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Abstract: In this paper, a new lifetime distribution is introduced. Motivation is provided to obtain this dis-
tribution. The closed-form expressions of probability density and cumulative distribution functions are pro-
vided. Several distributional properties are obtained and the statistical inference are discussed on unknown
parameters. The most important novelty of this study is to bring a lifetime regression analysis with the
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1. Introduction
In the last two decades, many statistical distributions have been introduced. Most of them

are derived from various compounding methods. [8] introduced a Beta-normal distribution with
cumulative distribution function (cdf) R (G (x)) , where R is beta cdf, and G is normal cdf [15],
[16], and [17] have introduced new distributions by using Gumbel, Fréchet and exponential cdfs
for G in R (G (x)). All these distributions belong to Beta-G family. However, all these works don’t
give cdf in explicit form because of the structure of beta cdf.

In order to get an explicit cdf, [5] considers the Kumaraswamy cdf for R in [8]’s formula and they
obtained different distributions by changing cdf G. The distribution family in [5] is called ”Kw-G
family” [7] and [19] introduced new distributions by using Kw-G family.

[2] introduced a new family of distribution by getting inspired by [8]’s formula. They consider
cdf R (W (G (x))) , where R and G are any cdf of continuous random variables and W is a function
that satisfies certain conditions. It is noted that, If W (x) = x and R and G are assigned as beta
and normal cdfs, respectively, then the distribution in [8] is achieved.

In this paper, we introduce a new distribution, which is a member of [2] family. Some general
distributional and inferential properties of the introduced distribution are studied. Here, there are
two crucial discussions on statistical inference.

The first discussion is related to the confidence intervals (CIs) for unknown parameters. In
general, the CIs for unknown parameters are discussed through asymptotical normality of maximum
likelihood estimates (MLEs). Here, the CIs based on asymptotical normality of MLEs are denoted
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by AN CIs. However, the limits of AN CIs sometimes turn out to be outside of the parameter
space. It is an undesired outcome in practice. It should also be remembered that a large sample
is needed to good approximation to the normality of MLEs when the number of the parameter
is more than two. Furthermore, it is also needed a large sample to get true coverage probabilities
(CPs) of AN CIs. In Subsection 3.2, uncorrected likelihood ratio (ULR) type CIs for the unknown
parameters are discussed as an alternative to AN CIs. It is pointed out that the ULR type CIs
have wonderful properties: The limits of ULR type CIs are always within parameter space. In the
simulation given in Subsection 3.2, it is also observed that the CPs of ULR CIs are better than
the CPs of AN CIs.

The second discussion is focused on the lifetime regression issue in the survival data analysis: In
the lifetime regression analysis, a functional relationship between the dependent variable (lifetime
or log-lifetime) and covariates are studied. A common assumption that there is a linear relationship
between the location parameter and covariates in the models. These models can be used to deter-
mine the sign and magnitudes of covariates on the log-lifetimes through the location parameter. In
practice, the survival data obeys to distribution, which has various types of failure rate functions.
From this point of view, there is a demand for new lifetime distributions in the survival analysis.

In this study, a new lifetime distribution is introduced by using the [2]’s method. In order to
obtain a new distribution with explicit cdf, W,R and G are assigned by an identity function,
Unit-Lindley cdf and Weibull cdf, respectively. In Section 2, a new distribution is described with
motivation and exact moments are obtained. In addition, the properties of hazard function and
stochastic ordering are studied. An accepting rejecting algorithm is also provided to generate data
from the new distribution. In Section 3, the several point estimators and CIs of unknown parameters
are discussed through Monte Carlo simulation studies. In Section 4, a lifetime regression analysis
based on introduced distribution is studied, and an extensive simulation study is performed. A
practical real data set is given to illustrate the applicability of the new distribution in Section 5.

2. Unit-Lindley-Weibull distribution
In this section, we introduce a new distribution and discuss its distributional properties. Recently,

Unit-Lindley (UL) distribution is introduced by [14]. If T is UL random variable, the pdf and cdf
of T are given, respectively, by

r (t;θ) =

(
θ2

(1 + θ) (1− t)3

)
exp

(
θt

t− 1

)
I(0,1) (t)
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)
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(
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)
,

where θ > 0 is a parameter and IA (·) is an indicator function on A. Let us also consider a Weibull
random variable Y with pdf and cdf
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respectively. Let us assign W is an identity function and consider UL cdf and Weibull cdf for R
and G in F (x) =R (W (G (x))), a valid cdf is obtained by
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where Ξ = (α,β, θ) ∈ R3
+ is the parameter vector, α is a scale, β and θ are shape parameters. A

distribution with cdf (2.2) is called unit-Lindley Weibull (ULW) and it is denoted by ULW(Ξ) .
Let X be the ULW(Ξ) random variable with cdf (2.2). Then, the pdf of X is given by

f (x;Ξ) =
βθ2xβ−1

αβ (1 + θ)
exp

{
−θ exp

((x
α

)β)
+ θ+ 2

(x
α

)β}
IR+

(x) . (2.3)

For some selected values of parameters, the pdf plots of ULW distribution are given in Figure 1. It
is concluded from Figure 1, the pdf of ULW distribution can be unimodal or decreasing. It is also
observed that the pdf can be skewed at right or left.
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Figure 1. Probability density function plots for ULW distribution

2.1. Hazard function
The hazard function (hf) of ULW(Ξ) distribution can be written by

h (x;Ξ) =
βxβ−1θ2

αβ exp

(
−
(x
α

)β)(
exp

(
−
(x
α

)β)
+ θ

)IR+
(x) .

For some selected values of parameters, the hf of ULW distribution is plotted in Figure 2. From
Figure 2, it is observed that the hf of ULW distribution has increasing or bathtub shapes. In the
following, we discuss these properties of hf. Let us consider the first-order derivative of hf

h′ (x;Ξ) =

βθ2xβ−2
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2β
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+β− 1

)
exp

(
−
(x
α

)β)
+ θ

(
β
(x
α

)β
+β− 1

)
αβ exp

(
−
(x
α

)β)(
exp

(
−
(x
α

)β)
+ θ

)2 .

