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1. Introduction 
WL predictions using time series analysis has become one of 
the major researches focuses among geophysicists, geodesists 

and oceanographers. WL has been used as a defined stable 
reference datum representing the earth’s actual gravity field 
(geoid) (Abeho et al., 2014; Turner et al., 2013) for measuring 
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The continuous decline in lake water levels is not only a major concern but also a daunting 
challenge to policymakers, demanding a backup technological and policy interventions in 
context of broader political and socio-economic realities. This study used Lake Volta 
hydrological system to shed light on the extensive and flexible modelling and simulation 
capabilities of stochastic models to understand the bigger picture of water level (WL)
dynamics. The study used Autocorrelation Regressive Integrated Moving Average (ARIMA) 
and Kalman Filtering (KF) techniques as the proposed optimal stochastic models for the 
study area. The first order ARIMA (0, 1, 1) was found suitable for predicting the future 
monthly Lake Volta WL in the presented study based on expert advice and recommendations 
from existing studies. The statistical performance indicators used were minimum residual 
error (rmin), maximum residual error (rmax), arithmetic mean error (AME), arithmetic mean 
squared error (AMSE), arithmetic mean absolute percentage deviation (AMAPD), and 
arithmetic standard deviation (ASD). Based on the results achieved in this study, ARIMA (0,
1, 1) achieved AME, AMSE, AMAPD and ASD of -0.1268 m, 0.0037 m, 0.5749 m, and 0.0033 
m respectively. Ensemble of ARIMA and KF was further used to forecast the upcoming 
monthly WL trends up to December 2048. ARIMA (0, 1, 1) model is found suitable for 
forecasting Lake Volta WL which shows positive trend up to December 2048. The study 
further predicted that Lake Volta WL will increase from the current average level of 0.2272 
m to an average of 9.1366 m for the next 28 years. The ensuing conclusions stressed the need 
for checks against over-release of WL for hydropower production and measures for 
sustainable land and water management in the entire basin. This study can potentially 
enhance our understanding of hydrodynamic processes in Lake Volta and support water 
resource management.  
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vertical distance. This is because for practical applications 
such as space research, marine studies, coastal engineering, 
surveying, higher engineering works, and resource 
exploitation which require a defined datum to which these 
systems can be referred, maintained and recovered (Vergos et 
al., 2004; Rummel and Sanso, 1993), the WL are mostly 
used. In addition, WL studies help geospatial professionals 
and governmental authorities in decision making on climate 
adaptation and mitigating strategies to reduce risk in spatial 
contest (Grgic et al., 2017). Moreover, WL studies contribute 
significantly to understanding the nature of processes, 
patterns and interactions of the changing earth (Pashova and 
Popova, 2011). Precise determination of the WL can be done 
using available and relevant monthly meteorological data 
(El-Shazly, 2005). However, this is a difficult task in many 
scientific and practical fields of applications (Al-Krargy et al., 
2017) due to the variation of the WL known as sea surface 
topography (SST) and meteorological conditions (Vainu and 
Terasmaa, 2014; El-Shazly, 2005). In view of that, several 
scholars have proposed different methodologies to estimate 
the WL with good precision.  
 
Several studies have suggested that, the WL could be 
determined either by a relative technique (tide gauges) 
(Tolkatchev, 1996) that provide data with uneven and sparse 
spatial distribution (Grgic et al., 2017) with reference to a 
local geodetic datum (geoid) on land or an absolute technique 
(satellite altimetry) (Mitchum, 2000) which captures high 
resolution, uniform accuracy measurements with better 
coverage in open ocean areas and lower coverage in coastal 
areas (Grgic et al., 2017) with reference to a global reference 
datum (ellipsoid). In the absence of tide gauges, the classical 
levelling techniques can be used to determine WL (El-Shazly, 
2005). The presented study considered the latter approach 
(absolute technique) in determining the WL due to the 
availability of satellite altimeter data for the study area. The 
various applications of absolute techniques that have been 
applied in the past and recent years include tides 
measurement (Tziavos et al., 2005), precise geoid 
determination (Andersen and Knudsen, 1998, Cazenave et 
al., 1996), global mean sea surface models (Lemoine et al., 
1998; Wenzel, 1998) and regional mean sea surface models 
(Arabelos and Tziavos, 1996; Vergos et al., 2003) as well as 
the recovery of gravity anomalies from the altimetry 
measurements. 
 
