, z3 = qx+ iq−1y}

is called a fundamental set with respect to z.

Let us denote the elements ofQ lying in the discrete closed curve γ := 〈z0, z1, . . . , zn =
z0〉 by C, and let C := C ∪ γ. Then, every finite subset of Q can be written as the
union of fundamental sets

(1.9) C =

N⋃
i=1

S(zi).

Let us also consider the subset

(1.10) T (z) = {z = x+ iy, z1 = x+ iq−1y, z2 = qx+ iy} ⊂ S(z).

For C as in (1.9), let us define the subset

(1.11) Cq := {zi : zi ∈ S(zi); i = 1, 2, . . . , N} ⊂ Q.

2. Classes of q-analytic functions

Let f(z) be a discrete function defined on the discrete set Q. We define the
discrete partial differential operators

(2.1) Dq,xf(z) =
f(z)− f(qx, y)

(1− q)x
; Dq,yf(z) =

f(z)− f(x, qy)

(1− q)y
.

We note that in [4], complex q-differential operators Dq,z and Dq,z are defined
as

(2.2) Dq,z :=
1

2

[
Dq,x − iMy

1
q

Dq,y

]
; Dq,z :=

1

2

[
Dq,x + iMy

1
q

Dq,y

]
where My

q f(x, y) = f(x, qy) is the dilatation operator.



SOME CLASSES OF q-ANALYTIC FUNCTIONS AND THE q-GREEN’S FORMULA 3

Definition 2.1 ([4]). If a complex valued discrete function f(x, y) satisfies

(2.3) Dq,zf(x, y) =
1

2

[
Dq,xf(x, y) + iMy

1
q

Dq,yf(x, y)
]

= 0

for z ∈ T (z), then f(x, y) is called a q-analytic function at point z in the sense of
Pashaev–Nalcı.

Example 2.2. For n ∈ N, the complex q-binomial expansions

(2.4) Φ(n)
q (x, y) = (x+ iy)(x+ iqy) · · · (x+ iqn−1y) ≡

n∑
k=0

[
n

k

]
q

q
k(k−1)

2 xn−k(iy)k

are q-analytic in the sense of Pashaev-Nalcı. Moreover, they satisfy

Dq,zΦ
(n)
q (x, y) = [n]qΦ

(n−1)
q (x, y).

Remark 2.3. In [2], the q-analyticity of f(z) is characterized by the equation

(2.5) Dq,xf(x, y) = −iDq,yf(x, y).

That is, f(z) is called q-analytic in the sense of Harman when the equation

(2.6)
f(z)− f(qx, y)

(1− q)x
=
f(z)− f(x, qy)

(1− q)iy
holds.

Example 2.4. Let n ∈ N. The class of function given by

(2.7) Ψ(n)
q (x, y) =

n∑
j=0

(iy)j

[j]q!
Dq,x(xj) =

n∑
j=0

[
n

j

]
q

xj(iy)n−j

is q-analytic in the sense of Harman, but not in the sense of Pashaev-Nalcı. The

functions Φ
(n)
q (x, y) (n = 2, 3, . . . ) defined in (2.4) are not q-analytic in the sense

of Harman.

A necessary and sufficient condition for a discrete function f(z) to be q-analytic
in the sense of Pashaev-Nalcı is that

(2.8) L1f(x, y) := (qx+ iy)f(x, y)− iyf(qx, y)− qxf(x, q−1y) = 0.

This identity can easily be derived from (2.3).
Similarly, a necessary and sufficient condition for a discrete function f(z) to be

q-analytic in the sense of Harman is that

(2.9) L2f(x, y) := zf(z)− xf(x, qy) + iyf(qx, y) = 0,

which be derived from (2.6).
Let p = q−1. Consider the differential operator

(2.10) Dp,xf(z) =
f(z)− f(px, y)

(1− p)x
; Dp,yf(z) =

f(z)− f(x, py)

(1− p)y
for a discrete function f(z).

Definition 2.5. If a complex-valued discrete function g(x, y) satisfies

(2.11) Dp,xg(x, y) = −iMy
1
p

Dp,yg(x, y),

it is called p-analytic in the sense of Pashaev-Nalcı.
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A necessary and sufficient condition for g(x, y) to be p-analytic on a suitable
discrete set Q is that

(2.12) B[g(x, y)] := (px+ iy)f(x, y)− iyf(px, y)− pxf(x, p−1y) = 0

which can be obtained from (2.11).

Example 2.6. g(x, y) = x2 +(1+q−1)ixy−q−1y2 is p-analytic, but not q-analytic.

