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Abstract
We extented A" by using difference operator A; . We generated the difference sequence

space 1 (A;) and investigated some of their properties. We showed that, if 1 (A;) is
supplied with an proper norm ||||pA then it will be a Banach space. We further more

showed that, the sequence spaces (|p(AZ|)7||-||p,Aé) and (Ip||||p) are linearly isometric. At

the end of this studies, it was shown that | (A;) =1 (M, A;). The family of the Orlicz
functions M is coincides the A, —condition.

Keywords: Difference sequence spaces, isometric sequence spaces, sequence spaces.

Yeni A, -fark operatorii ve topolojik dzellikleri

Oz

Ay fark operatériinii kullanarak A"’yi genislettik. | (Ay) fark dizi uzayim olusturduk

ve bazi topolojik ozelliklerini inceledik. Eger 1,(A;) uygun bir ||.||pAv normu verilirse
'q

bunun bir Banach uzayr olacagint gosterdik. Ayrica (Ip(A‘é),”.”pAv) ve (Ip’”'”p) dizi
g

uzaylarimin ~ lineer izometrik olduklarimi  gosterdik. Calismanin  sonunda ise
I (Ay) 1 (M, AY) oldugu gosterildi. Orlicz fonksiyonlarimn ailesi M, A, —sarti ile
ortiismektedir.
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Anahtar kelimeler: Fark dizi uzaylari, izometrik dizi uzaylari, dizi uzaylart.

1. Introduction

Let c,|_andc, be the Banach spaces of convergent, bounded and null sequences
u=(u,);" respectively with complex terms, normed by

ul, =suplu|

where k e N .

Kizmaz [1] presented the difference sequence spaces,
UA)={u=(u,):AueU}
for U =c, and|_,c, where

Au = (Auk) = (uk _uk+1) .
We have the norm for these Banach spaces as:

Jull, =]u]+ v,

Colak and Et [2] have extended the spaces U (A) to the U(A") for U =c,l andc,. Let
U be any sequence spaces and defined

U(AV):{u=(uk):AVu eU}

where veN and A'u=((AcA"")u,) for all keN and prove that

c(A"),1,.(A") and c,(A") are Banach spaces with the norm

A'u

0

Ay, = (1) mu ], =3 ||+
t=0 i=1

Karakas et al. [3] have defined the sequence spaces c(A,),l..(A,) and ¢,(A,) . He also
presented

Au=(Au)=(qu, —Uu,,,)
for g € N . Karakas et al. [4] have presented

U@y ={u=(u):AueU}
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for U =c,l, and c,, where q,veN. They showed that the spaces U(A;) are Banach
spaces by:

)
Ay :Z|ui|+‘
A

Ju

'
Aqu

where
A;U = (A;uk) = (qA;_luk _A\(;_lukﬂ)

and
A;u = (A\r;uk) = Z(_l)t [:] qHUk+t :
t=0

Recently, Peralta [5] has studied I (A") and investigated the topological features of this
space. In this work, we choose p e[l,«). By @, we denote the space of all sequences

o0 %
u=(u,),for u eC andall keN.Taken uc e, describe |uf_ =[Z|uk|pj

k=1
and let

1, ={u =(uk):||u||p <oo}.

The linear operator A;:w—>w@ is presented recursively as the composition

A, =A, oA!™ for v>2 and qeN. It is obvious that for uec® and v>1 we have the
following Binomial representation

su =S
t=0

forall keN.

Let veN and define the sequence space 1,(A;) by

(A ={u=(u):Auel,}.

The sequence spaces are Banach spaces normed by

SV
pj (1.1)

A,

\
ol =[S+
i=
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For Euler difference sequence spaces and sequence spaces generated by a sequence of
Orlicz functions, the reader can consult Altay and Polat [6], Altay and Basar [7] and
Qamaruddin and Saifi [8], respectively.