Recent studies reveal that, there are defects in the relative 
techniques for WL determination such as inadequate and 
inhomogeneous distribution of the used geodetic data (Amin, 
2003) and geophysical process within the earth’s system that 
cause changes in global mean sea level (Makarynskyy et al., 
2004; Tziavos et al., 2005). Additionally, the classical 
levelling techniques does not truly represent WL and it varies 
from place to place (El-Shazly, 2005). The inconsistency of 
the relative techniques led to the investigation of how modern 
techniques and abundant data source may be utilized for 
geodetic purpose (Turner et al., 2013). Precise prediction of 
WL can be done using sophisticated mathematical models 
which include time series and climate data (Pashova and 
Popova, 2011). The traditional method for WL prediction 
include the classical regression techniques (Demir and Ulke 
Keskin, 2020; Kaloop et al., 2020; Thiery et al., 2017; Smith 

and Semazzi , 2014; Awange et al., 2013; El-Shazly, 2005; 
Jian-Jun, 2003; Coe and Birkett, 2004), Soil and Water 
Assessment Model (Muthuwatta, 2004), 2-Dimensional 
Hydro dynamic model (Qi et al., 2019), 3-Dimensional 
Hydro dynamic model (Kranenburg et al., 2020), KF 
(Okwuashi and Olayinka, 2017; Adnan et al., 2012) Kriging 
method (Hassan et al., 2015), and ARIMA (Makwinja et al., 
2017; Farajzadeh et al., 2014; Fernandez et al., 2018; 
Srivastava et al., 2016; Fernandez et al., 2017). Some of these 
aforementioned techniques are very viable but have 
limitations due to their inabilities to model noisy data, 
nonlinearity problems between the dataset and data 
availability (Yakubu et al., 2018a) (such as lake discharge and 
meteorological data which were not available) and for that 
matter not considered in this study.  
 
In Africa, the WL and WL variations have affected related 
applications in coastal engineering, geophysics studies and 
space research (El-Shazly, 2005). The WL modelling was 
established at Lake Volta Basin, Ghana by using the available 
altimetry data between the years (October 1992 to September 
2020). It is self-evident that, diverse factors interact in space 
and time in complex dynamics to cause these WL changes. 
The study for the first time in Ghana, applied and assessed 
the performance of ARIMA and KF as an effective tool for 
modelling and predicting WL in the study area. In order to 
resolve the problems associated with nonlinearity problems 
and error as a result of noise with the ARIMA techniques and 
limitations of the classical techniques, KF based on time 
series for WL forecasting was applied. KF is a mathematical 
power tool that has been applied in numerous fields of 
scientific studies (Kim and Bang, 2018; Welch and Bishop, 
2001).  
 
KF is a linear, discrete time, finite dimensional time-varying 
system that evaluates the state estimate to minimize their 
residuals statistical analysis (Ribeiro, 2004). KF provides 
optimal estimates (Kim and Bang, 2018; Bekhtaovi et al., 
2017), and was applied to smoothen the ARIMA parameters 
for a better estimate. Upon carefully reviewing of existing 
literature, this aforementioned technique has not been 
applied within Ghana for WL forecasting. Therefore, this 
study will help scientist in Ghana to know the abilities of 
using ARIMA-KF for future forecasting of WL. This is 
because, the knowledge of WL is very vital for protection of 
coastal areas and monitoring changes in marine ecosystem. 
 