It can be easily seen that h′ (x;Ξ)> 0 for β > 1 and hence hf is increasing. In addition, h′ (x;Ξ)< 0

for x < α
(

1−β
2β

)1/β

and h′ (x;Ξ) > 0 for x > α
(

1−β
β

)1/β

under the condition β < 1. According to

this discussion, it can be observed that hf decrease at first and increases as time progress for β < 1.
Furthermore, from Figure 2, it is observed that the hf exhibits bath-tube type when β < 1.
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Figure 2. Hazard function plots for ULW distribution

2.2. Motivation for the ULW distribution
The pdf of the ULW distribution given in Eq. (2.3) can be obtained in a different ways using

the method of [18]. Let Y be the Weibull random variable with pdf g (x;α,β) given in Eq. (2.1).
According to [18], the pdf of the weighted random variable Y w is defined by

fw (y) =
w (y;α,β, θ)

E (w (Y ;α,β, θ))
g (y;α,β) IR+

(y) . (2.4)

Let us consider w (y;α,β, θ) = exp

{
−θ exp

(( y
α

)β)
+ θ+ 3

( y
α

)β}
in Eq. (2.4) and we get

E (w (Y ;α,β, θ)) =
θ+ 1

θ2
.

Thus, the pdf of Y w is identical to the pdf of introduced ULW(Ξ) distribution with pdf (2.3).

2.3. Moments
In this subsection, exact moments of ULW(Ξ) distribution under a certain conditon. Let us

consider the result of [10] given by∫ ∞
1

(log (x))
m
xv−1exp (−µx)dx=

∂m
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{
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.
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by
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=
θ2αreθ

1 + θ
× ∂m

∂vm
{
θ−vΓ (v, θ)

}∣∣∣∣
v=2

, r ∈N+

=
αreθ

1 + θ
MeijerG([[1,1], []], [[2], [0,0]], θ),

where Γ (v, θ) is incomplete gamma function, m= r/β and MeijerG is the well-known Meijer G
function which is available in Maple software. Some numerical values of first four moments are
presented in Table 1.

Table 1. The first four moments of the ULW distribution

r β α θ E (Xr)
1 1 3 2 1.3613
2 2.8004
3 7.1059
4 20.6759
1 0.5 3 2 0.9334
2 2.2973
3 8.5639
4 41.3767

2.4. Stochastic ordering
For a positive continuous random variable, stochastic ordering and the other ordering are impor-

tant tools for judging the comparative behavior. The following theorem shows that the ULW
random variables can be ordered with respect to the likelihood ratio.

Theorem 1. Let X ∼ ULW (α,β, θ1) and Y ∼ ULW (α,β, θ2) . If θ1 > θ2 then X is smaller
than Y in the likelihood ratio order, i.e., the ratio function of the corresponding pdfs is decreasing
in x.

Corollary 1. It follows from [21] that X is also smaller than Y in the hazard ratio, mean
residual life and stochastic orders under the conditions given in Theorem 1.

2.5. Data generating algorithm
In this subsection, we give an algorithm to generate data from ULW(Ξ) distribution. Since

the inverse transformation method does not give an explicit formula, we propose an acceptance-
rejection (AR) sampling algorithm. In this algorithm, the Weibull distribution is chosen as a
proposal distribution. The AR algorithm is given as follows:

Algorithm 1.
A1. Generate data on random variable Y from Weibull distribution with pdf g given in Eq. (2.1)
A2. Generate U from standard uniform distribution (independent of Y ).
A3. If

U <
f (Y ;Ξ)

k× g (Y ;α,β)
,

then set X = Y (“accept”); otherwise go back to A1 (“reject”), where pdf f is given as in Eq. (2.3)
and

k= max
z∈R+

f (z;Ξ)

g (z;α,β)
.

The output of this algorithm suggest a random data on X from ULW(Ξ) distribution. It is noted
that Algorithm 1 is used for all simulations in the paper.



Pekgör et al.: A lifetime regression analysis with unit Lindley-Weibull distribution
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3. Statistical inference on distribution parameters
In this section, we propose several estimators for estimating the unknown parameters of the

ULW(Ξ) distribution. We discuss the maximum likelihood, least-squares, weighted least squares,
Cramér-von Mises type, and Anderson-Darling type estimation methods. Furthermore, the two
types of CIs for the parameters are discussed. Simulation studies are also performed to observe the
performances of the methods discussed here.

3.1. Point estimation
Let X1,X2, . . . ,Xn be a random sample from the ULW(Ξ) distribution and X(1) <X(2) < · · ·<

X(n) denotes the corresponding order statistics. Furthermore, x(i) denotes the observed value of
X(i) for i= 1,2, . . . , n. Based on this sample, the log-likelihood function is given by

` (Ξ) = n log
(
βθ2
)
−n log (α (1 + θ)) + (β− 1)

n∑
i=1

log
(xi
α

)
+

n∑
i=1

log

(
exp

(
−θ exp

((xi
α

)β)
+ θ+ 2

(xi
α

)β))
. (3.1)

Then, the MLEs of α,β and θ are given by

Ξ̂1 = arg max
Ξ

{` (Ξ)} , (3.2)

where Ξ = (α,β, θ) and Ξ̂1 =
(
α̂, β̂, θ̂

)
. Let us define the following functions which are used to

define the different type of estimators:

QLS (Ξ) =

n∑
i=1

(
F
(
x(i)

)
− i

n+ 1

)2

,

QWLS (Ξ) =

n∑
i=1

(n+ 2)(n+ 1)2

i(n− i+ 1)

(
F
(
x(i)

)
− i

n+ 1

)2

,

QCvM (Ξ) =
1

12n
+

n∑
i=1

(
F
(
x(i)

)
−2i− 1

2n

)2

and

QAD (Ξ) =−n− 1

n

n∑
i=1

{
(2i− 1) log

(
F
(
x(i)

))}
+

1

n

n∑
i=1

log
{

1−F
(
x(i)

)}
,

where F (·) is cdf of ULW(Ξ) distribution given in Eq. (2.2). Then, the least squares estimator
(LSE), weighted least squares estimator (WLSE), Anderson Darling estimator (ADE) and the
Cramér-von Mises estimator (CvME) of Ξ are given, respectively, by

Ξ̂2 = arg min
Ξ

{QLS (Ξ)} , (3.3)

