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ABSTRACT. In this paper, by using generalized Cesàro means based on q-integers, we study on approximating
continuous and periodic functions by their Fourier series. We also discuss its connection with the concept of statistical
convergence. At the end of the paper, some applications and graphical illustrations are also provided.

Keywords: Fourier analysis, Cesàro summability, Fejér’s kernel, q-integers, statistical convergence.

2020 Mathematics Subject Classification: 42A24, 40G15.

Dedicated to Professor Francesco Altomare, on occasion of his 70th birthday, with esteem and friendship.

1. INTRODUCTION

The question of whether the Fourier series of a periodic function converges to the given
function is researched by a field known as classical harmonic analysis. It is well-known that
convergence is not necessarily given in the general case. However, by using some summability
methods, such as Cesàro means and Riesz means, the convergence is possible in some sense
(see, for instance, [21]). In the present paper, by using generalized Cesàro means based on q-
integers (see the next section for details), we study on approximating continuous and periodic
functions by their Fourier series.

Let Sn(f) denote the partial sums of an integrable and 2π-periodic function f, that is

Sn(f ;x) =
a0
2

+

n∑
k=1

(ak cos kx+ bk sin kx) ,

where

ak :=
1

π

∫ π

−π
f(t) cos ktdt, k = 0, 1, ...

and

bk :=
1

π

∫ π

−π
f(t) sin ktdt, k = 1, 2, ... .

Then, we may write that

Sn(f ;x) =
1

π

∫ π

−π
f(x+ t)Dn(t)dt,
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where Dn(t) denotes Dirichlet’s kernel given by

Dn(t) =
sin ((n+ 1/2) t)

2 sin (t/2)
.

Furthermore, the classical Cesàro means of Sn(f) can be written as follows:

σn(f ;x) =
S0(f ;x) + S1(f ;x) + ...+ Sn(f ;x)

n+ 1

=
1

π

∫ π

−π
f(x+ t)

(
1

n+ 1

n∑
k=0

Dk(t)

)
dt

=
1

π

∫ π

−π
f(x+ t)Kn(t)dt,

where Kn(t) denotes Fejér’s kernel given by

(1.1) Kn(t) =
sin2 ((n+ 1/2)t)

2 (n+ 1) sin2(t/2)
.

Now, let C2π denote the space of all continuous and 2π periodic functions. Then, it is well-
known that, for any f ∈ C2π, the sequence (σn(f)) is uniformly convergent to f, i.e., (Sn(f)) is
uniformly Cesàro summable to f.

In order to generalize this summability, we will consider the generalized Cesàro means
based on q-integers introduced in [1, 4].

2. Q-CESÀRO SUMMABILITY OF FOURIER SERIES

We first recall some concepts and notation from the q-calculus (see [11] for details). For a
given q > 0, the q-integer [n]q is given by

[n]q := 1 + q + q2 + · · ·+ qn−1 with [0]q = 0.

Then, for each n = 1, 2, . . . , we may write that

[n]q =
1− qn

1− q
for q 6= 1.

Now, for a given q > 0, consider the q-Cesàro matrix C(q) = [cnk(q)] (k, n = 0, 1, 2, . . .) defined
by (see [1, 4])

(2.2) cnk (q) =

{
qk

[n+1]q
, k = 0, 1, ..., n

0, otherwise.

Then, we can write the matrix C(q) as follows:

C(q) =



1 0 0 · · · 0 0 · · ·
1

[2]q

q
[2]q

0 · · · 0 0 · · ·
1

[3]q

q
[3]q

q2

[3]q
· · · 0 0 · · ·

...
...

...
...

...
...

. . .
1

[n+1]q

q
[n+1]q

q2

[n+1]q
· · · qn

[n+1]q
0 · · ·

...
...

...
...

...
...

. . .


.

Observe that the case of q = 1 reduces to the classical Cesàro matrix. About regularity of
q-Cesàro matrix, we can say the following:
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• For any fixed q ≥ 1, the matrix C(q) is regular (see [1]).
• For a given 0 < q < 1, the corresponding matrix C(q) cannot be regular due to the fact

that [n+ 1]q → 1
1−q as n→∞.