2. Study Area 
The study area (Figs. 1a to 1c) is one of the highly esteemed 
projects from the period of Africa’s decolonization (Lawson, 
1970). Lake Volta is the largest artificial reservoir by surface 
area in the world, covering an approximated total area of 
8500 km2 which represent 3.2 % of Ghana’s total land surface 
(Ndehedehe et al., 2017; Ni et al., 2017). The lake which lies 
entirely in Ghana is shared by six West African countries 
namely, Benin, Burkina Faso, Ivory Coast, Ghana, Mali and 
Togo.  
 
The aim of construction was to produce hydroelectric power 
(Owusu et al., 2008; Béné, 2007; Gyau-Boakye, 2001), but 
the reservoirs fisheries have been a significant socio-
economic importance to Ghana (Béné and Obirih-Opareh, 
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2009; Béné and Russell, 2007; Braimah, 2003; Abban, 1999). 
The Volta basin is primarily underlain by a Voltarian 
formation consisting of Sandstones, Shales and Mudstones. 
Another formation is Precambrian, classified into Birimian, 
Buem and Tarkwaian rocks (Dickson and Benneh, 1977). 
The basin stretches over four climate regions. 
 
 

 
 

Fig. 1a. Regional map of Ghana showing the study area 
 
 
 

 
 

Fig. 1b. Digital Elevation Model of the study area 
 
 

 

 
 

Fig. 1c. Satellite image showing the study area 

From lowland rainforest in the South with approximated 
geographic location of 006º 17´ 20.96ʺ North (N) and 000º 0´ 
50.92ʺ West (W) to the Sahel-Sudan desert in the North with 
geographic location 009º 3´ 8.26ʺ N and 001º 7´ 33.26ʺ W 
(Rodger et al., 2007). The average topographic elevation of 
the study is 400 m and the average water level is 4 m. Much 
of the Volta basin lies in a rainfall region which starts from 
July to September. The North has only one wet season in 
September. In the South, there are two rainy seasons which 
starts from June to July and September to October (Ni et al., 
2017). 
 
3. Materials and Methods 
3.1. Data 
Satellite altimetry data of observed lake height variations 
computed from (Topex/Poseidon, Jason-1, and Jason-
2/OSTM) provided by the United States Department of 
Agriculture (USDA) were used in this study. The use of 
altimetry-based measurements for a data deficient region is 
beneficiary since they are continuous and potentially 
available few days after measurement (Ndehedehe et al., 
2017; Coe and Birkitt, 2004). Thus, time series data of Lake 
Volta level heights covering the period of 28 years from 
(October 1992 to September 2020) were downloaded from 
(https://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/gr_r
egional_chart_jason1.aspx?regionid=wafrica&reservoir_name=Volta) 
database and used in this study to model and predict Lake 
Volta WL. As presented in the works of (Ndehedehe et al., 
2017; Ni et al., 2017), satellite altimetry data has been 
successfully validated by comparing altimetric time series 
and in situ observations. In addition, all classical corrections 
(polar and solid earth tides, ionospheric and tropospheric 
delay, and altimeter biases) have been applied to the altimetry 
data. This was done by using a median type filter to eliminate 
outliers and reduce high frequency noise. 
 
3.2. Computations of Monthly Mean Lake Water Level  
The available time series of Lake Volta WL data for a period 
of 336 months were used. This period started from October 
1992 to September 2020. The monthly Mean Lake Water 
Level (MLWL) from the given altimetry data were computed 
according to Eq. 1. However, the monthly meteorological 
and lake discharge data were not available, hence not 
included. The geometric technique for estimating geoidal 
heights using GPS obtained ellipsoidal height (h) collocated 
with orthometric height (H) was done according to Eq. 1. The 
estimated geoidal heights (N) derived from GPS ellipsoidal 
heights and orthometric heights are referred to as 
NGPS/Levelling. 
 





i

j

i
ji n

x
L

1
,

 