Ξ̂3 = arg min
Ξ

{QWLS (Ξ)} , (3.4)

Ξ̂4 = arg min
Ξ

{QAD (Ξ)} , (3.5)

Ξ̂5 = arg min
Ξ

{QCvM (Ξ)} . (3.6)

It is noted that these estimates are discussed before in [12], [13], and [23]. All maximization and
minimization problems can be solved by some numerical methods such as Nelder-Mead, BFGS, or
CG. These methods can be easily conducted by optim function in R.
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İSTATİSTİK: Journal of the Turkish Statistical Association 14(2), pp. 51–73, © 2022 İstatistik 57

3.2. Interval estimation
In this subsection, the CIs are discussed for the parameters θ,β and α. In the statistical literature,

CIs are usually constructed by using a pivotal quantity based on MLEs of parameters. However,
an exact CIs can not be obtained since the MLEs are usually obtained by a numerical method to
optimize the likelihood. Consequently, asymptotic CIs based on the asymptotic normality of MLEs
are most popular in the all fields of statistics and it has widespread usage. It is well-known that
the AN of MLEs can be stated by

Ξ̂1
d→N3

(
Ξ,I−1 (Ξ)

)
,

where Ξ̂1 is MLE of Ξ given in Eq. (3.2) and I (Ξ) is Fisher information matrix. Using this result,
the 100 × (1−α) % AN CIs of parameters α,β and θ are constructed, respectively, by

α̂± z1−α2 × se (α̂) ,

β̂± z1−α2 × se
(
β̂
)
,

θ̂± z1−α2 × se
(
θ̂
)
,

where za, is the ath quantile of standard normal distribution, se (α̂) , se
(
β̂
)

and se
(
θ̂
)

are the

roots of the diagonal member of I−1
(
Ξ̂1

)
which is a consistent estimate of I−1 (Ξ) and the se (·)

stands for standard error.
By the way, there is another method called ULR, which is not used in most of statistical software,

but it has interesting properties. AN and ULR CIs are asymptotically equivalent [9]. The ULR CIs
are transformation invariant. It is range preserving that means the CIs it produces will always be
inside of the parameter space. There is no need to compute/estimate the variance of the estimates,
unlike to AN. In addition, the ULR method doesn’t necessarily give symmetric intervals around
MLE.

Under usual regularity assumptions on the likelihood function, if the θ is true parameter, then

−2 log
(
`
(
θ, λ̃

)
− `
(
Ξ̂1

))
distributed χ2 with degrees of freedom 1, where λ = (α,β) are the

nuisance parameters, ` is the log-likelihood function as in Eq. (3.1), Ξ̂1 is the joint MLEs of (θ,β,α)

given in Eq. (3.2), λ̃=
(
α̃, β̃

)
is the restricted MLEs of λ given a fixed value of θ. Using this fact,

100 × (1−α) % ULR CI limits (θL, θU) that satisfy

`
(
θ, λ̃

)
= `
(
Ξ̂1

)
− 1

2
χ2
(1) (1−α)︸ ︷︷ ︸

LR Bound

,

with θL < θ and θU > θ, where χ2
(1) (a) is the ath quantile of the χ2 distribution with 1 degrees

of freedom. The 100 × (1−α) % ULR CIs can be produced in the same manner for the other
parameters α and β.

3.3. Simulation study for point estimates
In the simulation study, 5000 trials are used to estimates the bias and mean squared errors

(MSEs) of the MLEs, LSEs, WLSEs, ADEs and CVMEs estimates. Different sample sizes are
considered in the study. Two parameter settings are considered. The results are given in the Tables
2-4.

The simulation study is performed based on the following algorithm (for one cycle):
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Algorithm 2.
A1. Given true parameters, generate the data from ULW(Ξ) distribution by using AR sampling

given in Algorithm 1.
A2. True parameters are used as initial values in optimization.
A3. The numerical method BFGS is used for the optimization problem given in Eq.’s (3.2),

(3.3)-(3.6).
A4. If there is no solution or there is an estimate out of the parameter space, go to A1.
From the Tables 2-4, it is observed that the bias and MSEs of the all estimates decrease to zero

as expected. The MLEs are best estimates in terms of MSEs. In general, the CVMEs have smaller
bias than the others.

3.4. Simulation study for CIs
In the simulation study, 5000 trials are used to predict the CPs of the AN and ULR CIs. The

nominal level is fixed at 0.95. In order to get CPs of ULR CIs, there is no need to obtain the CIs
limits. It is possible that the CPs of ULR CIs can be simulated by a likelihood ratio test on the
true parameter. The simulated CPs of these intervals are given in Table 5. Let us discuss the case
Ξ = (0.5,1,1) . From Table 5, it is observed that the CPs of ULR reach to desired level when the
sample of size greater than 100 for all parameters. However, the CPs of AN can not reach the
desired level even if a large sample of size is available. In the case of Ξ = (2.5,1,1) , CIs of AN CIs
reach to nominal level when the sample of size greater than 300 for parameters α and β. However,
more than 800 sample of size is needed to achive nominal level for parameter θ. The CPs of ULR
of CIs reach to nominal level for the all parameters when the sample of size greater than 200.

Under discussion given here, it is indicated that ULR CIs powerful tool to construct the CIs for
the ULW parameters.
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Table 2. Average bias and MSEs of the estimates for the true parameters Ξ = (0.5,1,1)

Bias MSE
n θ α β θ α β
MLEs 100 -0.1635 -0.3226 -0.1792 0.0419 0.1601 0.0520

250 -0.1585 -0.3016 -0.1683 0.0384 0.1412 0.0443
500 -0.1455 -0.2711 -0.1485 0.0319 0.1141 0.0349
750 -0.1329 -0.2436 -0.1351 0.0263 0.0911 0.0279
1000 -0.1146 -0.2080 -0.1149 0.0211 0.0711 0.0216
1250 -0.1106 -0.1987 -0.1098 0.0195 0.0649 0.0197
1500 -0.0988 -0.1746 -0.0975 0.0156 0.0504 0.0154
2000 -0.0917 -0.1617 -0.0886 0.0135 0.0433 0.0130

