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Abstract

In this paper, a new 7D hyperchaotic Lorenz-like system is proposed with perspective of fractional order. Numerical implementations of this
proposed system with specific parameters are investigated and compared with the new 7D continuous hyperchaotic system. In addition to
this, due to the hyperchaotic attractors do not exist lower than 0.6, the values of fractional order are analysed in range between 0.6 to 1.
Stability conditions are obtained through the stability theory of fractional systems. Numerical analysis of Lyapunov exponents verifies the
existence of hyperchaos for less than five orders.
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1. Introduction

In last decades, chaotic theory in differential equations have become an exciting field in science and engineering studies. Hyperchaos is
firstly defined as a system with more than one positive Lyapunov exponent in the classical example of hyperchaotic systems paper, written by
Rössler in 1979 [34]. Another classical example for hyperchaotic behaviour research is seen in Kapitaniak’s paper [18], which proposed
an electronic circuit type called the hyperchaotic Chua’s circuit. Dynamical behaviours of chaotic attractors is much more limited than
hyperchaos [16]. Therefore, applications of hyperchaotic systems in technological fields have been widely used in many disciplines such as
control, neural networks, lasers, nonlinear circuits, communication and bio-medical [1, 3, 15, 35, 37]. It is known that the complicatedness
and randomness increase with higher order hyperchaotic system behaviours and likewise predictability decreases [11, 16]. Nevertheless, the
number of recent studies on high-dimensional hyperchaotic Lorenz systems have been increased [6, 40, 41, 42, 43, 44].
Fractional calculus is known as one of the generalizations of the classical calculus. Despite having a long mathematical history, there has
been a growing interest in the area of fractional calculus and its applications in last years; for example, see [7, 8, 14, 25, 33]. The advances in
fractional calculus focus on modern examples in differential and integral equations, dynamic systems, mathematical biology, optimal control
and mechanics [5, 10, 17, 19, 28, 30]. The purpose of using fractional order derivative instead of integer order derivative is to have a better
fit to the real data in these application areas and to overcome the limitations of the integer order derivatives [19, 32]. The real life models can
be better explained with memory which has an important effects on fractional derivatives. Since the fractional order derivatives contain
memory, it is especially preferred in biological models [36]. While there are many mathematically acceptable and common definitions for
fractional derivative such as Riemann-Liouville, Caputo, Grünwald-Letnikov, Hadamard and Riesz [29, 31, 32], two types of them, namely
Riemann-Liouville and Caputo, are mostly used in problem formulations in the papers cited above.
Recent years, there have been many studies on fractional chaotic and hyperchaotic systems. For instance, the effects of fractional dynamics
in chaotic systems are studied in [13], chaotic behaviours are found in the fractional-order Chen system in [20] where the authors found
that the lowest order in the system is 2.1. At a later stage, it is found in [23] that chaos existed in the fractional-order Chen system for
orders as low as 0.3. The chaotic behaviours of the fractional order Liu system, which connects both the Lorenz and Chen systems, and
also represents transition from one to another, is investigated in [22]. Master slave synchronization of Liu system is also considered in [22].
The basic properties of dynamical behaviours in the fractional-order Rossler system, which have been analysed by means of Lyapunov
exponents and bifurcation diagrams, are studied in [45]. The fractional-order complex Lorenz system is proposed and dynamic behaviours of
a fractional-order chaotic system in complex space are investigated in [24]. In addition to these, high-dimensional (four to six dimensional)
hyperchaotic Lorenz systems are also studied with fractional-order perspective in last decade [11, 27, 38]. However, a novel 7D continuous
hyperchaotic Lorenz-like system, which is introduced by Yang et al. [44], has not studied with fractional order perspective in the literature,
yet. For this reason, we introduce fractional order version of this new 7D continuous hyperchaotic Lorenz-like system in this study.
The main purpose of this paper is to investigate the hyperchaotic behaviour of the proposed fractional-order 7D hyperchaotic Lorenz-like
system, which may provide potential applications in circuit implement and secure communication. The existence of chaos and hyperchaos
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are verified with using the sign of Lyapunov exponents. Besides, hyperchaotic attractors are obtained with in a certain range of specified three
control parameters. Moreover, the stability analysis and numerical experiments of the fractional order system are investigated. Our stability
analysis produces the lowest existence condition order of hyperchaotic behaviour for the fractional-order system when the parameters are
fixed.
This study is organized as follows: in Section 2, preliminaries of the paper are introduced. Section 3 provides 7D hyperchaotic Lorenz-like
system and presents analytical investigation of its steady states. The new fractional order 7D system is introduced in Section 4. The stability
analysis and a comparative numerical investigations of Yang’s model and the new fractional order 7D hyperchaotic system are also given in
this section. Finally, concluding remarks of the paper are given in Section 5.

