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ABSTRACT 
 

In this study, we describe an algorithm that computes the degree of a Dickson Polynomial of the First Kind from its known 

value at a point. Our algorithm is based on a mathematical relation between Dickson Polynomials of the First Kind and 

Chebyshev Polynomials of the First Kind. 
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1. INTRODUCTION 
 

Dickson Polynomials are introduced in [1] by L.E. Dickson. Let 𝐾 be a finite field with characteristic 

𝑐ℎ𝑎𝑟(𝐾) = 𝑝 and 𝑎 ∈ 𝐾. Dickson Polynomials of the First Kind are polynomials in 𝑥 over 𝐾 and they 

are denoted by 𝐷𝑛(𝑥, 𝑎) where 𝑛 is the degree of the polynomial. They can be defined by the recurrence 

relation 

 

𝐷0(𝑥, 𝑎) = 2 
𝐷1(𝑥, 𝑎) = 𝑥 
𝐷𝑛(𝑥, 𝑎) = 𝑥𝐷𝑛−1(𝑥, 𝑎) − 𝑎𝐷𝑛−2(𝑥, 𝑎), ∀𝑛 ≥ 2. 

(1) 

 
Similarly, Dickson Polynomials of the Second Kind are denoted by 𝐸𝑛(𝑥, 𝑎) and they can be defined by 

the same recurrence relation with a different initialization at the degree 𝑛 = 0: 
 

𝐸0(𝑥, 𝑎) = 1 
𝐸1(𝑥, 𝑎) = 𝑥 
𝐸𝑛(𝑥, 𝑎) = 𝑥𝐸𝑛−1(𝑥, 𝑎) − 𝑎𝐸𝑛−2(𝑥, 𝑎), ∀𝑛 ≥ 2. 

(2) 

 

Wang and Yucas [2] extend the Dickson Polynomials to a family depending on a new integer parameter 

𝑘 ∈ ℤ≥0 which they call Dickson Polynomials of the (𝑘 + 1)-th Kind. Those polynomials are denoted 

by 𝐷𝑛,𝑘(𝑥, 𝑎) and can be defined similarly: 

 

𝐷0,𝑘(𝑥, 𝑎) = 2 − 𝑘 
𝐷1,𝑘(𝑥, 𝑎) = 𝑥 
𝐷𝑛,𝑘(𝑥, 𝑎) = 𝑥𝐷𝑛−1,𝑘(𝑥, 𝑎) − 𝑎𝐷𝑛−2,𝑘(𝑥, 𝑎), ∀𝑛 ≥ 2. 

(3) 

 

Here the integers 𝑘 = 0 and 𝑘 = 1 yield Dickson Polynomials of the First Kind and the Second Kind 

respectively. Alternatively, Dickson Polynomials of all kinds, can be computed via the matrix formula 

below: 
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[
𝐷𝑛,𝑘(𝑥, 𝑎)

𝐷𝑛+1,𝑘(𝑥, 𝑎)
] = [

0 1
−𝑎 𝑥

]
𝑛

[
2 − 𝑘

𝑥
]. (4) 

 

The matrix method gives rise to an algorithm that computes all Dickson Polynomials of the (𝑘 + 1)-th 

Kind, 𝐷𝑛,𝑘(𝑥, 𝑎), in 𝑂(𝑙𝑜𝑔(𝑛)) scalar operations.  

 

Dickson Polynomials are examples of orthogonal polynomials and they satisfy several useful properties. 

The polynomials 𝐷𝑛(𝑥, 𝑎) and 𝐸𝑛(𝑥, 𝑎) satisfy the differential equations 

 

(𝑥2 − 4𝑎)𝐷𝑛
′′(𝑥, 𝑎) + 𝑥𝐷𝑛

′ (𝑥, 𝑎) − 𝑛2𝐷𝑛(𝑥, 𝑎) = 0 
(𝑥2 − 4𝑎)𝐸𝑛

′′(𝑥, 𝑎) + 3𝑥𝐸𝑛
′ (𝑥, 𝑎) − 𝑛(𝑛 + 2)𝐸𝑛(𝑥, 𝑎) = 0 

(5) 

 

and, in general, the polynomials 𝐷𝑛,𝑘(𝑥, 𝑎) satisfy the differential equation 

 

(𝑥2 − 4𝑎)𝐷𝑛,𝑘
′′ (𝑥, 𝑎) − 4𝑛𝐷𝑛+1,𝑘(𝑥, 𝑎)𝐷𝑛,𝑘

′ (𝑥, 𝑎) + (2𝑛 + 3)𝑥𝐷𝑛,𝑘
′ (𝑥, 𝑎) + 𝑛(𝑛 + 2)𝐷𝑛,𝑘(𝑥, 𝑎)

= 0. 
(6) 

 

Dickson Polynomials arise in various areas in mathematics, such as integro-differential-difference 

equations [4-6], cryptography and number theory [7,8]. Further details about Dickson Polynomials can 

be found at [3-8] and references within. Equation (6) can be found at [3, Proposition 5]. 

 

We address the following problem in this article: 

 

Problem 1.1 From given 𝑝 = 𝑐ℎ𝑎𝑟(𝐾), 𝛽 ∈ 𝐾\{0}, 𝑎, 𝑏 ∈ 𝐾 such that 𝑏2 = 𝑎 and 𝜉 = 𝐷𝛿(𝛽, 𝑎) ∈ 𝐾 

compute the degree 𝛿 of the Dickson Polynomial of the First Kind 𝐷𝛿(𝑥, 𝑎). 

 

Dickson Polynomials of the First Kind are related to Chebyshev Polynomials of the First Kind. 