(1)    

 
where xi is the time series data, i is an integer ranging from 1 
to n, and n is the number of observations. Table 1 is the 
statistical analysis of the satellite altimeter data; thus, 
maximum (max), minimum (min), mean value and standard 
deviation (SD) of the computed monthly MLWL. Figs. 2a 
and 2b is the monthly distribution and histogram graph 
analysis of the computed monthly MLWL. 
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3.3. ARI MA 
The ARIMA model introduced by Box and Jenkins (1976) is 
a widely used technique for time series forecasting (Boye and 
Ziggah, 2020; Akyen et al., 2016). This type of model is a 
hybridized model which consists of autoregressive (AR) and 
moving average (MA) respectively (Boye and Ziggah, 2020; 
Yakubu et al., 2018b). In ARIMA (p, d, q) modelling, the first 
step is to check the stationarity of the time series data. When 
the used time series data is not stationary, it is transformed 
into a stationary time series by applying the appropriate order 
of differencing (d) (Yakubu et al., 2018b; Akyen et al., 2016). 
The desired values of autoregressive order (p) and moving 
average (q) is acquired by checking the autocorrelation 
function and partial autocorrelation function of the time 
series data (Makwinja et al., 2017; Yusof et al., 2013). The 
AR(p) model is a discrete time linear equation with noise as 
expressed by Eq. 2 (Yakubu et al., 2018b): 
 

tptptt    11    (2)    
 

where  t  is the current forecasted model, p  is the order, 1 , 

p,  are the parameters of coefficients of the model formed, 

ptt   ,1 are the previous observations, and t is the error of 

the forecast. The MA(q) model is an explicit formula for t in 
terms of noise as given by Eq. 3: 

ptpttt    11  
(3)    

 
The difference operator ∆ is given by Eq. 4: 
 

tttt L  )1(1    (4)    
 
The ARIMA model with orders (p, d, q) is given by Eq. 5 as: 
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(5)    

  

where; 
jL is the time lag operator, t is an error term, and id

is the order of integration. In this present study, the first order 
AR(1) and MA(1) was adopted due to its simplest non-
degenerated time-series process (Boye and Ziggah, 2020) as 
recommended by Makwinja et al. (2017) for Lake WL 
forecasting. The basic systematic approach utilizing Box-
Jenkins methodology was applied in this present study to 
build the first order ARIMA model giving by Eq. 5. This 
includes stationarity checks, model identification, parameter 
estimation, model selection, and diagnostic checking. A 
detailed literature review about these aforementioned 
techniques can be found in the works of (Makwinja et al., 
2017; Akyen et al., 2016). Both ARIMA and KF models were 
implemented and coded in MATLAB environment.

 
 

 
Table 1. Statistical Analysis of the computed monthly MLWL (units in meters) 

 

PCI min max mean SD 

MLWL -0.0400 7.9967 0.2272 0.0114 
 
 
 

 
 

Fig. 2a. Monthly mean distributions of Lake Volta WL 
 

 
 

3.4. KF 
KF is an estimator for linear-quadratic problem. This 
technique is widely used for solving problem by estimating 
the instantaneous state of a linear dynamic system perturbed 
by white noise, using measurements linearly related to the 

state but corrupted by white noise. The resulting estimator is 
statistically optimal with respect to any quadratic function of 
estimation error (Mohinder and Angus, 2001). The KF 
model presumes that the state of a system at a time t evolved 
from the prior state at time 1t  according to Eq. 6: 
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wtttttt    (6)    

 
where   t  is the state vector containing the terms of interest, 

velocity at time t , 𝜎௧  is the vector containing any control 
inputs,  t is the state transition matrix which applies the 

effect of each system state at time t.  t
 is the control input 

matrix which applies the effect of each control input 
parameter in the vector 𝜎௧ on the state vector and  t  is the 
vector containing the process noise terms for each parameter 
in the state vector. The process noise is assumed to be drawn 
from a zero mean multivariate normal distribution with 
covariance given by the covariance matrix Q. The 
mathematical representations and detailed computations of 
the covariance matrix Q can be found in the works of the 
following existing literatures (Kim and Bang, 2018; 
Bekhtaovi et al., 2017; Rezaifard and Abbasi, 2017; Ribeiro, 
2004; Welch and Bishop, 2001). Fig. 3 shows the 
mathematical principles used in KF. 
 