LSEs 100 -0.0776 -0.2175 -0.1277 0.0966 0.2323 0.0741
250 -0.0834 -0.2039 -0.1151 0.0682 0.1927 0.0611
500 -0.0474 -0.1452 -0.0771 0.0755 0.1645 0.0511
750 -0.0630 -0.1528 -0.0830 0.0491 0.1340 0.0421
1000 -0.0484 -0.1277 -0.0686 0.0471 0.1237 0.0390
1250 -0.0413 -0.1139 -0.0608 0.0465 0.1158 0.0369
1500 -0.0372 -0.1009 -0.0541 0.0406 0.1028 0.0329
2000 -0.0469 -0.1151 -0.0609 0.0382 0.0958 0.0304

WLSEs 100 -0.1061 -0.2618 -0.1515 0.0935 0.2098 0.0703
250 -0.0927 -0.2271 -0.1304 0.1047 0.1828 0.0563
500 -0.0892 -0.1994 -0.1092 0.0545 0.1403 0.0440
750 -0.0981 -0.2003 -0.1115 0.0388 0.1154 0.0362
1000 -0.0836 -0.1732 -0.0960 0.0354 0.1007 0.0311
1250 -0.0599 -0.1377 -0.0757 0.0411 0.0992 0.0312
1500 -0.0751 -0.1503 -0.0839 0.028 0.0802 0.0252
2000 -0.0798 -0.1561 -0.0855 0.0251 0.0747 0.0230

ADEs 100 -0.1330 -0.3050 -0.1767 0.0998 0.2137 0.0684
250 -0.1305 -0.2735 -0.1553 0.0595 0.1751 0.0557
500 -0.0992 -0.2137 -0.1175 0.0527 0.1391 0.0432
750 -0.1107 -0.2189 -0.1221 0.0368 0.1152 0.0358
1000 -0.0973 -0.1923 -0.1069 0.0315 0.0991 0.0305
1250 -0.0819 -0.1668 -0.0924 0.0324 0.0945 0.0294
1500 -0.0806 -0.1581 -0.0883 0.0269 0.0793 0.0247
2000 -0.0852 -0.1639 -0.0899 0.0242 0.0743 0.0229

CvMEs 100 -0.0611 -0.1960 -0.1056 0.1125 0.2445 0.0774
250 -0.0760 -0.1940 -0.1053 0.0731 0.1984 0.0627
500 -0.0453 -0.1412 -0.0726 0.0746 0.1654 0.0514
750 -0.0580 -0.1462 -0.0778 0.0516 0.1376 0.0433
1000 -0.0444 -0.1228 -0.0646 0.0493 0.1269 0.0401
1250 -0.0385 -0.1101 -0.0577 0.0477 0.1175 0.0375
1500 -0.0343 -0.0972 -0.0512 0.0420 0.1049 0.0336
2000 -0.0443 -0.1119 -0.0584 0.0396 0.0977 0.0310
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Table 3. Average bias and MSEs of the estimates for the true parameters Ξ = (2.5,1,1)

Bias MSE
n θ α β θ α β
MLEs 100 -0.9446 -0.3368 -0.1242 1.2437 0.1612 0.0389

250 -0.7282 -0.2465 -0.0928 0.7688 0.0920 0.0207
500 -0.5585 -0.1843 -0.0640 0.4591 0.0504 0.0090
750 -0.4759 -0.1525 -0.0524 0.3332 0.0343 0.0055
1000 -0.4052 -0.1280 -0.0429 0.2417 0.0243 0.0039
1250 -0.3778 -0.1186 -0.0395 0.2176 0.0217 0.0033
1500 -0.3417 -0.1068 -0.036 0.1811 0.0177 0.0028
2000 -0.2916 -0.0899 -0.0292 0.1321 0.0126 0.0018

LSEs 100 -1.1644 -0.4158 -0.2291 1.9877 0.2767 0.0802
250 -0.5859 -0.2103 -0.1212 1.4339 0.1713 0.0368
500 -0.5411 -0.1856 -0.0870 0.8559 0.0970 0.0190
750 -0.3531 -0.1216 -0.0593 0.7588 0.0770 0.0119
1000 -0.3449 -0.1161 -0.0516 0.5621 0.0570 0.0091
1250 -0.3094 -0.1019 -0.0458 0.489 0.0491 0.0071
1500 -0.2766 -0.0903 -0.0406 0.4242 0.0423 0.0058
2000 -0.2576 -0.0823 -0.0330 0.3002 0.0301 0.0038

WLSEs 100 -1.1623 -0.4183 -0.2125 1.8529 0.2536 0.0736
250 -0.7235 -0.2451 -0.1111 0.9373 0.1120 0.0266
500 -0.5608 -0.1853 -0.0743 0.5703 0.0630 0.0121
750 -0.4401 -0.1420 -0.0547 0.4080 0.0423 0.0072
1000 -0.4043 -0.1289 -0.048 0.3226 0.0329 0.0056
1250 -0.3526 -0.1112 -0.0415 0.2766 0.0277 0.0043
1500 -0.3257 -0.1023 -0.0381 0.2347 0.0234 0.0036
2000 -0.2845 -0.0881 -0.0307 0.1723 0.0169 0.0023

ADEs 100 -1.1124 -0.3982 -0.1929 1.7112 0.2314 0.0642
250 -0.7076 -0.2397 -0.1063 0.9011 0.108 0.0250
500 -0.5514 -0.1823 -0.0721 0.5528 0.0613 0.0117
750 -0.4369 -0.1410 -0.0538 0.4007 0.0417 0.0070
1000 -0.4001 -0.1277 -0.0473 0.3188 0.0326 0.0056
1250 -0.3492 -0.1101 -0.0409 0.2711 0.0273 0.0042
1500 -0.3202 -0.1006 -0.0374 0.2302 0.0230 0.0036
2000 -0.2802 -0.0868 -0.0301 0.1698 0.0167 0.0023