In this paper, we present another two classes of q-analytic functions.
Let Dq,x and Dq,y be the partial q-differential operators as given in (2.1). Using

these operators we can define complex differential operators

D∗q,z ≡
1

2

(
Mx

1
q
Dq,x − iDq,y

)
,

(2.13)

D∗q,z ≡
1

2

(
Mx

1
q
Dq,x + iDq,y

)
.

Definition 2.7. If a discrete function h(x, y) defined on a suitable discrete set Q
satisfies

(2.14) D∗q,zh(x, y) = 0,

it is said to be q-analytic with respect to the operator D∗q .

This definition of q-analyticity is different from previous definitions.

Example 2.8. The functions defined by

(2.15) P (n)
q (x, y) = (x+ iy)(qx+ iy) · · · (qn−1x+ iy); n = 1, 2, . . .

are all q-analytic with respect to the operator D∗q,z. In other words, we have

D∗q,zP
(n)
q (x, y) ≡ 0.

Moreover, the equality

D∗q,zP
(n)
q (x, y) = [n]qP

(n−1)
q (x, y)

holds.

Remark 2.9. A necessary and sufficient condition for h(x, y) to be q-analytic with
respect to D∗q is that

(2.16) E[h(x, y)] = (x+ iqy)h(x, y)− xh(x, qy)− iqyh(q−1x, y)

which follows from (2.13) and (2.14).

Using equation (2.1) again, we can define complex differential operators

D∗∗q,z :=
1

2

(
Mx

1
q
Dq,x + iMy

1
q

Dq,y

)
,

(2.17)

D∗∗q,z :=
1

2

(
Mx

1
q
Dq,x − iMy

1
q

Dq,y

)
.

Definition 2.10. If a discrete function k(x, y) defined on a suitable discrete set Q
satisfies

D∗∗q,z k(x, y) = 0,

it is called q-analytic with respect to the operator D∗∗q .
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Example 2.11. All functions defined as

(2.18) R(n)
q (x, y) =

n∑
j=0

q−j(n−j)
[
n

j

]
q

(iy)jxn−j ; n = 1, 2, . . .

are q-analytic with respect to D∗∗q .
In other words, we have

D∗∗q,zR
(n)
q (x, y) ≡ 1

2

[
Mx

1
q
Dq,xR

(n)
q (x, y) + iMy

1
q

Dq,yR
(n)
q (x, y)

]
≡ 0.

Moreover, the equality

(2.19) D∗∗q,zR
(n)
q (x, y) = [n]qR

(n−1)
q (x, y)

holds.

3. Complex Line q-Integrals

Let zj = xj + iyj , zj+1 = xj+1 + iyj+1 ∈ Q be two adjacent points. We define
the integral of a discrete function f(z) from zj to zj+1 by

zj+1∫
zj

f(z) dqz =

{
(zj+1 − zj)f(zj) if zj+1 = qxj + iyj or zj+1 = xj + iq−1yj

(zj+1 − zj)f(zj+1) if zj+1 = xj + iqyj or zj+1 = q−1xj + iyj .

(3.1)

In this case, on a simple discrete curve

γ = 〈z0, z1, . . . , zn〉

lying in the discrete set Q the q-integral of f(z) on γ can be defined as

(3.2)

∫
γ

f(z) dqz =

zn∫
z0

f(z) dqz =

n−1∑
j=0

zj+1∫
zj

f(z) dqz.

This integral in (3.2) satisfies the classical properties of line integrals such as
additivity, linearity, and orientation-dependence.

Remark 3.1. In [2], the discrete line q-integral is defined (under the same hypothe-
ses) as

zj+1∫
zj

f(z) dqz =

{
(zj+1 − zj)f(zj) if zj+1 = qxj + iyj or zj+1 = xj + iqyj

(zj+1 − zj)f(zj+1) if zj+1 = q−1xj + iyj or zj+1 = xj + iq−1yj ,

(3.3)

and ∫
γ

f(z) dqz =

zn∫
z0

f(z) dqz =

n−1∑
j=0

zj+1∫
zj

f(z) dqz.

The integrals in (3.2) and (3.3) are similar but not identical.
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Definition 3.2. Let z0 ∈ Cq be a fixed point, and let z ∈ Cq represent a variable
point. The expression

(3.4) F (z) :=

z∫
z0

f(ζ) dqζ

is called the indefinite q-integral of f(z).

Theorem 3.3. If a discrete function f(z) is q-analytic on Cq in the sense of
Pashaev-Nalcı, then the integral in (3.4) is path-independent.