2. Preliminaries

In this section, we give some definitions and properties which are further used in this paper. In the following, it is aimed to analyse and
investigate systems via Caputo fractional derivative due to its convenience for initial conditions of the differential equations. In this sense,
the main focus of this paper is to study on this type of derivative.

Definition 2.1. [32] The fractional integral of order γ > 0 for a function f : R+→ R is defined by

Iγ

t f (t) =
1

Γ(γ)

∫ t

0
(t− s)γ−1 f (s)ds,

where and elsewhere Γ denotes the Gamma function.

Definition 2.2. [4] If f (t) ∈ Cn, t,γ ∈ R then the Caputo fractional derivative with fractional order γ is defined as,

CDγ

t f (t) = In−γ Dn f (t) =
1

Γ(n− γ)

∫ t

0

f (n)(s)
(t− s)γ+1−n ds,

where n−1≤ γ < n ∈ N and Dn is the usual differential operator of integer order n. Note that the value of the Caputo fractional derivative
of the function g at point t involves all the values of gn(s) for s ∈ [0, t].
Clearly CDγ

t f (t) tends to f ′(t) as γ → 1.

Definition 2.3. [21] The constant z∗ is an equilibrium point of the Caputo fractional dynamic system that is presented as below,

CDγ

t z(t) = f (t,z(t)), γ ∈ (0,1), if and only if f (t,z∗) = 0.

Theorem 2.4. [26] The autonomous system

CDγ

t x = Ax, x(0) = x0, with 0 < γ < 1, x ∈ Rn and A ∈ Rn×n, (2.1)

is asymptotically stable if and only if the following inequality,

|arg(λ (A))|> γπ

2
,

is satisfied for all λ ∈ σ(A). Here, σ(A) shows the spectrum of A. Also, system (2.1) is stable if and only if

|arg(λ (A))| ≥ γπ

2
, ∀λ ∈ σ(A),

with these critical eigenvalues satisfying |arg(λ (A))|= γπ

2
and having geometric multiplicity of one. Here, the geometric multiplicity is the

dimension of the subspace of vectors υ for which Aυ = λυ .

For simplicity, the symbol CDγ

t is denoted as Dγ

t from now on.

3. Model Formulation

Yang et al. [44] presented a new seven-dimensional (7D) hyperchaotic Lorenz-Like system with five positive Lyapunov exponents by
coupling 1D linear equation to the 6D hyperchaotic equations system as follows:

ẏ1 = a(y2− y1)+ y4 + ry6,

ẏ2 = cy1− y2− y1y3 + y5,

ẏ3 = −by3 + y1y2,

ẏ4 = dy4− y1y3, (3.1)

ẏ5 = −ky2 + y6,

ẏ6 = q1y1 +q2y2,

ẏ7 = gy7 +ny4,

where a, b and c are constant parameters, n is the coupling parameter, r, d, k, q1, q2 and g are the six control parameters. Note that a, b, d, k
and g are nonzero. Here, yi and ẏi, (i = 1, ...,7), represent the state variables and their derivatives, respectively. All of the control parameters
in the system generate chaotic and hyperchaotic behaviours, and also bifurcations can occur.
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Yang et al. proved that system (3.1) has a unique unstable equilibrium point at ȳi = 0, (i = 1,2, ...,7), and five positive Lyapunov exponents
in seven Lyapunov exponents as,

λLE = (1.000,0.4128,0.2255,0.1360,0.0880,0.0000,−12.5289),

while the parameters are choosen as

(a,b,c,d,k,q1,q2,g,n,r) = (10,8/3,28,2,9.9,1,2,1,1,1).

Furthermore, the eigenvalues of the equilibrium at ȳi = 0 with the same parameters are obtained as

(λ1,λ2,λ3,λ4,λ5,λ6,λ7) = (−22.6230,−2.6667,1,2,11.4755,0.0737+0.3850i,0.0737−0.3850i),

and this equilibrium point has a two-dimensional stable and a five-dimensional unstable manifolds.
Regardless of these determined parameters, system (3.1) has a unique equilibrium point at ȳi = 0, while the following conditions are satisfied,

• bd
[
a+ rk+a

q2

q1

]
≥ 0 and q1q2 6= 0, or

• q1q2 = 0.