CvMEs 100 -1.085 -0.3904 -0.2027 1.8796 0.2588 0.0703
250 -0.5378 -0.1977 -0.109 1.4186 0.1654 0.0338
500 -0.5173 -0.1795 -0.0809 0.8367 0.0941 0.0178
750 -0.3367 -0.1178 -0.0554 0.7528 0.0757 0.0113
1000 -0.3328 -0.1133 -0.0488 0.5568 0.0562 0.0088
1250 -0.2999 -0.0998 -0.0436 0.485 0.0485 0.0069
1500 -0.2686 -0.0885 -0.0387 0.4212 0.0419 0.0056
2000 -0.2517 -0.0810 -0.0317 0.2978 0.0298 0.0037
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Table 4. Average bias and MSEs of the estimates for the true parameters Ξ = (0.9,1,0.7)

Bias MSE
θ α β θ α β

MLEs 100 -0.2621 -0.3343 -0.0937 0.1162 0.1918 0.0203
250 -0.2273 -0.2897 -0.0830 0.0949 0.1552 0.0155
500 -0.1898 -0.2437 -0.0718 0.0748 0.1237 0.0122
750 -0.1538 -0.1953 -0.0570 0.0542 0.0882 0.0084

1000 -0.1395 -0.1767 -0.0509 0.0478 0.0774 0.0072
1250 -0.1239 -0.1566 -0.0449 0.0405 0.0650 0.0059
1500 -0.1104 -0.1393 -0.0396 0.0339 0.0541 0.0048
2000 -0.0919 -0.1161 -0.0331 0.0270 0.0428 0.0037

LSEs 100 0.2081 0.1441 0.0232 0.3023 0.0469 0.0075
250 0.1805 0.1407 0.0307 0.3155 0.0373 0.0047
500 0.3649 0.1114 0.0169 0.6810 0.0269 0.0039
750 0.2607 0.1226 0.0237 0.4100 0.0287 0.0039

1000 0.2486 0.1264 0.0287 0.4820 0.0307 0.0048
1250 0.4196 0.0962 0.0125 0.7386 0.0179 0.0030
1500 0.4022 0.0967 0.0133 0.6763 0.0175 0.0030
2000 0.3701 0.0963 0.0134 0.5429 0.0159 0.0024

WLSEs 100 0.3516 0.1031 0.0115 0.9506 0.0266 0.0062
250 0.3277 0.1029 0.0160 0.6265 0.0201 0.0032
500 0.3996 0.0880 0.0075 0.5159 0.0153 0.0024
750 0.3087 0.0993 0.0140 0.3184 0.0167 0.0023

1000 0.3954 0.0865 0.0083 0.4673 0.0131 0.0019
1250 0.4015 0.0847 0.0075 0.4527 0.0122 0.0017
1500 0.3509 0.0910 0.0114 0.3566 0.0138 0.0019
2000 0.3584 0.0869 0.0091 0.3458 0.0114 0.0013

ADEs 100 0.4130 0.0916 0.0039 0.5834 0.0228 0.0055
250 0.3729 0.0943 0.0105 0.5367 0.0174 0.0030
500 0.4344 0.0820 0.0037 0.5408 0.0137 0.0022
750 0.3527 0.0917 0.0094 0.3573 0.0145 0.0020

1000 0.3881 0.0872 0.0083 0.4336 0.0136 0.0020
1250 0.4220 0.0814 0.0052 0.4631 0.0115 0.0017
1500 0.4142 0.0809 0.0054 0.4339 0.0110 0.0015
2000 0.3807 0.0833 0.0068 0.3633 0.0106 0.0013

CVMEs 100 0.1796 0.1481 0.0387 0.3267 0.0494 0.0089
250 0.1612 0.1442 0.0380 0.3270 0.0392 0.0054
500 0.3530 0.1139 0.0210 0.6981 0.0281 0.0042
750 0.2458 0.1253 0.0271 0.4097 0.0298 0.0042

1000 0.2445 0.1276 0.0306 0.4962 0.0312 0.0049
1250 0.4130 0.0978 0.0145 0.7506 0.0184 0.0031
1500 0.3955 0.0982 0.0151 0.6842 0.0181 0.0031
2000 0.3627 0.0977 0.0148 0.5434 0.0163 0.0025
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Table 5. The CPs of AN and ULR CIs

AN ULR
Ξ n α β θ α β θ
(0.5,1,1) 100 0.8772 0.8136 0.8790 0.9566 0.9564 0.9558

200 0.8254 0.8310 0.8830 0.9470 0.9476 0.9480
300 0.8130 0.8210 0.8750 0.9380 0.9390 0.9382
400 0.8268 0.8372 0.8862 0.9408 0.9402 0.9406
500 0.8370 0.8462 0.8812 0.9434 0.9412 0.9456
600 0.8420 0.8500 0.8834 0.9400 0.9402 0.9394
700 0.8548 0.8612 0.8806 0.9412 0.9422 0.9424
800 0.8450 0.8526 0.8746 0.9382 0.9362 0.9364
900 0.8604 0.8664 0.8800 0.9414 0.9426 0.9430
1000 0.8672 0.8712 0.8830 0.9352 0.9358 0.9344

(2.5,1,1) 100 0.9176 0.9164 0.8858 0.9602 0.9534 0.9630
200 0.9458 0.9386 0.9156 0.9500 0.9496 0.9500
300 0.9520 0.9450 0.9294 0.9516 0.9492 0.9492
400 0.9584 0.9548 0.9342 0.9508 0.9536 0.9528
500 0.9546 0.9552 0.9328 0.9520 0.9552 0.9506
600 0.9604 0.9562 0.9410 0.9562 0.9544 0.9562
700 0.9586 0.9602 0.9378 0.9552 0.9540 0.9538
800 0.9626 0.9542 0.9444 0.9524 0.9522 0.9524
900 0.9618 0.9570 0.9470 0.9520 0.9534 0.9540
1000 0.9608 0.9588 0.9440 0.9544 0.9552 0.9532



Pekgör et al.: A lifetime regression analysis with unit Lindley-Weibull distribution
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4. ULW regression analysis
The regression models are used in different ways in survival analysis. Sometimes mean or quan-

tiles of underlying distribution are assumed as a linear function of covariates(predictors). When the
mean or quantiles have not explicit form, the location parameter is assumed as a linear function
of covariates by using a suitable link function. The log-location-scale regression models are studied
by several authors such as [1] and [24]. In this section, we describe the use of log-location-scale
ULW regression methodology.