3.5. Model performance assessment 
To assess the accuracies of the ARIMA model being used, 
statistical error analysis was carried out. The statistical 
indicators applied were the mean absolute percentage 
deviation  MAPD , AME, AMSE, 𝑟௠௜௡, 𝑟௠௔௫, and ASD. Their 
mathematical expressions are given by Eq. 7 to Eq. 12, 
respectively as: 
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(9)    
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(12)   

 
where, n is the total number of the observations, 𝛼௜ and 𝛽௜ are 
the measured and predicted lake heights by the ARIMA 
model, 𝜇 denote the residual between the measured and 
estimated lake level height, 𝜇 ഥ is the mean of the residual and 
i is an integer varying from 1 to n. 
 
4 Results and Discussions 
4.1 Development of the ARIMA model 
The stationarity of the used data was visualized in the form 
of a data plot as shown in Fig. 2a. The identification of the 
stationarity in time series data is a necessary condition for 
stochastic process in building a time series model which is 
useful for future forecasting (Yakubu et al., 2018b; Makwinja 
et al., 2017; Akyen et al., 2016). From Fig. 2a, it can be 
observed that, the time series data from Lake Volta WL is 
non-stationary due to unstable means which increase and 
decrease at more points throughout (October 1992- 
September 2020). According to Makwinja et al. (2017) a good 
autoregressive model of order p(AR(q)) has to be stationary 
and a good moving average model of order q(MA(q)) has to 
be invertible. Thus, the invertibility and stationarity gives a 
constant mean, variance and covariance which is a necessary 
condition for future forecasting. In order to resolve this 
difficulty in Lake Volta WL time series data, first order 
differencing (d) of the data and stationary test were embarked 
on the newly constructed series of the data. Since the newly 
constructed data is stationary in mean, the next step is to 
know how to select an appropriate model that can precisely 
predict the future trend based on the description of the 
historical pattern in the data and how to determine the 
optimal model order. 
                                                                                                                 

 
 

Fig. 2b. Histogram graph analysis of the computed data MLWL 
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Fig. 3. Mathematical Principles used in KF (Mohinder and Angus, 2001) 
 
 
 

However, the first order ARIMA (0, 1, 1) was adopted based 
on the recommendation by (Boye and Ziggah, 2020; Poku-
Gyamfi, 2009; Chen and Hill, 2005; Peprah et al., 2017) and 
the results achieved in the work of Makwinja et al. (2017). 
According to the works of (Boye and Ziggah, 2020; Akyen et 
al., 2016; Makwinja et al., 2017; Poku-Gyamfi, 2009; Chen 
and Hill, 2005; Peprah et al., 2017), it was observed that, the 
more complicated the model, the more likely the results 
deviate from their true mean.  
 
Hence, there was the need to keep the order as low as 
possible. Table 2 present the model result of ARIMA (0, 1, 
1). The AMSE, which measured how much dependent series 
varies from its model predicted level was minimal in ARIMA 
(0, 1, 1) model which indicated a good forecast of the model.  
Conversely, AMAPD which is also known as AMAPE, which 
is a measure of prediction accuracy of a forecasting method 
in statistics, for instance in trend estimations was found to be 
0.5749. Hence, the opposite signed errors did not offset each 
other. This implies that ARIMA (0, 1, 1) model indicated a 
good forecast of the Lake Volta WL. Additionally, AME was 
very small in value of -0.1268 m. It was further noted that, 
ASD  was lowest and smallest in ARIMA (0, 1, 1) model. 