Otherwise, system (3.1) has three equilibria for bd
[
a+ rk+a

q2

q1

]
< 0 and q1q2 6= 0. The first one is origin O(0,0,0,0,0,0,0), and the others

are

E±

(
± y0, ∓

q1

q2
y0, −

q1

q2b
y2

0, ∓
q1

q2bd
y3

0, ∓
(

c+
q1

q2
+

q1

q2b
y2

0

)
y0, ∓

q1k
q2

y0, ∓
q1n

q2bdg
y3

0

)
,

where y0 =
√
−bd(a+ rk+a q2

q1
).

4. Fractional Order 7D System

The aim of this study is to introduce the fractional version of system (3.1) and compare its dynamic results. System (3.1) can be transformed
to the fractional order version as follows:

Dγ

t y1(t) = a(y2− y1)+ y4 + ry6,

Dγ

t y2(t) = cy1− y2− y1y3 + y5,

Dγ

t y3(t) = −by3 + y1y2,

Dγ

t y4(t) = dy4− y1y3, (4.1)

Dγ

t y5(t) = −ky2 + y6,

Dγ

t y6(t) = q1y1 +q2y2,

Dγ

t y7(t) = gy7 +ny4,

where γ decribes the arbitrary derivative order of the state variables yi, (i = 1,2, ...,7). It is obvious that system (4.1) is exactly same with the
dynamic system (3.1) while γ = 1.
By using the parameters (a,b,c,d,k,q1,q2,g,n,r) as (10,8/3,28,2,9.9,1,2,1,1,1), the calculation of bd

[
a+ rk+a q2

q1

]
is equal to 132.8,

and this positive value shows that system (4.1) has a unique equilibrium point with these parameters which is O(0,0,0,0,0,0,0). Therefore,
the Jacobian matrix of system (4.1) with this equilibria is obtained as follow:

J =



−10 10 0 1 0 1 0
28 −1 0 0 1 0 0
0 0 −8/3 0 0 0 0
0 0 0 2 0 0 0
0 −99/10 0 0 0 1 0
1 2 0 0 0 0 0
0 0 0 1 0 0 1


.

Corresponding to this Jacobian, eigenvalues are obtained as λ1 = −2.6667, λ2 = 1, λ3 = 2, λ4 = −22.623, λ5 = 0.0737+ 0.385i, λ6 =
0.0737+−0.385i, λ7 = 11.4755.
The lowest fractional order to see chaotic attractor for the fractional order system (4.1) can be determined by using the fractional stability
Theorem 2.4. According to this theorem, the chaotic attractor exists with the instability of the equilibrium points. Therefore, the lowest
fractional order γ can be calculated with the following inequility,

γ >
2
π

mini|arg(λi)|.

If the determined parameters are used for the corresponding eigenvalues, the lowest order γ is obtained as γ >
2
π