 

Theorem 1.1 If 𝑎 ∈ 𝐾, 𝑏2 = 𝑎, then 

 

𝐷𝑛(𝑥, 𝑎) = 2𝑏𝑛𝑇𝑛 (
𝑥

2𝑏
). (7) 

 

Chebyshev Polynomials of the First Kind have the following two useful properties. 

 

Theorem 1.2. Let 𝑚, 𝑛 ∈ ℤ≥0. Then: 

 

1. 𝑇𝑛(𝑇𝑚(𝑥)) = 𝑇𝑛𝑚(𝑥) = 𝑇𝑚(𝑇𝑛(𝑥)). 

2. 𝑇𝑛 (
𝑥+

1

𝑥

2
) =

𝑥𝑛+
1

𝑥𝑛

2
 for all 𝑛 ≥ 0. 

 

An algorithm that computes the degree of a Chebyshev Polynomial of the First Kind by using its known 

value at a point is given in [9]. That algorithm makes use of Theorem 1.1 and the idea lying behind of 

the Pohlig-Hellman Algorithm (which is also known as Silver-Pohlig-Hellman Algorithm) [10]. More 

details about the Pohlig-Hellman Algorithm and a survey of several discrete logarithm algorithms can 

be found at [11]. The algorithm in [9], at the end, computes and returns the mixed-radix form of the 

unknown degree of the Chebyshev Polynomial. 

 

In this paper, we make use of Theorem 1.1, Theorem 1.2(2) and the algorithm in [9] to introduce a 

method which solves Problem 1.1. 
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2.  DISCUSSION, RESULTS AND ALGORITHM 

 

We want to solve Problem 1.1, i.e., we want to compute the degree 𝛿 from given the value 𝜉 =
𝐷𝛿(𝛽, 𝑎) ∈ 𝐾 at 𝑥 = 𝛽. We assume that 𝛽 ∈ 𝐾\{0}, 𝑎, 𝑏 ∈ 𝐾 such that 𝑏2 = 𝑎 and 𝑝 = 𝑐ℎ𝑎𝑟(𝐾) are 

known. We may assume, without loss of generality, 𝛽 = 𝑏 (𝜔 +
1

𝜔
) for some unknown 𝜔 ∈ 𝐾̅. We do 

not need to know 𝜔 ∈ 𝐾̅. We make use of Theorem 1.1 and Theorem 1.2(2) and proceed as follows: 

 

𝜉 = 𝐷𝛿(𝛽, 𝑎) = 𝐷𝛿𝑏 (𝑏 (𝜔 +
1

𝜔
) , 𝑎) = 2𝑏𝛿𝑇𝛿 (

𝜔 +
1
𝜔

2
). (8) 

 

From the last equation we get  

 

𝜁 = 𝜉(2𝑏𝛿)
−1

= 𝑇𝛿 (
𝜔 +

1
𝜔

2
). (9) 

 

If 𝜁 = 𝜉(2𝑏𝛿)
−1

 is known, then algorithm in [9] can compute the degree 𝛿 from given 𝜁 = 𝑇𝛿(𝛾), where 

𝛾 = (𝜔 +
1

𝜔
) /2. Since the degree 𝛿 is unknown, here also 𝜁 = 𝜉(2𝑏𝛿)

−1
 remains unknown. Note that, 

since 𝑏 ∈ 𝐾 is a known value, here two cases occur: 

 

1. If it is given that the order of 𝑏 ∈ 𝐾 divides 𝛿, then 𝜁 = 𝜉(2𝑏𝛿)
−1

= 𝜉/2. In this case, one can 

directly use the algorithm in [9] to compute 𝛿. 

2. Otherwise, one can compute the order 𝑚 of 𝑏 ∈ 𝐾 first. Then: 

 

𝜁𝑚 = (𝜉(2𝑏𝛿)
−1

)
𝑚

= 𝜉𝑚2−𝑚 = (
𝜉

2
)

𝑚

 (10) 

 

From 𝜁𝑚 = (𝜉/2)𝑚, one can compute 𝜁. Once 𝜁 is computed, one can use the algorithm in [9] 

and can compute 𝛿. 

 

We summarize our algorithm as follow: 

 

Algorithm 2.1  

 

Input: 

 

 𝑎, 𝑏 ∈ 𝐾 such that 𝑏2 = 𝑎 

 𝑝 = 𝑐ℎ𝑎𝑟(𝐾)  ≥ 3 

 𝛽 = 𝑏 (𝜔 +
1

𝜔
) ∈ 𝐾\{0}  

 𝜉 = 𝐷𝛿(𝛽, 𝑎) ∈ 𝐾 

 

Output: 

 

 The order 𝑛 of 𝜔 

 𝛿 𝑚𝑜𝑑 𝑛 or −𝛿 𝑚𝑜𝑑 𝑛  
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1. Use Theorem 1.1 and Theorem 1.2(2) to get 𝜁 = 𝑇𝛿(𝛾), where 𝛾 = (𝜔 +
1

𝜔
) /2, from 𝜉 =

𝐷𝛿(𝛽, 𝑎). 
a. If it is given that the order of 𝑏 divides 𝛿, let 𝜁 = 𝜉/2, and proceed to Step 2. 

b. Otherwise: 

i. Compute the order 𝑚 of 𝑏. 

ii. Compute 𝜁 from 𝜁𝑚 = (𝜉/2)𝑚. 
 

2. Use algorithm in [9] to compute 𝜁 from 𝜁 = 𝑇𝛿(𝛾) where 𝛾 = (𝜔 +
1

𝜔
) /2 and return order 𝑛 

of 𝜔, and, 𝛿 𝑚𝑜𝑑 𝑛 or −𝛿 𝑚𝑜𝑑 𝑛. 
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