• Instead of a fixed q, take a sequence q = (qn) such that the following conditions hold:

(2.3) 0 < qn < 1 for all n ∈ N0 = {0, 1, ...}

and

(2.4) lim
n→∞

qn = 1.

Then,C(q) is still regular. Indeed, from (2.3) and (2.4) ,we may write that [n+1]qn →∞
as n → ∞ (see, for instance, [17, 18, 19]). Hence, using the well-known Silverman-
Toeplitz conditions, we immediately get the regularity ofC(q) for q = (qn) (see Example
2.1 for such a sequence).

Because the sequence of partial sums (Sn(f)) need not converge to f , we may try looking at
their q-Cesàro means as follows:

σn(f ; q;x) =
1

[n+ 1]q

n∑
k=0

qkSk(f ;x)

=
S0(f ;x) + qS1(f ;x) + ...+ qnSn(f ;x)

[n+ 1]q
,

which implies

σn(f ; q;x) =
1

π

∫ π

−π
f(x+ t)

(
1

[n+ 1]q

n∑
k=0

qkDk(t)

)
dt.

Hence, we may write that

(2.5) σn(f ; q;x) =
1

π

∫ π

−π
f(x+ t)Kn(q; t)dt,

where

(2.6) Kn(q; t) :=
1

2[n+ 1]q

n∑
k=0

qk
sin ((k + 1/2) t)

sin (t/2)
,

say q-Fejér’s kernel.
We should note that the q-Cesàro means in (2.5) may be regarded as a special case of Nörlund

or Riesz means of the partial sums of Fourier series. However, it is more convenient to examine
the behavior of the corresponding q-Fejér’s kernel in (2.6) by taking into account the known
properties of the q-integers. Another important reason for using q-integers in this process is
that it is possible to weaken the classical limit condition needed in the approximation (see
Section 3 for details).

We now start with the fundamental properties of q-Fejér’s kernel.

Lemma 2.1. Let q > 0 and n ∈ N0. Then, we get the followings:

(a) Kn(q; t) =
(1 + q) sin (t/2) + qn+2 sin ((n+ 1/2)t)− qn+1 sin ((n+ 3/2)t)

2[n+ 1]q sin (t/2)
{
(1− q)2 cos2 (t/2) + (1 + q)2 sin2 (t/2)

} .

(b) Kn(q; t) =
(n+ 1)

[n+ 1]q

{
qnKn(t) +

n−1∑
k=0

(
qk − qk+1

)
Kk(t)

}
,

where Kn(t) is the classical Fejér’s kernel given by (1.1).
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(c)
1

π

∫ π
−πKn(q; t)dt =

n+ 1

[n+ 1]q
.

(d) If 0 < q ≤ 1, then Kn(q; ·) ≥ 0.

Proof. (a) From the definition of Kn(q; t) in (2.6), we may write that

Kn(q; t) =
1

2[n+ 1]q sin (t/2)
Im

{
n∑
k=0

qkei(k+1/2)t

}

=
1

2[n+ 1]q sin (t/2)
Im

{
eit/2

n∑
k=0

(
qeit
)k}

=
1

2[n+ 1]q sin (t/2)
Im
{
eit/2

1− qn+1ei(n+1)t

1− qeit

}
=

1

2[n+ 1]q sin (t/2)
Im
{
1− qn+1ei(n+1)t

e−it/2 − qeit/2

}
.

Observe that

Im
{
1− qn+1ei(n+1)t

e−it/2 − qeit/2

}
=

An(q, t)−Bn(q, t)
(1− q)2 cos2 (t/2) + (1 + q)2 sin2 (t/2)

,

where

An(q, t) = (1 + q)
(
1− qn+1 cos ((n+ 1)t)

)
sin (t/2) ,

Bn(q, t) = (1− q) qn+1 sin ((n+ 1)t) cos (t/2) .

