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A NEW DESIGN OF TANGENT HYPERBOLIC FUNCTION GENERATOR WITH 

APPLICATION TO THE NEURAL NETWORK IMPLEMENTATIONS 

Hacer ATAR YILDIZ1 

A CMOS hyperbolic tangent function generator circuit suitable for the 

implementation of analog neural networks is presented. In order to obtain an 

accurate yet simple circuit realization, a judiciously chosen symmetrical Padé 

approximation of the hyperbolic tangent function is proposed. As an 

illustrative application, we set up an application in which the proposed circuit 

is used as the nonlinear block of a two-layer neural network. Simulation 

results using Spectre Simulation tool in Cadence design environment with 

0.18µm CMOS process verify proper operation of the proposed circuit as well 

as the neural network built around. These results demonstrate the validity of 

the theoretical analysis and the feasibility of the proposed circuit.  

Key words: Tangent hyperbolic function generator, Padé approximation, 

Activation function, Neural network implementation 

1. Introduction

This An accurate and high-speed nonlinear function generation is highly demanded in many areas 

of electronics that require computation, instrumentation and control system design [1-3]. Conventionally 

function generation is realized by using look-up table (LUT) [4], polynomial expansion and 

approximation methods. [5-6]. One of the major disadvantage of the LUT method is that it requires 

many hardware resources, thus this is solely used for digital implementations. On the other hand, 

methods relying on approximations such as Taylor and Padé approximants are mainly intended to the 

analog circuit realizations, which can be classified into two main groups; circuits realized with 

transistors operating in sub-threshold mode, usually destined for low frequency applications [7], and 

circuits using transistors operating in strong inversion region [8]. Besides the well-known limitations of 

the circuits designed with transistors operating in sub-threshold, the most important limitation of all 

these solutions is the limited accuracy. In order to increase the accuracy, the approximation order should 

be increased at the cost of increasing circuit complexity. Obviously, this fact leads to the increased chip 

area, which makes the circuits unattractive for VLSI design. One of the commonly used nonlinear 

function is the hyperbolic tangent function, which can be expressed depending on exponential function. 

In this paper, it is aimed to design hyperbolic tangent function generator with high accuracy and minimal 

circuit complexity using an appropriate approach.  
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For this purpose, circuit realization is provided by using Padé approximation considering the 

following design criteria: 

i) Since the hyperbolic tangent function generator is realized in strong inversion region, it will

operate in a much wider frequency range than the sub-threshold circuits proposed in the literature [9]. 

In neural network applications, signals are usually applied to neuron in the form of pulses, or spikes, 

which requires wide bandwidth operation of the neurons. These requirements may be difficult to achieve 

with sub-threshold circuits. 

ii) The degree of approximation should be very high to increase accuracy in analog circuits. This

causes the design complexity for the implementation of circuit. For this reason, it is necessary to 

recommend a special approximation for hyperbolic tangent function, rather than a general 

approximation (Taylor, Padé etc.) for the desired function. 

One of the application area of the hyperbolic tangent function is the analog neural network (ANN) 

implementations. In ANN circuits, one of the most common function used to perform the activation 

process is a S-shaped function and produces outputs in the scale of -1 to 1, which is perfectly realized 

with the hyperbolic tangent function. There are many circuit examples designed to perform the 

hyperbolic tangent function [10-11]. In this work, an ANN that performs character recognition is also 

used to demonstrate the usefulness of the proposed circuit. For this purpose, the proposed tangent 

hyperbolic circuit is used to realize the activation process. All simulation results are obtained in UMC 

0.18µm CMOS technology. The paper is planned as follows: The realization of the hyperbolic tangent 

function and its circuit implementation is given in Section 2 and Section 3 respectively. Simulation 

results of the proposed circuits and comparison with the previous works are presented in Section 4. The 

application of the proposed hyperbolic tangent function generator is described in Section 5. Finally, 

conclusion part is presented in Section 6. 

2. Realization of the Hyperbolic Tangent Function

2.1. The Design of Hyperbolic Tangent Function Generator 

As it is well known from the literature, hyperbolic tangent function can be expressed in terms of 

the exponential function as follows:
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Besides this, exponential function has very effective and well-known approximations [12-13]. Among 

these, Taylor and Padé approximations constitute two mainstreams in the design of exponential function 

generators, as the former is a polynomial type approximation, 

...
!

...
!2

,

!1
1

22


n

xaxanmax
e

nn
ax

(2) 

while the latter is a rational type approximations of the following form, 
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where, m and n are used to define the nominator and denominator degrees of the Padé 

approximant, respectively [14]. It should be noted that the choice of the polynomial or rational type 
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approximation affects the performance of the resulting function generator drastically. In general, the use 

of Padé approximant leads to more complicated but more accurate systems, as the rational function 

approximates the fast variation of the exponential function for finite x values, thanks to the existing 

denominator term. The design of hyperbolic tangent function generator circuit is considered based on 

the following two criteria: 

i) The circuit complexity of the resulting function generator will depend on the mathematical complexity

of the approximating function, that is the orders of the numerator and denominator polynomials in Eqn. 