Let X be a ULW(Ξ) random variable. Let us consider are-parameterization by β = 1/σ and
α= exp (µ) and then, the log-lifetime Y = log (X) is a random variable with the pdf

h (y;τ ) =
θ2 exp

(
y−µ
σ

)
exp

{
−θ exp

(
exp

(
y−µ
σ

))
+ θ+ 2 exp

(
y−µ
σ

)}
(1 + θ)σ

IR (y) ,

where τ = (µ,σ, θ) , µ and σ are location and scale parameters, respectively. The cdf of Y is also
given by

H (y;τ ) = 1−

(
1 +

θ
(
1− exp

(
− exp

(
y−µ
σ

)))
(1 + θ) exp

(
− exp

(
y−µ
σ

))) exp

(
−
(
1− exp

(
− exp

(
y−µ
σ

)))
exp

(
− exp

(
y−µ
σ

)) )
. (4.1)

It is noted that the random variable Y with cdf (4.1) is denoted LULW(µ,σ, θ), where LULW
stands for log-ULW distribution. Let us consider the regression model

Y =µ+σε, (4.2)

where Y = (Y1, . . . , Yn)
T

and Y1, Y2, . . . , Yn are independent LULW random variables with

parameters
(
µi =Z

T

i β, σ, θ
)

, respectively. Furthermore, β= (β1, . . . , βp)
T
, µ= (µ1, . . . , µn)

T
,

ε= (ε1, . . . , εn)
T
, µi = Z

T

i β and Zi = (Zi1, . . . ,Zip)
T

(= (1,Zi1, . . . ,Zip)
T

when a intercept is
included in a model) are ith values of covariates for i= 1,2, . . . , n. In addition, εi = (Yi−µi)/σ for
i= 1,2, . . . , n is a random error distributed LULW with parameters (µ= 0, σ=1, θ).

Let us discuss the MLEs of parameters η = (β, σ, θ) in the model (4.2) under Type-I right
censoring. Suppose that the log-lifetimes Yi (i= 1,2, . . . , n) are Type-I right censored (at log (ci))
from LULW(µi, σ, θ), where ci is censoring time for lifetime Xi. Let us define

Ti = min{Yi, log (ci)} , i= 1,2, . . . , n.

Hence, the log-likelihood function based on the Type-I right censored sample T1, T2, . . . , Tn is written
by

` (η) =

n∑
i=1

{
ωi log

(
h
(
ti;
(
Z

T

i β, σ, θ
)))

+ (1−ωi) log
(

1−H
(
ti;
(
Z

T

i β, σ, θ
)))}

, (4.3)

where

ωi =

 0 , Ti > log (ci)

1 , Ti ≤ log (ci)

is an indicator function and ti denotes the observed value of Ti, i= 1,2, . . . , n.
The MLE of η can be obtained by maximizing the log-likelihood (4.3). Some numerical methods

such as Nelder-Mead and BFGS can be used for a maximization problem.
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4.1. Simulation study for MLEs of regression parameters
In this subsection, the bias and MSEs of MLEs are discussed for lifetime regression model

parameters through a Monte Carlo simulation with 2000 trials. All simulations are run for the
following model

Yi = β0 +β1Zi1 +β2Zi2 +β3Zi3 +σεi
= ZT

i β+σεi, i= 1,2, . . . , n

where β= (β0, β1, β2, β3)
T
, ZT

i = (1,Zi1,Zi2,Zi3) and εi ∼LUWL(µ= 0, σ=1, θ) , i= 1,2, . . . , n.
In the simulation, we consider β= (−.1,−.1,−.1,−.1) , θ = 1,1.5 and 2. The true parameter

β= (.1, .1, .1, .1) is also considered in the simulation, but no different patterns are observed for the
other one. The covariates Zi, (i= 1,2, . . . , n) are generated in two cases: In the first case, four levels
(there are 4 categories: 1,2,3,4) are considered for Zi1,Zi2 and Zi3. The other case, (Zi1,Zi2,Zi3) are
generated from multivariate normal distribution. In addition, two correlation matrix for covariates
(Zi1,Zi2,Zi3) are considered by

ρ1 =

 1 0 0
1 0

1

 and ρ2 =

 1 0.5 0.5
1 0.5

1

 .

Hence, it can be observed the multicollinearity effect on the URL regression analysis. The simulation
study is performed based on the following algorithm for one cycle:

Algorithm 3
A1. For a fixed n, generate the covariates with a given correlation matrix (ρ1 or ρ2) and equal

marginal probabilities of four levels. R function ordsample in the package GenOrd is used in our
study. Otherwise, the covariates are generated from a multivariate normal distribution with mean
0 and given correlation matrix (ρ1 or ρ2). R function mvrnorm in the package MASS is used in
our study.

A2. Compute µi =Z
T

i β, i= 1,2, . . . , n.
A3. Set the true parameters αi = exp(µi), β and θ.
A4. For i = 1,2, . . . , n, generate the dependent variable Xi from ULW(Ξi) distribution with

Ξi = (αi, β, θ) using the AR sampling given in Algorithm 1 and set Yi = log (Xi)∼LULW(µi, σ, θ) .
A5. The numerical methods such as Nelder-Mead, BFGS and CG are used to maximize the

log-likelihood given in Eq. (4.3) and the true parameters given A3 are used as initial values.
A6. If there is no solution or estimate out of parameter space, or negative standard error, go to

A4.
Using Algorithm 3, a simulation study is performed with 2000 trials for a sample of size n =

100,200, . . . ,1000 and the nominal level is fixed at 0.95. Figures 3-6 are produced by settings given
at the beginning of this subsection.