mini|arg(λi)| ≈ 0.8796

where mini|arg(λi)| is calculated as 1.3817. Thus, chaotic behaviour is not seen for system (4.1) while γ < 0.8796, which is verified by
numerical implemantations in this study.
Now we calculate the fractional derivative order γ in range of (0.6,1) at which the fractional system (4.1) has hyperchaotic solutions. In our
numerical implementations, Adams-Bashforth-Moulton method [9] is used within MATLAB to estimate the solution of system (4.1) [12].
Moreover, Benettin-Wolf algorithm [2, 39] is utilized to derive the Lyapunov exponents LE j, j = 1,2, . . . ,7 of system (4.1) for different
values of the derivative order γ .
The projections of the hyperchaotic attractor of system (4.1) with respect to fixing parameters (a,b,c,d,k,q1,q2,g,n,r) and varying the
fractional-order are demonstrated in Figures 4.1, 4.2 and 4.3.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.1: Hyperchaotic attractor of system (4.1) for (a,b,c,d,k,q1,q2,g,n,r) = (10,8/3,28,2,9.9,1,2,1,1,1) with γ = 0.6 on: (a) y1-y2 plane, (b) y1-y3
plane, (c) y2-y3 plane, (d) y2-y5 plane, (e) y3-y4 plane, (f) y3-y5 plane, (g) y2-y1-y3 space and (h) y5-y4-y6 space.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.2: Hyperchaotic attractor of system (4.1) for (a,b,c,d,k,q1,q2,g,n,r) = (10,8/3,28,2,9.9,1,2,1,1,1) with γ = 0.8 on: (a) y1-y2 plane, (b) y1-y3
plane, (c) y2-y3 plane, (d) y2-y5 plane, (e) y3-y4 plane, (f) y3-y5 plane, (g) y2-y1-y3 space and (h) y5-y4-y6 space.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.3: Hyperchaotic attractor of system (4.1) for (a,b,c,d,k,q1,q2,g,n,r) = (10,8/3,28,2,9.9,1,2,1,1,1) with γ = 0.97 on: (a) y1-y2 plane, (b) y1-y3
plane, (c) y2-y3 plane, (d) y2-y5 plane, (e) y3-y4 plane, (f) y3-y5 plane, (g) y2-y1-y3 space and (h) y5-y4-y6 space.
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The Lyapunov exponents of system (4.1) with respect to parameters (a,b,c,d,k,q1,q2,g,n,r) = (10,8/3,28,2,9.9,1,2,1,1,1) and initial
values of the state variables as (0.1,0.1,0.1,0.1,0.1,0.1,0.1) are shown in Figure 4.4, where the fractional-order γ is varying in range
between (0.6,1).

(a) (b)

(c) (d)

Figure 4.4: Lyapunov exponents of system (4.1) with parameters (a,b,c,d,k,q1,q2,g,n,r) = (10,8/3,28,2,9.9,1,2,1,1,1), all initial values of state variables
as 0.1 and γ in (0.6,1). a-b) Lyapunov exponents LE1 and LE2 are positive in (0.6,1), c) Lyapunov exponents LE3, LE4 and LE5 show changeable behaviour
in (0.6,1), d) Lyapunov exponents LE6 and LE7 are negative in (0.6,1).

According to numerical results, the fractional system (4.1) has no any periodic, quasi-periodic or chaotic solutions, and the solutions do not
approach to fixed point since the value of LE1 and LE2 are positive for every point of γ in range between (0.6,1). The results show that
the fractional system (4.1) has only hyperchaotic solutions while the value of γ is in range between (0.6,1). The range of γ orders for the
fractional system (4.1) and their dynamic behaviours are given in Table 1.

Table 1: Lyapunov exponents of the fractional system (4.1) while the parameters and initial values of the state variables are chosen as
(a,b,c,d,k,q1,q2,g,n,r) = (10,8/3,28,2,9.9,1,2,1,1,1) and yi(0) = 0.1, (i = 1, · · · ,7), respectively.

γ LE1 LE2 LE3 LE4 LE5 LE6 LE7 Dynamics
0.96 1.2632 0.4838 0.2046 0.0817 0.0064 -0.1283 -15.5549 hyperchaotic of order 5
0.925 1.5493 0.6265 0.2428 0.0784 0.0049 -0.2549 -19.0214 hyperchaotic of order 5
0.83 2.6475 0.9483 0.2820 0.0182 -0.0306 -0.8861 -31.7437 hyperchaotic of order 4
0.75 4.1673 0.2464 0.0073 -0.0309 -0.8467 -1.5318 -46.8075 hyperchaotic of order 3
0.70 5.5072 0.0191 -0.1573 -0.1616 -1.0719 -6.2933 -58.6417 hyperchaotic of order 2
0.601 9.5475 0.0008 -0.4973 -0.5002 -2.2624 -29.4041 -77.8684 hyperchaotic of order 2

From this table, it can be said that the Lyapunov exponents of system (4.1) with different values of the fractional order are depicted, and this
system is dissipative due to the sum of all LE values for each γ are negative.
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After this point, the behaviour of system (4.1) is analysed by varying the control parameters k, d and q2, respectively. The range of these
parameter values are chosen same as in Yang’s paper [44]. The initial values of state variables are chosen as yi(0) = 0.1, (i = 1, · · · ,7), and
the fractional order γ is 0.97.