(3). 

ii) In addition to the simplicity of the circuit design, the accuracy of the function generator's response

over wide input and output range is also very important. 

In this paper, the proposed realization of the hyperbolic tangent function is based on the expression in 

Eqn. (1) and exponential Padé approximants defined in Eqn. (3). By substituting the approximate 

expression in (3) into (1) and rearranging of the terms, the following simple approximation of the 

hyperbolic tangent function is obtained: 
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Note that the proposed approximation is obtained by considering the following realization of the 

involved exponential terms in Eqn. (1) as follows: 
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where the first and the second product terms are symmetrical exponential Padé approximants of 

order [m/n] and [n/m], respectively. It should be noted that owing to the use of the symmetrical Padé 

approximants, the individual errors of each approximant cancel out each other and leads to more accurate 

approximation. On the other hand, this choice leads to mathematically simpler expression, which in turn 

leads to simpler circuit realization. These advantages will be discussed further in Section 2.2. 

Fig.1 Comparison of Padé approximation with symmetrical pairs, arbitrary Padé approximation and Taylor series 

approximation  

The Matlab simulation results obtained using Taylor and Padé approximants are shown in Fig.1. In order 

to obtain a meaningful comparison, the degrees of nominator and denominator polynomials of the 

different approximations are taken as equal. As it can be easily seen from these results, the symmetrical 

Padé approximation gives a much more accurate result than Taylor approximation in a wide range. 
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2.2. Advantages of the Proposed Approach 

Due to the nature characteristics of the hyperbolic tangent function, symmetrical rational Padé 

pairs are selected for approximating to the hyperbolic tangent function, and obtained both a much more 

accurate result and a simpler circuit implementation. Symmetrical Padé approximants can be expressed 

as follows: 
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as a result of which, hyperbolic tangent function assumes the following form:
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where )()()( xdxnxA  . 

Assuming that even and odd parts of the polynomial A(x) are respectively E(x) and O(x), that is  

)()()( xOxExA   and )()()( xOxExA  , the approximation of the hyperbolic tangent function 

is obtained as follows:   
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Therefore, all even order terms in the numerator and all odd order terms in the denominator are missing.

Therefore, the use of symmetrical Padé pair may lead to the simplest algebraic approximation compared

to approximations composed using all other Padé combinations. 

On the other hand, in order to demonstrate the usefulness of the proposed method, the error function of 

the proposed approximation can be obtained as follows:       

𝜀1 ≜ 𝑒𝑥 − 𝑅𝑚,𝑛 = 𝑒𝑥 −
𝑛(𝑥)

𝑑(𝑥)
(9) 

𝜀2 ≜ 𝑒𝑥 − 𝑅𝑛,𝑚 = 𝑒𝑥 −
𝑑(−𝑥)

𝑛(−𝑥)
(10) 

where Ɛ1 and Ɛ2 are the error functions of the Padé approximants. 

Similarly, the error function of the hyperbolic tangent function can be calculated as follows: 

𝜀𝑡𝑎𝑛ℎ ≜ tanh⁡(𝑥) −
(𝑅𝑛,𝑚𝑅𝑚,𝑛) − 1

(𝑅𝑛,𝑚𝑅𝑚,𝑛) + 1
(11) 

𝜀𝑡𝑎𝑛ℎ ≅
𝑒𝑥

(1 + 𝑒2𝑥)2
(𝜀1 + 𝜀2) (12) 

It should be also noted that, the error functions 1 and 2 are symmetrical for x =0. Therefore, 1 and 2 

cancel each other for small x and tanh remains small. Although for large values of x, the error functions 

lose their symmetric properties, the 1 +2 still remains smaller than either 1 or 2. The corresponding 

errors are given in Fig.2. 
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Fig.2 Error functions, 1, 2 (see Eqns. 9 and 10) for m=2, n=1. 

Therefore, although the error is small in the case of symmetrical Padé approximants, still the values of 

the parameters m and n is important and affects the approximation error. 

Fig. 3 Comparison of the error functions, tanh (see Eqn. 11) (straight line: m=3, n=1, dashed line: m=2, n=1). 

Obviously, there is a trade-off between the complexity of the approximating function and the 

circuit complexity. The value n+m can be considered to estimate the complexity of the Padé 

approximation. For more complicated function, i.e for larger values of m+n, the approximation error is 

smaller, but the resulting circuit is more complicated. 