Proof. This can be easily seen from the definition (3.1) and the equality (2.8).
For example, let

γ1 = 〈z1 = x+ iy, z2 = x+ iq−1y, z3 = qx+ iq−1y〉,
γ2 = 〈z1 = x+ iy, z4 = qx+ iy, z5 = z3 = qx+ iq−1y〉.

In this case, we have

A =

∫
γ1

f(z) dqz = (q−1 − 1)iyf(x, y) + (q − 1)xf(x, q−1y),(3.5)

B =

∫
γ2

f(z) dqz = (q−1 − 1)iyf(qx, y) + (q − 1)xf(x, y),(3.6)

and hence, by using (2.8),

(3.7) qxf(x, q−1y) = (qx+ iy)f(x, y)− iyf(qx, y).

If we substitute this in (3.5), we see that A = B. �

Theorem 3.4. If f(z) is q-analytic on Cq in the sense of Pashaev-Nalcı, and if

γ = 〈z0, z1, . . . , zn〉 is a simple discrete curve in Cq, then

(3.8)

∫
γ

f(z) dqz = F (zn)− F (z0)

where F (z) is as given in (3.4).

Proof. This is true since F (z0) = 0 and F (zn) =
zn∫
z0

f(ζ) dqζ. �

Theorem 3.5. If f(z) is q-analytic on Cq in the sense of Pashaev-Nalcı, and if

γ = 〈z0, z1, . . . , zn〉 is a simple discrete curve in Cq, then

(3.9)

∫
γ

Dq,zf(z) dqz = f(zn)− f(z0).

Proof. Let us prove the statement for n = 1. For z0 = x + iy and z1 = x + iq−1y
we have

Dq,zf(x, y) =
1

2(1− q)

{
1

x
[f(x, y)− f(qx, y)]− iq

y

[
f(x, q−1y)− f(x, y)

]}
=: ϕ(x, y)

from (2.1) and (2.2).
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Thus, using (3.2) we see that

z1∫
z0

Dq,zf(z) dqz = (z1 − z0)ϕ(z0) =
1− q
q

iyϕ(x, y)

=
1

2q
iy

{
1

x
[f(x, y)− f(qx, y)]− iq

y

[
f(x, q−1y)− f(x, y)

]}
=

1

2

[
1

x
q−1iyf(x, y)− 1

x
q−1iyf(qx, y) + f(x, q−1y)− f(x, y)

]
(3.10)

where z0 = x+ iy.
From (2.8) we have

(3.11) q−1yf(qx, y) = xf(x, y) + iq−1yf(x, y)− xf(x, q−1y).

Using (3.11) in (3.10) we obtain

(3.12)

z1∫
z0

Dq,zf(z) dqz = f(x, q−1y)− f(x, y) = f(z1)− f(z0).

Considering the property in (3.12) with (3.2), we see that the statement holds
true for all n ∈ N. �

Remark 3.6. We observe that

(3.13)

∫
γ

f(z) dqz = −
∫
γ−1

f(z) dqz

from (1.7) and (3.2).

Theorem 3.7. For F (z) as in (3.4) we have

Dq,zF (z) = f(z).

Proof. Let z0 be a fixed point. Since

F (z) = F (x, y) =

z∫
z0

f(ζ) dqζ,

we have

Dq,zF (z) =
1

2(1− q)

{
1

x
[F (x, y)− F (qx, y)]− iq

y

[
F (x, q−1y)− F (x, y)

]}

=
1

2(1− q)

 1

x

 (x,y)∫
z0

f(ζ) dqζ −
(qx,y)∫
z0

f(ζ) dqζ


− iq
y

 (x,q−1y)∫
z0

f(ζ) dqζ −
(x,y)∫
z0

f(ζ) dqζ


(3.14)

using (2.2).
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On the other hand, if we let z0 = x0 + iy0 and z = x+ iy, we get from (3.1) that

I1 =

z∫
z0

f(ζ) dqζ −
(qx,y)∫
z0

f(ζ) dqζ =

z∫
z0

f(ζ) dqζ −
z∫

z0

f(ζ) dqζ −
(qx,y)∫
z

f(ζ) dqζ

= −
(qx,y)∫
z

f(ζ) dqζ = −(qx+ iy − x− iy)f(z) = (1− q)xf(z).

Similarly, we have

I2 =

(x,q−1y)∫
z0

f(ζ) dqζ =
1− q
q

iyf(z).

If we substitute I1 and I2 in (3.14), we obtain

Dq,zF (z) =
1

2(1− q)
[(1− q)f(z) + (1− q)f(z)] = f(z).