• While the control parameters k is considered in range between [0, 80] as in Yang’s paper [44], and the other parameters are fixed:
System (4.1) has only hyperchaotic attractors. The Lyapunov exponents LE1 is always positive and LE2 is negative for only a few
values of k in range between [68.3, 71.6] where they are very close to zero and for this reason, they can be ignored. Out of these
values, system has always hyperchaotic attractors in range [0, 80]. It has hyperchaotic attractors with two (for k ∈ [51.8,80]), three
(for k ∈ [0,6] and k ∈ [47.7,80]), four (for k ∈ [2.1,59.9]) and five (for k ∈ [6.1,40.2]) positive Lyapunov exponents, respectively. The
numerical results of Lyapunov exponents for k in range between [0, 80] are written in Table 2 and presented in Figure 4.5, while
the other parameters are fixed as (a,b,c,d,q1,q2,g,n,r) = (10,8/3,28,2,1,2,1,1,1), and the initial values of state variables and
fractional order are chosen as yi(0) = 0.1 and γ = 0.97, respectively.

Table 2: Lyapunov exponents of the fractional system (4.1) while γ = 0.97 and the parameters and initial values of the state variables are
(a,b,c,d,q1,q2,g,n,r) = (10,8/3,28,2,1,2,1,1,1), k ∈ [0,80] and yi(0) = 0.1, (i = 1, · · · ,7), respectively.

k LE1 LE2 LE3 LE4 LE5 LE6 LE7 Dynamics
2 1.1668 0.8334 0.2198 -0.0027 -0.1090 -0.1703 -14.3459 hyperchaotic of order 3 in [0, 6]
4 1.1671 0.7924 0.3494 0.0054 -0.0462 -0.0934 -14.5719 hyperchaotic of order 4 in [2.1, 59.9]

30 1.1647 0.4176 0.2584 0.0704 0.0050 -0.6818 -13.6251 hyperchaotic of order 5 in [6.1, 40.2]
45 1.1592 0.5083 0.3123 0.0069 -0.0545 -1.1110 -13.2134 hyperchaotic of order 4 in [2.1, 59.9]
73 1.1671 0.0051 -0.3250 -0.3332 -0.5538 -0.5785 -11.7782 hyperchaotic of order 2 in [51.8, 80]
75 1.1673 0.0073 0.0083 -0.2076 -0.4964 -2.4852 -10.4016 hyperchaotic of order 3 in [60, 80]

(a) (b)

Figure 4.5: Lyapunov exponents of the fractional system (4.1) with (a,b,c,d,q1,q2,g,n,r) = (10,8/3,28,2,1,2,1,1,1), k ∈ [0,80] and γ = 0.97.

The following Figures 4.6, 4.7 and 4.8 show the behaviour of fractional system (4.1) while γ and k are fixed as 0.97 and 65, respectively. The
other parameters and initial values of the state variables are same as above.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.6: Hyperchaotic attractor of system (4.1) for (a,b,c,d,q1,q2,g,n,r) = (10,8/3,28,2,1,2,1,1,1) with k = 65 and γ = 0.6 on: (a) y1-y2 plane, (b)
y1-y3 plane, (c) y2-y3 plane, (d) y2-y5 plane, (e) y3-y4 plane, (f) y3-y5 plane, (g) y2-y1-y3 space and (h) y5-y4-y6 space.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.7: Hyperchaotic attractor of system (4.1) for (a,b,c,d,q1,q2,g,n,r) = (10,8/3,28,2,1,2,1,1,1) with k = 65 and γ = 0.8 on: (a) y1-y2 plane, (b)
y1-y3 plane, (c) y2-y3 plane, (d) y2-y5 plane, (e) y3-y4 plane, (f) y3-y5 plane, (g) y2-y1-y3 space and (h) y5-y4-y6 space.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.8: Hyperchaotic attractor of system (4.1) for (a,b,c,d,q1,q2,g,n,r) = (10,8/3,28,2,1,2,1,1,1) with k = 65 and γ = 0.97 on: (a) y1-y2 plane, (b)
y1-y3 plane, (c) y2-y3 plane, (d) y2-y5 plane, (e) y3-y4 plane, (f) y3-y5 plane, (g) y2-y1-y3 space and (h) y5-y4-y6 space.
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• While the control parameters q2 is considered in range between [0,30] as in Yang’s paper [44], and the other parameters are fixed:
System (4.1) has only hyperchaotic attractors. When q2 ∈ [0,3.7], system has five positive Lyapunov exponents and the number of
positive exponents decrease while the value of q2 increase. When q2 is in range between [11.5, 30], there are two positive Lyapunov
exponents. The details are given in Table 3 and the numerical results are illustrated in Figure 4.9.