Hence, using some appropriate trigonometric identities, we obtain that

An(q, t)−Bn(q, t) =(1 + q) sin (t/2) + qn+2 sin ((n+ 1/2)t)

− qn+1 sin ((n+ 3/2)t) ,

which immediately gives the equality in (a).
(b) If we use Abel’s partial sums identity in (2.6) , then we observe from (1.1) that

Kn(q; t) =
(n+ 1)

[n+ 1]q

n∑
k=0

qk
sin ((k + 1/2) t)

2(n+ 1) sin (t/2)

=
(n+ 1)

[n+ 1]q

{
qnKn(t) +

n−1∑
k=0

(
qk − qk+1

)
Kk(t)

}
,

which completes the proof of (b).
(c) We may write from (b) that

1

π

∫ π

−π
Kn(q; t)dt

=
n+ 1

[n+ 1]q

{
qn
(
1

π

∫ π

−π
Kn(t)dt

)
+ (1− q)

n−1∑
k=0

qk
(
1

π

∫ π

−π
Kk(t)dt

)}
.
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Since 1
π

∫ π
−πKn(t)dt = 1, we see that

1

π

∫ π

−π
Kn(q; t)dt =

n+ 1

[n+ 1]q

{
qn + (1− q)

n−1∑
k=0

qk

}

=
n+ 1

[n+ 1]q
{qn + (1− q)[n]q}

=
n+ 1

[n+ 1]q
,

which gives (c).
(d) It is clear from (b), since 0 < q ≤ 1. �

Remark 2.1. If one takes q = 1 in Lemma 2.1 then (a) implies

Kn(1; t) =
2 sin(t/2) + sin ((n+ 1/2)t)− sin ((n+ 3/2)t)

8(n+ 1) sin3 (t/2)

=
1− cos ((n+ 1)t)

4(n+ 1) sin2 (t/2)

=
sin2 ((n+ 1)t/2)

2(n+ 1) sin2(t/2)

=Kn(t),

and (b) implies the same equality Kn(1; t) = Kn(t), and also (c) and (d) implies the classical results
1
π

∫ π
−πKn(t)dt = 1 and Kn(·) ≥ 0, respectively.

Theorem 2.1. Assume that the sequence q = (qn) satisfies the conditions (2.3) and (2.4). Then, for
the operators in (2.5), we get

lim
n→∞

σn(f ; qn;x) = f(x) uniformly with respect to x

for every f ∈ C2π.

Proof. Since the operators in (2.5) are positive and linear, from the well-known Korovkin theo-
rem for 2π-periodic continuous functions (see [2, 12]), it is enough to show that

(2.7) σn (fi; qn;x) ⇒ fi(x) for i = 0, 1, 2,

where f0(x) = 1, f1(x) = sinx and f2(x) = cosx. As usual, the symbol ⇒ denotes the uniform
convergence. Now, it is easy to check that

(2.8) σn(f0; qn;x) = f0(x) = 1.

From the definition of the operators, we observe that

σn (f1; qn;x) =
S0(f1;x) + qnS1(f1;x) + q2nS2(f1;x) + · · ·+ qnnSn(f1;x)

[n+ 1]qn

=
0 + qn sinx+ q2n sinx+ · · ·+ qnn sinx

[n+ 1]qn

=
qn + q2n + · · ·+ qnn

[n+ 1]qn
sinx,

which implies

(2.9) σn (f1; qn;x) =

(
1− 1

[n+ 1]qn

)
sinx.
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n = 2
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n = 10
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FIGURE 1. q-Cesàro approximation to the function f(x) = |x| by the operators
σn(f ; qn;x) associated with the sequence q = (qn) given by (2.11)

Similarly, we also get

(2.10) σn (f2; qn;x) =

(
1− 1

[n+ 1]qn

)
cosx.

Taking limit as n→∞ in (2.8), (2.9) and (2.10) and also considering the assumptions (2.3) and
(2.4), we obtain (2.7) , which completes the proof. �

Example 2.1. Define the function f , for x ∈ [−π, π], by f(x) = |x| and extend its domain periodically
to the whole real line which coincides on [−π, π]. Consider the sequence q = (qn) given by

(2.11) qn = 1− 1

n+ 2
.