�

Remark 3.8. For z = x+ iy, z1 = qx+ iy, and z2 = x+ iq−1y, it is easy to see that

z1∫
z

f(ζ) dqζ =

z2∫
z

f(ζ) dqζ +

z1∫
z2

f(ζ) dqζ

from (3.1).

Theorem 3.9. Given a simple closed discrete curve γ = 〈z0, z1, . . . , zn−1, zn =
z0〉 ⊂ Q and a q-analytic function f(z) in the sense of Pashaev-Nalcı. Then

(3.15)

∫
γ

f(ζ) dqζ = 0.

Proof. This follows easily from Theorem 3.4. �

Example 3.10. On the discrete set Q, let us consider the discrete curve

(3.16) γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4

where

γ1 =
〈
z0 = x+ iy, z1 = x+ iq−1y, z2 = x+ iq−2y, z3 = x+ iq−3y

〉
,

γ2 =
〈
z3 = x+ iq−3y, z4 = qx+ iq−3y, z5 = q2x+ iq−3y, z6 = q3x+ iq−3y

〉
,

γ3 =
〈
z6 = q3x+ iq−3y, z7 = q3x+ iq−2y, z8 = q3x+ iq−1y, z9 = q3x+ iy

〉
,

γ4 =
〈
z9 = q3x+ iy, z10 = q2x+ iy, z11 = qx+ iy, z12 = x+ iy = z0

〉
.

The set that is contained by the simple closed curve γ is

Cq =
{
z13 = qx+ iq−1y, z14 = qx+ iq−2y, z15 = q2x+ iq−2y, z16 = q2x+ iq−1y

}
.

From (1.11) we have

Cq = Cq ∪ {z, z1, z2, z10, z11} .
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Using (3.1) and (3.2) we see that for any discrete function f(z) we have∫
γ

f(z) dqz =

11∑
j=0

zj+1∫
zj

f(z) dqz

=
1− q
q

[L1f(z) + L1f(z1) + L1f(z2) + L1f(z10) + L1f(z11)

+L1f(z13) + L1f(z14) + L1f(z15) + L1f(z16)] .

If f(z) is q-analytic in the sense of Pashaev-Nalcı, we have L1f(zk) = 0, k =
0, 1, . . . , zk ∈ Cq, and therefore, ∫

γ

f(z) dqz = 0.

Remark 3.11. Theorem 3.9 can be thought of as the q-analog of Cauchy’s Theorem
for analytic functions in classical complex analysis.
Definition 3.12. Given discrete functions f(x, y), g(x, y) and a discrete curve
γ = 〈z0, z1, . . . , zn〉 on the discrete set Q. Let us consider the integral
(3.17)

zj+1∫
zj

[f(z) ∗ g(z)] dqz =


(zj+1 − zj)f(zj)g(zj+1);

{
zj+1 = qxj + iyj or

zj+1 = xj + iq−1yj ,

(zj+1 − zj)f(zj+1)g(zj);

{
zj+1 = xj + iqyj or

zj+1 = q−1xj + iyj .

The integral given by

(3.18)

∫
γ

[f(z) ∗ g(z)] dqz =

n−1∑
j=0

zj+1∫
zj

[f(z) ∗ g(z)] dqz

is called the conjoint integral of f(z) and g(z) over γ.

Our definition of the conjoint integral is different from the one given in [2].

Theorem 3.13. On Cq ⊂ Q, let f(x, y) be q-analytic in the sense of Pashaev-
Nalcı, and g(x, y) in the sense of D∗q . Then, for any closed discrete simple curve

γ = 〈z0, z1, . . . , zn = z0〉 ⊂ Cq we have

(3.19)

∫
γ

[f(z) ∗ g(z)] dqz = 0.

Proof. Let us prove the statement for the closed simple discrete curve

γ =
〈
z0 = x+ iy, z1 = x+ iq−1y, z2 = qx+ iq−1y, z3 = qx+ iy

〉
.

The proof can be repeated similarly for other closed discrete curves.
Since f(z) is q-analytic in the sense of Pashaev-Nalcı, the equality in (2.8) is

satisfied. Thus,

(3.20) (qx+ iy)f(x, y)− iyf(qx, y)− qxf(x, q−1y) = 0.

Since g(x, y) is q-analytic in the sense of D∗q , we have

(3.21) E g(x, y) = (x+ iqy)g(x, y)− iqy g(q−1x, y)− x g(x, qy) = 0
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by (2.16).
Moreover, from (3.21) we can write

(3.22) E g(qx, q−1y) = (qx+ iy)g(qx, q−1y)− qx g(qx, y)− iy g(x, q−1y) = 0.