This implies that, the forecasted values do not significantly 
deviate from their true mean, and the error occurring was 
very small. Furthermore, rmin and rmax was found to be 0.0029 
m and -1.9870 m respectively. According to Makwinja et al. 
(2017), the best model for forecasting Lake WL should have 
adequate accurate statistical performance as low as possible 

for it to have accurate forecasts. Therefore ARIMA (0, 1, 1) 
model was selected as the optimal model for WL forecasting 
for the study area based on the lowest statistical performance 
and recommendations by researchers. It was further observed 
that the coefficients of the parameters of ARIMA (0, 1, 1) 
model was significant (p<0.05). According to the works of 
(Boye and Ziggah, 2020; Makwinja et al., 2017; Akyen et al., 
2016), the ARIMA model which indicate lowest normalized 
Bayesian Information Criterion (NBIC) is significant 
(p<0.05), hence, a better model in terms of forecasting 
performance than with large NBIC. Fig. 4a shows the model 
result of the ARIMA (0, 1, 1) model. Based on the results 
achieved in the present study findings, the most suitable 
model for forecasting Lake Volta WL for the study area was 
confirmed to be ARIMA (0, 1, 1). 
 
4.2. Development of the future forecasting model 
Using the selected ARIMA (0, 1, 1) model, the forecast of 
Lake Volta WL was made from (October 2020-December 
2048). In order to resolve the noise issues with the ARIMA 
model, the KF was applied to denoise, filter, and reconstruct 
the forecasted data in order to achieve a better estimate for 
the study area. For precision and accuracy sake, model 
results discussed in section 4.1 was used to validate the 
forecast future trends for the study area. Table 3 is the 
statistical analysis of the forecasted trend up to 2048. Figs. 4b 
to 4d show the forecast results from (October 2020-December 
2048) using the standalone ARIMA (0, 1, 1) model and 
ensemble ARIMA-KF respectively. 

 
 
 

Table 2. Statistical analysis of the ARIMA (0, 1, 1) model (units in meters) 
 

PCI rmin  rmax  AME  AMSE AMAPD ASD  

ARIMA 0.0029 -1.9870 -0.1268 0.0037 0.5749 0.0033 
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Table 3. Statistical analysis of the forecasted Lake WL (units in meters) 
 

PCI min  max  AME  ASD  

ARIMA-KF 3.0041 15.3742 9.1366 0.0116 

 
 

 

According to Makwinja et al., (2017), the forecasted and 
actual values need to be very close. This implies that, the 
forecasting error must be very minimal for the model to be 
considered as optimal. As observed in Table 2, the noise 
residuals were a combination of the positive and negative 
errors indicating that, the model had a better performance of 
forecasting the Lake WL. It was also observed that, the AME 
was very minimal indicating a good forecasting performance. 
In Figs. 4b to 4d, it is obvious that, Lake Volta WL are 
fluctuating with a positive trend. Such positive trend will 
continue up to December 2048. Moreover, it can also be 

observed from Fig. 2a that, the water levels were inclining 
towards the ending of 2020. 
 
According to the work of Makwinja et al., (2017), it was 
revealed that, the basic principle of ARIMA model assumes 
that, time series data is linear and follows a normal 
distribution. Therefore, it can be concluded based on the 
results achieved in this study that, the trend in this present 
study behaved in a manner consistent with ARIMA principle 
which is assumed to follow a certain probability model 
described by joint distribution of random variable. 