Then, all conditions of Theorem 2.1 holds, which implies

lim
n→∞

σn(f ; qn;x) = f(x)

uniformly with respect to x. This (uniform) q-Cesàro summability is indicated in Figure 1 with the
parameter values n = 2, 5, 10.

Example 2.2. Consider the 2π-periodic and even function f defined on [0, π] by

(2.12) f(x) =

∞∑
k=1

1

k2
sin
((

2k
3

+ 1
) x
2

)
.

Then, according to Weierstrass M-test, we get the continuity of f on R. Hence, Theorem 2.1 implies
that, for any sequence q = (qn) satisfying (2.3) and (2.4), lim

n→∞
σn(f ; qn;x) = f(x) uniformly with

respect to x. However, one can observe that the classical partial sums of the function f in (2.12) cannot
converge to f at the origin. More precisely, the sequence (Sn(f ; 0)) diverges to the infinity as n → ∞
(see, for instance, [20]).
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3. EXTENSION TO THE STATISTICAL CONVERGENCE AND CONCLUDING REMARKS

In this section, we will work on the situation where the limit condition in (2.4) is weakened.
For example, we can consider the concept of statistical convergence (see [8] by Fast). We note
that this type of convergence has been introduced a few years earlier by Zygmund with the
name “almost convergence” (see [21, Vol. II, Chap. XIII]). Later on, the statistical convergence
has been frequently used not only in the summability theory, but also in the approximation
theory (see [3, 6, 7, 10, 13, 14, 15, 16]). We recall that the (asymptotic) density, δ(K), of a set
K ⊂ N is defined by

δ(K) := lim
n→∞

1

n+ 1
#{0 ≤ k ≤ n : k ∈ K}

provided that the limit exists, where the symbol # denotes the cardinal number of a set. Using
this density, a sequence (xn) is said to be statistically convergent to a number L, denoted by
st− lim

n→∞
xn = L, if for every ε > 0,

δ ({0 ≤ k ≤ n : |xk − L| ≥ ε}) = 0,

that is
lim
n→∞

1

n+ 1
#{0 ≤ k ≤ n : |xk − L| ≥ ε} = 0.

It is well-known that every convergent sequence is statistically convergent to the same value,
but the converse is not always true. Furthermore, for a given sequence (xn), st− lim

n→∞
xn = L if

and only if there exists an index set K = {kn : n ∈ N0} of density 1 such that the subsequence
(xkn) converges to L (in the usual sense) as n→∞ (see [5, 9] for further properties of statistical
convergence).

For a given sequence q = (qn) with 0 < qn < 1, we replace the limit condition (2.4) with the
following weaker condition:

(3.13) st− lim
n→∞

qn = 1.

In this case, the corresponding q-Cesàro matrix in (2.2) does not need to be regular. For exam-
ple, consider the sequence q = (qn) defined by

(3.14) qn =


1

2

(
1− 1

n+ 2

)
, if n = m2 (m = 0, 1, ...)

1− 1

n+ 1
, otherwise.

Observe that, in this case, [m2 + 1]qm2 → 2 as m → ∞. Despite this negative situation, we
obtain the following statistical approximation theorem.

Theorem 3.2. Assume that the sequence q = (qn) satisfy the conditions (2.3) and (3.13). Then, for the
operators in (2.5), we get

(3.15) st− lim
n→∞

σn(f ; qn;x) = f(x) uniformly with respect to x

for every f ∈ C2π.

Proof. This immediately follows from the statistical Korovkin theorem for periodic functions
(see [6]) since, for each i = 0, 1, 2,

st− lim
n→∞

σn(fi; qn;x) = fi(x) uniformly with respect to x,

where fi are the test functions stated before. �
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FIGURE 2. q-Cesàro approximation to the function f1(x) = sinx by
(σn(f1; qn;x)) associated with the sequence q = (qn) given by (3.14) fails for
the values n = m2

Remark 3.2. We know from Example 2.2 that there exists a function f in C2π such that approximation
to f by the partial sums (Sn(f)) fails. Now consider the sequence q = (qn) given by (3.14). Then,
using the test function f1(x) = sinx, we get