Table 3: Lyapunov exponents of the fractional system (4.1) while γ = 0.97 and the parameters and initial values of the state variables are
(a,b,c,d,k,q1,g,n,r) = (10,8/3,28,2,9.9,1,1,1,1), q2 ∈ [0,30] and yi(0) = 0.1, (i = 1, · · · ,7), respectively.

q2 LE1 LE2 LE3 LE4 LE5 LE6 LE7 Dynamics
1 1.1663 0.5066 0.3516 0.0991 0.0223 -0.0056 -14.5343 hyperchaotic of order 5 in [0, 3.7]

3.6 1.1667 0.7218 0.2489 0.0147 -0.0007 -0.0427 -14.4982 hyperchaotic of order 4 in [0, 9.9]
4.8 1.1668 0.8142 0.2808 -0.0003 -0.1194 -0.1626 -14.3715 hyperchaotic of order 3 in [4.8, 30]

11.5 1.1674 0.9916 -0.0035 -0.0614 -0.5651 -0.7061 -13.2462 hyperchaotic of order 2 in [11.5, 30]

(a) (b)

Figure 4.9: Lyapunov exponents of the fractional system (4.1) with (a,b,c,d,k,q1,g,n,r) = (10,8/3,28,2,9.9,1,1,1,1), q2 ∈ [0,30] and γ = 0.97.

• While the control parameters d is considered in range between [0.8,2.4] as in Yang’s paper [44], and the other parameters are fixed:
System has only hyperchaotic attractors due to the value of γ is chosen as 0.97. If it is chosen as 1, there also exists chaos orbits when
d is around (0.94,1.07) (see [44]). When d ∈ [0.8,1.15], the system has only two positive Lyapunov exponents, and this number is
increasing while the value of d is increasing. The details are given in Table 4, and the numerical results are illustrated in Figure 4.10.

Table 4: Lyapunov exponents of the fractional system (4.1) while γ = 0.97 and the parameters and initial values of the state variables are
(a,b,c,k,q1,q2,g,n,r) = (10,8/3,28,9.9,1,2,1,1,1), d ∈ [0.8,2.4] and yi(0) = 0.1, (i = 1, · · · ,7), respectively.

d LE1 LE2 LE3 LE4 LE5 LE6 LE7 Dynamics
0.83 1.1645 0.0726 -0.0269 -0.1472 -0.4401 -2.8235 -11.7376 hyperchaotic of order 2 in [0.83, 1.15]
1.16 1.1651 0.1948 0.0078 -0.0598 -0.1975 -0.8395 -13.6618 hyperchaotic of order 3 in [0.8, 1.27]
1.28 1.1652 0.1539 0.0698 0.0098 -0.0089 -0.1011 -14.5231 hyperchaotic of order 4 in [1.28, 1.31]
1.32 1.1652 0.1322 0.0686 0.0133 0.0003 -0.0642 -14.5048 hyperchaotic of order 5 in [1.32, 2.37]
2.38 1.1669 0.7777 0.2549 0.1061 -0.0006 -0.0469 -14.2300 hyperchaotic of order 4 in [2.38, 2.41]
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Figure 4.10: Lyapunov exponents of the fractional system (4.1) with (a,b,c,k,q1,q2,g,n,r) = (10,8/3,28,9.9,1,2,1,1,1), d ∈ [0.8,2.4] and γ = 0.97.

5. Conclusion

In this paper, the fractional-order version of the new 7D Lorenz-like system is proposed and the dynamics of such a system is investigated in
detail with numerical simulations. Since there is no appreciable result for order less than 0.6 in fractional system (4), the numerical results
are obtained for order in range between 0.6 to 1. It is obtained that the newly proposed fractional-order 7D Lorenz-like system shows quite a
variety of dynamic behaviour, including chaotic and hyperchaotic motions, which are verified based on Lyapunov exponents and phase
portraits. Moreover, the numerical analysis of Lyapunov exponents for the fractional order system (4) verified the existence of hyperchaos for
less than five orders. When the parameters are fixed, the lowest existence condition order of chaotic behaviour for the fractional-order system
(4) is obtained approximately as 0.8796 by using fractional order stability theory. The fractional stability and numerical investigations of
fractional system (4) verified that limited number of parameter values exist for chaotic phenomena where the majority of them exist for
hyperchaotic behaviour.
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