Using the definition of the integral in (3.17) we have

∫
γ

[f(z) ∗ g(z)] dqz =

3∑
j=0

zj+1∫
zj

[f(z) ∗ g(z)] dqz

=
1− q
q

{
f(x, y)

[
qx g(qx, y) + iy g(x, q−1y)

]
−g(qx, q−1y)

[
qx f(x, q−1y) + iy f(qx, y)

]}
.(3.23)

By using (3.20) and (3.22) in (3.23) we obtain∫
γ

[f(z) ∗ g(z)] dqz =
1− q
q

{
f(x, y)

[
qx g(qx, q−1y) + iy g(qx, q−1y)

−iy g(x, q−1y) + iy g(x, q−1y)
]

− g(qx, q−1y) [(qx+ iy)f(x, y)]
}

= 0.(3.24)

�

Theorem 3.14. Let C be and Cq be discrete sets as defined in (1.9) and (1.11),

respectively. Let f(z) and g(z) be two discrete functions on C. For any closed
discrete curve γ = 〈z0, z1, . . . , zn = z0〉 on C = Cq ∪ γ we have

(3.25)

∫
γ

[f(z) ∗ g(z)]dqz =
1− q
q

∑
z∈Cq

[
g(qx, q−1y)L1f(z)− f(z)E g(qx, q−1y)

]

where the operators L1 and E are defined in (2.8) and (2.16).
Proof. Let us prove the statement for the closed simple discrete curve

γ =
〈
z0 = x+ iy, z1 = x+ iq−1y, z2 = x+ iq−2y,

z3 = qx+ iq−2y, z4 = q2x+ iq−2y, z5 = q2x+ iq−1y,

z6 = q2x+ iy, z7 = qx+ iy, z8 = x+ iy = z0

〉
.

The proof can be completed by repeating the same argument for other closed
discrete curves. From (1.11) we have

Cq =
〈
z0 = x+ iy, z1 = x+ iq−1y, z3 = qx+ iq−2y, z4 = q2x+ iq−2y,

z5 = q2x+ iq−1y, z7 = qx+ iy, z9 = qx+ iq−1y
〉
.
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From (3.17) and (3.18) we obtain∫
γ

[f(z) ∗ g(z)] dqz =

7∑
j=0

zj+1∫
zj

[f(z) ∗ g(z)] dqz

=
1− q
q

{
[qx g(z7) + iy g(z1)] f(z) + iq−1y f(z1)g(z2)

− qx f(z2)g(z3)− q2x f(z3)g(z4)− iq−1y f(z5)g(z4)

− iy f(z6)g(z5) + q2x f(z7)g(z6)
}
.(3.26)

On the other hand, using (2.16) and the L1 operator we can compute that

[g(z9)L1f(z)− f(z)Eg(z9)] + [g(z4)L1f(z9)− f(z9)Eg(z4)]

+ [g(z5)L1f(z7)− f(z7)Eg(z5)] + [g(z3)L1f(z1)− f(z1)Eg(z3)]

= f(z) [qx g(z7) + iy g(z1)] + iq−1yf(z1)g(z2)− qx f(z2)g(z3)− q2x f(z3)g(z4)

− iq−1y f(z5)g(z4)− iy f(z6)g(z5) + q2x f(z7)g(z6)

=
q

1− q

∫
γ

[f(z) ∗ g(z)]dqz.

(3.27)

Comparing (3.26) with (3.27) we see that (3.24) holds true. �

Corollary 3.15. The formula (3.24) is the q-analogue of the classical Green’s formula
with respect to the integrals (3.17) and (3.18).

4. Conclusion

Various different definitions were given for q-integrals in the literature. The q-
Green formula (3.24) takes different forms as the definition of the q-integral changes.
For example, in [6], a Green’s formula similar to (3.24) was obtained using the well-
known Jackson Integral in q-analysis.

In this paper, we define a discrete q-line integral for q-analytic functions in the
sense of Pashaev-Nalcı. Then using this type of an integral, we present a q-analogue
of Green’s formula on the complex plane.
Corollary 4.1. If f(z) is q-analytic on a discrete set Q in the sense of Pashaev-Nalcı,
then for any discrete function g(z) we have∫

γ

[f(z) ∗ g(z)] dqz =
q

1− q
∑
z∈Cq

f(z)Eg(qx.q−1y).
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(İlker Gençtürk(Corresponding Author)) Kırıkkale University,, Department of Mathe-

matics,, 71450 Kırıkkale,, Turkey

Email address: ilkergencturk@gmail.com
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