From Figures 3-6, the discrete or continuous covariates discussed above, does not affect the
properties of estimates. If the multicollinearity level increase, the MSEs of β̂1, β̂2 and β̂3 increase.
It is an interesting observation from Figures 3-4 that, MSEs of β̂0, σ̂ and θ̂ are not affected by the
degree of multicollinearity within covariates Z1,Z2,Z3. Although the β̂1, β̂2 and β̂3 has a negligible
bias for even if a small sample of size, the estimates β̂0, σ̂ and θ̂ are asymptotically unbiased. The
CPs of AN CIs for β1, β2 and β3 are almost equal to the nominal level for all sample size and
multicollinearity cases. Furthermore, the CPs of AN CIs for θ are greater than nominal level for
small sample size but it reduces to the nominal level when the sample size increases. The CPs of
AN CIs for β0 and σ are less than nominal level for small sample size, but it climbs to the nominal
level when sample size increases. The mean lengths of CIs for all parameters decrease to zero when
the sample size increases. The mean lengths of AN CIs for β1, β2, β3 in the case multicollinearity



Pekgör et al.: A lifetime regression analysis with unit Lindley-Weibull distribution
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are wider than being uncorrelated covariates. Being multicollinearity does not affect negatively on
the mean lengths of AN CIs for β0, σ and θ.

In Figures 5-6, the behaviors of estimates and CIs are also discussed according to increment in
true parameter θ. When the true parameter θ is 1, bias of β̂0, β̂1, β̂2, β̂3, σ̂ and θ̂ are negligible for
moderate sample size. If θ < 1 (> 1) the bias of β̂0 are positive (negative), but it reduces (increases)
to zero when the sample size increases. If θ < 1 (> 1) the bias of σ̂ are negative (positive) but it
increases (reduce) to zero when the sample size increases. When the θ increases, MSEs of β̂1, β̂2, β̂3

and θ̂ increase. For small sample size, if the θ increases, the MSEs of β̂0 and σ̂ increase. For large
sample size, if the θ increases, the MSEs of β̂0 and σ̂ decrease. The CPs of AN CIs for β1, β2 and β3

are almost equal to nominal level for θ= 0.5,1 and 2. The CPs of AN CIs for β0 are less (greater)
than nominal level when θ < 1 (> 1) . If θ= 1, the CPs of AN CIs for β0 tends to nominal level for
n≥ 300. When the θ increases, CPs of AN CIs of σ are closing to nominal level, but mean lengths
of AN CIs of β1, β2, β3, σ and θ increase.
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Figure 3. Average bias and MSEs for MLEs, CPs and mean lengths for AN CIs of ULW regression model parameters
when multivariate normal covariates and θ= 1
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Figure 4. Average bias and MSEs for MLEs, CPs and mean lengths for AN CIs of ULW regression model parameters
when ordinal covariates and θ= 1
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Figure 5. Average bias and MSEs for MLEs, CPs and mean lengths for AN CIs of ULW regression model parameters
when multivariate normal covariates with correlation matrix ρ1
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Figure 6. Avarage bias and MSEs for MLEs, CPs and mean lengths for AN CIs of ULW regression model parameters
when ordinal covariates with correlation matrix ρ1
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5. Real Data Analysis
In this section, the real data application of ULW distribution is given. The distribution fitting

to total milk production data is studied.
The ULW distribution is now fitted to the data about the total milk production in the first birth

of 107 cows from SINDI race. The data is taken from [3] and the data given as follow:
0.4365, 0.4260, 0.5140, 0.6907, 0.7471, 0.2605, 0.6196, 0.8781, 0.4990, 0.6058 ,0.6891, 0.5770,

0.5394, 0.1479, 0.2356, 0.6012, 0.1525, 0.5483, 0.6927, 0.7261, 0.3323, 0.0671, 0.2361, 0.4800, 0.5707,
0.7131, 0.5853, 0.6768 ,0.5350, 0.4151 ,0.6789, 0.4576, 0.3259, 0.2303, 0.7687, 0.4371 ,0.3383, 0.6114,
0.3480, 0.4564, 0.7804, 0.3406, 0.4823, 0.5912 ,0.5744, 0.5481, 0.1131, 0.7290, 0.0168, 0.5529 ,0.4530,
0.3891, 0.4752, 0.3134, 0.3175 ,0.1167, 0.6750, 0.5113,0.5447, 0.4143, 0.5627, 0.5150, 0.0776, 0.3945
,0.4553, 0.4470, 0.5285, 0.5232, 0.6465, 0.0650, 0.8492, 0.8147, 0.3627, 0.3906, 0.4438, 0.4612, 0.3188,
0.2160, 0.6707, 0.6220, 0.5629, 0.4675, 0.6844, 0.3413,0.4332, 0.0854, 0.3821, 0.4694, 0.3635, 0.4111,
0.5349, 0.3751, 0.1546, 0.4517 ,0.2681, 0.4049, 0.5553, 0.5878 ,0.4741 ,0.3598, 0.7629, 0.5941, 0.6174,
0.6860, 0.0609, 0.6488, 0.2747.

It should be pointed out that this data is also analyzed in [6] and [20]. For the comparison, beta,
Weibull (W), the Lindley Weibull (LW), unit-gamma (UG), unit-logistic (ULOG), UL distributions
are considered. It is noted that LW, UG, ULOG and UL are introduced by [4], [11], [14], and [22]
respectively. The pdfs of these distributions are given by

fULW (x) = 1−

1 +
p1

(
1− exp

(
−
(
x
p3

)p2))
(1 + p1) exp

(
−
(
x
p3

)p2)
 exp

−p1
(

1− exp
(
−
(
x
p3

)p2))
exp

(
−
(
x
p3

)p2)
 IR+

(x)

fW (x) =
p1
p2
−
(
x

p1

)p2−1
exp

(
−
(
x

p1

)p2)
IR+

(x)

fLW (x) =
xp2−1p23p2p

2
1 exp (− (xp1)

p2)

1 + p3
× (1− log (exp (− (xp1)

p2))) (exp (− (xp1)
p2))

p3−1 IR+
(x)

fBeta (x) =
1

β (p1, p2)
xp1−1 (1−x)

p2−1

I(0,1) (x)

fUG (x) =
pp12 x

p2−1 (− log (x))
p1−1

Γ (p1)
I(0,1) (x)

fULOG (x) =
p2 exp (p1)x

p2−1 (1−x)
p2−1

(xp2 exp (p1) + (1−x)
p2)

2 I(0,1) (x)

fUL (x) =
p21 exp

(
− xp1

1−x

)
(1 + p1) (1−x)

3 I(0,1) (x)

The total time on test (TTT) plot is used to determine the hazard behavior of the data. TTT plot
for the total milk production data is given in Figure 7 and it indicates that the total milk production
comes from a distribution with the increasing failure rate. Therefore, the ULW distribution is a
candidate for modeling this data (see, Section 2.1 and Figure 2).