2. Main results

Theorem 2.1. The sequence space |,(A;) is a Banach space with the norm ||||p o

Proof: Let (u(")):((uin))) is a Cauchy sequence in 1 (A;). Thus, for £>0 we may

find a positive integer N such that

<&

Hu(n) _u(l') ,
pyAq

whenever n,r > N . In other words, we have

1
b |P
<¢&,
p

p
+

Vi) _ Av ()
Aqu Aqu

Li‘ui(n) "
i=1

for n,r>N.
Since
p!Aq
fori=12,3,...,v and
‘Avu(n) _Avu(r) < Hu(n) _u(r)
4 4 P p,A‘é '

Therefore, (u™)and (Aju™) are Cauchy sequences in C and I, respectively. The

p?

completeness of the spaces € and | show the existence of elements y eC,

i1=123,..,v,and z=(z,) €l such that

p

lim|u®™ - y,| =0 (2.1)
fori=12,3,...,v and

lim
n

Au® — sz =0. (2.2)

Since
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v
AUy —zk‘s‘

A;u(”) - ZH
p

we get

AP -z,| >0
as n— o forall ke N by equation (2.2).

We obtain a recursive formula for I|mu(”) i>1 as n— . We have

v+ !

t+l

v-1

U2 = A0 - 3 o
t=0

and so

—I|mu§if (-1)" [ Vzl:( ' U yv+lj

Assume that w 1<k <v, have been established. Where

v+1?” v+k -1

Ilmu(”) i=12,.. k-1

V+I V+I !

Using these, we acquire, for 1<k <v

WS

t=0

k—1 i
_z (_1)v—k+t [Vkﬂ ) qk—tWVth

t=1

On the other side, for k >v we get
(_1)Vu\(/3< AVUén) Z( 1)t (V] V- t t(j()'
So that
v-1 (v .
Wik = “mu\5+{< =(-1) (Zk _tZ:(;,(_l) [t]q Wk+tj'

Let W= (Y., Yyu Wypgs W, ,-..). We assert that wel (A7), thatiis, Awe . First, show
that
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v-1
(A;W)l = Z (-1 [:J Q" Yor + (D)W,
=0

V—.

> () (: J 0" Yo+ {21 - g (-1 m g ym}

1
t=0

Z

Also, for k=2,3,...,v. We get

(Aw), =g(—1)‘ NI SN ERT IR C R

t=v—k+1

:Zk

Similarly, for k >v we acquire

v-1
(A\(;W)k = Z (_1)t [:] qV%\NHk + (_1)va+k
t=0

=2,.
Thus we have presented that A;w=2z 1. It remains to prove that
Hu‘”)—WH ,—>0asn->w

vaq

Then, we obtain

IimHu(”) —W‘
n

vi(n) AV
Aqu Aqw

U

Vv
. p
:Ilm[z ‘ué”)—yk‘ +‘
" k=2

p
Au™ —ZH
4 p

p
v
P.Aq

\
. p f
- lem‘ulﬁn) - yk‘ +I|m‘
n n
k=1
=0.

This is proof of the theorem.

Theorem 2.2. The sequence spaces (lp(A;),”-prAv) and (Ip,||.||p)are linearly isometric.

Proof: Take in to consideration the map T:I (A;) =1, given by Ty=u, where
y=(y,) el (Ay) and u=(u,) with

L - Yir if 1<k<v;
1Ay, ifk>v.
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The linearity of the difference operator A refers the linearity of T. If yel (A;) and
Ty =u, then

v p
Aq yk—v

\ o0
[Tyllp =lull; = 20wl + X
k=1 k=v+1
\ o0
=2l 2
k=1 k=1

p
=Yl <o

‘ p

A\(; Y

This demonstrates that T is well-defined and it is also norm preserving. We presented
that T is one-to-one and onto. Assume that Ty = 0.

Then, we obtain

AyY, =0 forall k>1, (2.3)
v, =Y,=..=Y,=0. (2.4)

We show that the difference equation (2.3) with initial conditions (2.4) refers that
y, =0 forall k>1,, thatis, y=(0,0,...). Therefore, T is one-to-one.