σm2 (f1; qm2 ;x) =

(
1− 1

[m2 + 1]qm2

)
sinx→ sinx

2
(as m→∞),

which is indicated in Figure 2 for some values n = m2. Hence, for the sequence q = (qn) in (3.14) ,
q-Cesàro approximation in Theorem 2.1 fails either. However, one can obtain from Theorem 3.2 that
(3.15) holds for any function in C2π . This situation is indicated in Figure 3 for some values n 6= m2,
where the set of all nonnegative integers n satisfying n 6= m2 has density one.
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FIGURE 3. Statistical q-Cesàro approximation to the function f1(x) = sinx by
(σn(f1; qn;x)) associated with the sequence q = (qn) given by (3.14) for the
values n 6= m2

REFERENCES

[1] H. Aktuglu, S. Bekar: q-Cesàro matrix and q-statistical convergence, J. Comput. Appl. Math., 235 (16) (2011), 4717–
4723.

[2] F. Altomare, M. Campiti: Korovkin-type approximation theory and its applications, De Gruyter Studies in Mathematics,
17. Walter de Gruyter & Co., Berlin, (1994).

[3] G. A. Anastassiou, O. Duman: Towards intelligent modeling: statistical approximation theory, Intelligent Systems
Reference Library, 14. Springer-Verlag, Berlin, (2011).

[4] J. Bustoz, L. F. Gordillo: q-Hausdorff summability, J. Comput. Anal. Appl., 7 (1) (2005), 35–48.
[5] J. S. Connor: The statistical and strong p-Cesàro convergence of sequences, Analysis, 8 (1–2) (1988), 47–63.
[6] O. Duman: Statistical approximation for periodic functions, Demonstratio Math., 36 (4) (2003), 873–878.
[7] O. Duman, M. K. Khan and C. Orhan: A-statistical convergence of approximating operators, Math. Inequal. Appl., 6

(4) (2003), 689–699.
[8] H. Fast: Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244.
[9] J. A. Frid: On statistical convergence Analysis, 5 (4) (1985), 301–313.

[10] A. D. Gadjiev, C. Orhan: Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32 (1)
(2002), 129–138.

[11] V. Kac, P. Cheung: Quantum calculus, Universitext. Springer-Verlag, New York, (2002).
[12] P. P. Korovkin: Linear operators and approximation theory, Translated from the Russian ed. (1959). Russian Mono-

graphs and Texts on Advanced Mathematics and Physics, Vol. III. Gordon and Breach Publishers, Inc., New York;
Hindustan Publishing Corp., Delhi, India, (1960).

[13] F. Móricz: Statistical convergence of multiple sequences Arch. Math. (Basel), 81 (1) (2003), 82–89.
[14] F. Móricz: Statistical convergence of Walsh-Fourier series, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 20 (2) (2004),

165–168.
[15] F. Móricz: Statistical convergence of sequences and series of complex numbers with applications in Fourier analysis and

summability, Anal. Math., 39 (4) (2013), 271–285.
[16] F. Móricz: Strong Cesàro |C, 1, 1| summability and statistical convergence of double orthogonal series, Anal. Math., 43 (1)

(2017), 103–116.
[17] H. Oruc, G. M. Phillips: A generalization of the Bernstein polynomials, Proc. Edinburgh Math. Soc. (2), 42 (2) (1999),

403-413.
[18] G. M. Phillips: A survey of results on the q-Bernstein polynomials, IMA J. Numer. Anal., 30 (1) (2010), 277–288.



144 Oktay Duman

[19] G. M. Phillips: On generalized Bernstein polynomials. Numerical analysis, 263–269, World Sci. Publ., River Edge, NJ,
(1996).

[20] Webpage: https://www.mathcounterexamples.net/continuous-function-with-divergent-fourier-series
[21] A. Zygmund: Trigonometric series, Vol. I and II. Third edition. Cambridge Mathematical Library. Cambridge Uni-

versity Press, Cambridge, (2002).

OKTAY DUMAN

TOBB ECONOMICS AND TECHNOLOGY UNIVERSITY

DEPARTMENT OF MATHEMATICS
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