In this section, seven distributions are fitted to the total milk production data with the likelihood
principle. The MLEs of distribution parameters are obtained by numerical methods that try to
maximize the log-likelihood. In most cases, we observe that the different initial values give different
estimates, and one can not conclude which one is treated as a MLE. Therefore, an algorithm is
used to get the almost correct MLEs of parameters given in Table 6. An algorithm is given as
follows:

Algorithm 4.
A1. 1000 (it can be increased by optionally) initial values are uniformly generated from a subset

of parameter space.
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A2. Using initial values generated in Step A1, the numerical methods Nelder-Mead, BFGS, and
CG are used to maximize the log-likelihood.

A3. The likelihoods for all estimates in Step A2 are ordered from large to small.
A4. The estimates with the largest likelihoods are treated as MLEs of parameters.
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Figure 7. TTT plot for the total milk production data

The MLEs of parameters and related standard errors for ULW, W, LW, beta, UG, ULOG and
UL distributions are given in Table 6. In this table, some comparison criteria are presented. The
log-likelihood `, −2`, AIC, Bayesian information criterion (BIC), corrected Akaike’ s informa-
tion criterion (CAIC), Hannan–Quinn information criterion (HQIC), Kolmogorov-Smirnov statistic
(KS), Anderson-Darling statistic(AD), Cramér von Mises statistic(CvM) and related p-values(KS
p-value, AD p-value and CvM p-value), the MLE p̂i (i= 1,2,3) of parameter pi with standard error
se (p̂i) and AN intervals (LBpi ,UBpi) are calculated and they are presented in Table 6. It is noted
that some lower limit of AN CI are below the lower bound of parameter space. It can be corrected
with lower bound of parameter space. In the Table 6, initial parameters, and the numerical methods
are given to get MLEs for all models in the analysis. From the Table 6, the ULW distribution has
the smallest values of −2`, AIC, BIC, CAIC, HQIC, KS, AD and CvM. Furthermore, goodness of
fit tests KS, AD and CvM confirm the ULW model validity (p values>0.05 ). From these results, it
is concluded that the ULW distribution is better than the others in terms of all criteria. Figure 9
presents the overlapping of the fitted ULW cdf on the empirical cdf. From Figure 9, it is observed
that fitted cdf of ULW distribution exhibits better than the others.

Using discussion in Subsection 3.2, 95% ULR CIs for θ,α and β are calculated by (0.0560,1.7914),
(0.1515,0.7142) and (0.5473,2.1491), respectively. Figure 8 represents the 95% ULR CI of parameter
θ. A logarithmic scale is used for x-axis to improve the quality of graphical view.
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Figure 8. Confidence limits for parameter θ based on ULR
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Figure 9. Fitted and empirical cdf plots for the total milk production data
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Table 6. Data analysis results for the total milk production data

ULW W LW Beta UG ULOG UL
` 29.1444 21.3475 23.6708 23.7772 23.0467 24.8400 25.3805

-2` -58.2888 -42.6950 -47.3417 -47.5545 -46.0934 -49.6800 -50.7609
AIC -52.2888 -38.6950 -41.3417 -43.5545 -42.0934 -45.6800 -48.7609
BIC -44.2703 -33.3494 -33.3232 -38.2088 -36.7477 -40.3343 -46.0881

CAIC -52.0557 -38.5796 -41.1087 -43.4391 -41.9780 -45.5646 -48.7229
HQIC -49.0382 -36.5280 -38.0911 -41.3874 -39.9263 -43.5129 -47.6774

KS 0.0459 0.0832 0.0653 0.0910 0.0939 0.0571 0.1096
AD 0.2332 1.4841 1.0403 1.3853 1.4997 0.8646 1.3116

CVM 0.0292 0.1895 0.1104 0.2282 0.2450 0.0771 0.2286
KS p value 0.9778 0.4487 0.7518 0.3384 0.3021 0.8767 0.1532
AD p value 0.9785 0.1804 0.3366 0.2064 0.1766 0.4364 0.2286

CVM p value 0.9792 0.2891 0.5371 0.2190 0.1949 0.7095 0.2184
p̂1 0.4091 0.5236 3.0722 2.4125 2.6767 0.2073 1.2001
p̂2 1.1486 2.6012 2.2558 2.8297 2.9774 1.9104
p̂3 0.3454 0.5823

LBp1 -0.2404 0.4839 0.8143 1.7961 1.9994 -0.1166 1.0258
LBp2 0.3768 2.1899 1.7933 2.0958 2.1489 1.6022
LBp3 -0.0211 -0.1751
UBp1 1.0586 0.5633 5.3301 3.0289 3.3541 0.5311 1.3743
UBp2 1.9205 3.0124 2.7182 3.5635 3.8060 2.2185
UBp3 0.7119 1.3397
SEp̂1 0.3314 0.0202 1.1520 0.3145 0.3456 0.1652 0.0889
SEp̂2 0.3938 0.2098 0.2359 0.3744 0.4228 0.1572
SEp̂3 0.1870 0.3864

Numerical Method BFGS BFGS BFGS CG CG BFGS CG
Inital value for p̂1 46.5515 91.4019 16.6926 10.4744 91.4145 61.8622 45.8126
Inital value for p̂2 55.8020 24.2207 13.9139 16.9355 95.3848 47.9454
Inital value for p̂3 4.5296 22.7243
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6. Conclusions
In this paper, a new lifetime regression analysis with a newly introduced distribution is provided.

The simulation study given in Subsection 4.1 indicates that proposed regression analysis can be
used without any doubt.
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Appendix Proof of Theorem 1
For any x> 0, the ratio of the densities is given by

g (x) =

θ21 (1 + θ2) exp

(
−θ1 exp

((x
α

)β)
+ θ1 + 2

(x
α

)β)
θ22 (1 + θ1) exp

(
−θ2 exp

((x
α

)β)
+ θ2 + 2

(x
α

)β) .
Consider the derivative of log (g (x)) in x

d log (g (x))

dx
=

(θ2− θ1)β
(x
α

)β
exp

((x
α

)β)
x

< 0

for θ1 > θ2 and hence proof is completed.
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