Assume that u=(u,) el . Describe the sequence y=(y,) as follows. Let y, =u, for
U, =AU, k=12,.,V

The succeeding terms of the sequence Y is then showed recursively by
v-1 y

Yo = (- [u >y (t]q“utﬂ}
t=0

V—

k
Uk = Z (_1)t (Zj qv_tuuk

yv+k = (_l)v =0 , l<k<v

k-1 v—k+t v v
t -t
- (_1) [V—k-&-t} q yv+t
=1

t

and
v-1 e .
Yoo = (1)’ {uwk —Z(—l) [t]qv yt+k] k>v.
t=0
Utilizing a similar argument as in the proof of the previous theorem, we prove that

v
Aq yk = uk+v

for k € N. Therefore it follows that Ty =u.
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Thus, we obtain

o0
p Vo IP
0 zquyk‘
P}

= p
=D |ul
k=1

= ol <o

A;y

Sothat yel, (Ay). Since T isonto, I (A,) and I, are linearly isometric.

Definition 2.3. An Orlicz function is a continuous, convex function and nondecreasing
M :[O,oo)—)[o,oo) such that M(z)=0, if and only if z=0, M(u)>0, and
M(@u) >was u—>o. M is said to fulfil A,—condition if there exists a positive
constant K such that M (2z) <KM(z) for all z>0. Let M=(M,) be a sequence of

Orlicz functions meeting the A, —condition [9]. An Orlicz function M has been defined

in [10] also see [11] for a more general representation in thise direction in the following
from:

M (u) = [ p(t)dt

where p, know as the kernel of M, is right-differentable for t>0, p(t) >0, p(0)=0
for t >0, p is nondecreasing, and t — oo, p(t) — .

Lindenstrauss and Tzafriri [12] have utilized the view of Orlicz function to find the
sequence space,

I, (M) :{u =(uk):i‘Mk (|uk|/,o)‘p < oo, for somep>0},

which is a Banach Spaces with respect to the norm

I(u )| =inf {p>0:i‘Mk (|Uk|/p)‘£1}

The space (M) is closely related to space |, which is an Orlicz sequence space with

M (u)=|u|", for1< p<oo.

Describe the sequence spaces as:

I, (M) :{u =(u,): i‘Mk (|Uk|/p)‘p < oo, for some p > O},
k=1

and
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L, (M, AY) ={u=(u):Au el (M)].

Theorem 2.4. Let M= (M, ) be a sequence of Orlicz functions fulfil the A, —condition.
If

- P
> My (ul/p) <o (2.5)
k=1
forall t, p>0 then 1 (A;)) <1 (M, Ay).
Proof: Assume that condition (2.5) exists and let u=(u,) €l ,(A;) . Then, we get

>

A <. (2.6)

The convergence of

>

k=1

p
A;uk‘ <0

implies that

lim
k

A;uk‘ =0.

Thus, we can find ne N such that

Aju|<1forall k=N.

Let

K= max{AVu‘ AqUy 1‘ 1}

Then A;uk‘s K for all keN. For p>0, utilizing the monotonicity of M, , we get
Mk(A;ukVp)sMk(K/p) forall keN.

This inequality shows that

> |,

A"uk‘/p‘ kﬁ: K/p‘ .

This estimate proves that Ajuel (M) that is, uel (M,A;). By equation (2.5)
Therefore, the inclusion I (A;) = 1,(M,Ay) holds.
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3. Results and discussion

Peralta [5] studied 1 (A;) and checked the topological properties of this space. Later

Karakas et al. [4] defined difference operator A; . We used Peralta’ s [5] studies and

extented it by used the generalized difference operator A;. We generated the difference

sequence space | (A;) and||.||p . » and investigated some of their properties. We showed
'=q

that, if 1 (A;) is equipped with an appropriate norm ”'”M& is a Banach space. We

further more showed that, the sequence spaces (Ip(A;),||.||p’AV) and (Ip||||p) are linearly

isometric. It is shown that | (A;) I (M, A;). Where M a family of Orlicz functions,

is coincides the A, —condition.
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