 
 
 

 
 

Fig. 4a. Model results of the ARIMA (0, 1, 1) 
 
 
 

 
 

Fig. 4b. Model result of the standalone ARIMA (0, 1, 1) model 
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Fig. 4c. Histogram graph analysis of the forecasted water levels 
 
 

 

 
 

Fig. 4d. Model results of the ensemble ARIMA-KF models 
 
 

 

In addition, time series is non-deterministic in nature such 
that, it cannot predict with certainty that will occur in the 
future (Makwinja et al., 2017). Based on the achieved results, 
the study indicated that, there is a high probability that Lake 
Volta WL will increase as far up to 9.1366 m by 2048. This 
will affect the socio-economic impacts of agricultural 
productivity and hydro-power generations as recorded in the 
works of (Vanderkelen et al., 2018; Hirsch et al., 2014; Béné 
and Obirih-Opareh, 2009). This future inclining can be 
attribute to climate change or human anthropogenic 
activities (Akurut et al., 2014; Vainu and Terasmaa, 2014).  

However, the positive trend of Lake Volta WL predicted in 
the present study is a future risk and needs proper attention 
in order to mitigate its menace. Moreover, with such future 
prediction, deliberate effort has to be to done to find 
appropriate policy options and strategies for sustaining Lake 
Volta WL. 
 
5. Conclusions and Recommendations 
WL studies have become obligatory in establishing a vertical 
geodetic reference network for measuring vertical distance 
and proper management decision analysis. This study for the 
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first time in Ghana investigates the theoretical and practical 
analysis of ARIMA and KF in modelling and predicting the 
monthly WL of Lake Volta Basin. The WL was found to be 
varying from time to time due to the change in the weather 
conditions, temporal variations, and water surface 
topography. The mathematical model that represents the WL 
variations have been presented. The available satellite data 
for twenty-eight years thus, (October 1992- September 2020) 
was used to model and predict the monthly WL. 
Performance criteria indices of rmin, rmax, AME, AMSE, 
AMAPD and ASD were adopted to assess the working 
efficiency and performance of the proposed model. The study 
selected the first order ARIMA (0, 1, 1) model for forecasting 
Lake Volta WL based on the recommendations by existing 
studies. The ARIMA (0, 1, 1) had AME, AMSE , AMAPD 
and ASD  of-0.1268 m, 0.0037 m, 0.5749 m, and 0.0033 m 
respectively which indicated a good forecast of the model. 
Based on the selected model, it is very apparent that Lake 
Volta WL fluctuation is showing a positive trend. Such 
positive trend is predicted to continue up to December 2048. 
The model further predicted that Lake Volta water levels will 
increase up to with a min, max, AME, and ASD of 3.0041m, 
15.3742 m, 9.1366 m, and 0.0116 m respectively by 
December 2048. This study provides critical information for 
future policy making and formulation of intervention 
strategies for sustaining Lake Volta WL. Based on the results 
achieved in this study, it is recommended that, ARIMA and 
KF models be adopted in modelling and predicting MLWL 
for the study area. In this study, we provide the indications 
of potential consequences of WL changes for the Lake Volta 
Basin. The large biases and uncertainties present in the 
projections stress the need for validation to adequately 
represent the future trends of WL to be able to make reliable 
decisions in the basin region. Finally, the evolution of future 
Lake WL of Lake Volta is primarily determined by the 
decisions made at the basin. Therefore, the basin 
management of Lake Volta is of major concern to ensure the 
future of the people living in the basin, the future hydropower 
generation and water availability downstream.  The major 
limitation of ARIMA model in this study was that it only 
captured short-range dependence (SRD). In other words, it 
belongs to the conventional integer models. In practice, 
several time series exhibit long range dependence (LRD) in 
their observations. To overcome this difficulty, it is 
recommended that a similar study should be conducted using 
ARFIMA model with ability to capture long range property 
of the fraction system accordingly and project extended 
period of more than 28 years. However, more work should 
be done in Ghana utilizing soft computing techniques which 
were not considered in this study. Notably among them are 
deep learning Convolutional Neural Networks (CNN), Least 
Squares Support Vector Machines (LSSVM), Wavelet 
Transform (WT) analysis, Extreme Learning Machine 
(ELM) to classically improve regression techniques such as 
Gaussian Regression and Kernel Ridge Regression to 
evaluate its effectiveness for further analysis.  
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