However, as m and n are increased, the rate of error reduction may not be as high as expected. To be 

specific, let us consider two different cases, in the first one of which is used Padé approximants with 

m=2, n=1 and in the second one of which with m=3, n=1. Therefore, it is compared the errors of the 

different symmetrical Padé approximants in Fig.3. For a limited input range, the symmetrical Padé pair 

for m=2, n=1 approximates hyperbolic tangent function with smaller error compared to the more 

complicated approximation, m=3, n=1. This provides an important advantage as the resulting circuit 

would be considerably simpler. Obviously, for larger input range, more complicated approximation 

yields better results, but having more complicated circuit realization. Nevertheless, the degrees of the 

symmetrical Padé approximants in Eqn. (4) are set to m=2 and n=1. With these parameters, the proposed 

approximation for the hyperbolic tangent function is obtained as follows: 
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3. Implementation of the Hyperbolic Tangent Function Generator

Many squarer circuits proposed in the literature realizes the following function [15-18]: 
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where IB is a scaling biasing current. The architecture of the proposed hyperbolic tangent function 

generator is depicted in Figure 4. The structure consists of two current mode squarers, each realizing the 

function in Eqn. (14) and a current mode analog multiplier, which realizes the following function: 
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Assuming that the parameters of the current mode squarers are set to α1=α2=1 and β1=15, β2 =15/6 and 

the currents driving the subcircuits are chosen as:  
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On the other hand, approximation of the hyperbolic tangent function in 

Eqn. (4) is obtained for m=2, n=1 as follows: 
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Therefore, by comparing Eqns. (16) and (17), it is seen that the circuit is indeed realizes approximate 

hyperbolic tangent function for x=Iin/IB and y=Iout/IB. As it can be seen from Fig.4, the circuit adopts 

three input currents. These currents are realized using a current steering/replicator block implemented 

using simple current mirrors. Concurrently, the scaling coefficient of 1/6 can be realized by adjusting 

the transistor sizes of the involved current mirrors, without having to use any additional circuit. 

Squarer 

Subcircuit-1

(α1,β1)Iin

IB1 

Squarer 

Subcircuit-2

(α2,β2)
Iin

IB2

Multiplier 

Subcircuit
Iout

Iin/6

Iout1

Iout2

a

b

c

Fig.4 Architecture which realizes hyperbolic tangent function generator for m=2, n=1 (β1=15 and β2=15/6). 

The hyperbolic tangent function generator has been redesigned using an alternative symmetrical Padé 
pair with the following parameters: m=3 and n=1 for comparative purposes. The hyperbolic tangent 
function obtained using the approach employed in Section 2. is given as follows: 
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Fig.5 Architecture which realizes hyperbolic tangent function generator with the symmetrical Padé pair for m=3, n=1 

For x=Iin/IB and y=Iout/IB, the hyperbolic tangent function can be obtained in terms of currents as follows: 
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If the hyperbolic tangent function is designed using squarer and multiplier subcircuits, the architecture 

of the circuit is obtained as in Fig.5. As can be seen from this figure, this circuit consists of 5 squarer 

and 2 multiplier subcircuits and therefore this realization in this way requires more complicated circuit. 

3.1. Current-Mode Squarer Subcircuit 

As it can be seen from the Fig.6, it is considered the squarer subcircuit-1 which is well- known 

circuit from the literature and operates in current mode [17]. This circuit is based on trans-linear loop 

(M1-M4), and all transistors used in the circuits are assumed to operate in saturation mode. According 

to this, the current equation for saturation region can be given as follows: 

2)(
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W
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where the transistor parameters have the usual meanings.  

By applying Kirchhoff’s voltage law around the loop consisting of transistors M1-M4, using the square 

relationship given in Eqn. (20) and assuming that transistors are perfectly matched, we obtain the 

following relation for the transistors’ drain currents: 

VGS1 +VGS2 =VGS3 +VGS4           (21) 

√𝐼𝐷𝑆1 +√𝐼𝐷𝑆2 = √𝐼𝐷𝑆3 +√𝐼𝐷𝑆4           (22) 

It is assumed that, the transistors have the same transconductance value. By substituting (20) into (21) 

and considering IDS1=IDS2=IB1, the output current is obtained as follows: 
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where α1=1 and β1=15.  

Note that since the IB is the biasing current, the value of β1xIB is provided easily by scaling the 

corresponding current. The output of the second squarer circuit can be also obtained as follows: 

22
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2

22 B

B
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I

I
I   (24) 

where α2=1and β2 = 15/6, this value can be obtained by appropriate scaling of the biasing current. 

3.2. Multiplier Subcircuit 

This subcircuit which performs the multiplication operation, can easily be realized with the following 

equation [19]: 

Fig. 6. The realization of proposed hyperbolic tangent function generator 

XYYXYX 4)()( 22     (25) 

As can be easily seen also from the Fig.6, this circuit is based on two trans-linear loops and achieves 

squaring operations by using these loops. The first loop formed by the M21-M24 transistors provides the 

squarer function (X+Y)2 and the second loop formed by the M25-M28 transistors provides the squarer 

function (X-Y)2. The equations performed by the first and second loops can be given as follows, 

depending on the current values: 
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By substituting the values Iin, Iout1 and Iout2 into (26) and setting IB=IB1=IB2, the final equation is obtained 

as below: 
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It can be said that the proposed circuit easily performs the hyperbolic tangent function characteristic by

appropriately selecting the current values. 
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4. The Comparison and Simulation Results

In order to demonstrate the usefulness of the proposed circuit, the hyperbolic tangent function generator 

is designed for implementing in 0.18µm UMC technology, under supply voltage of ±1V. For the proper 

operation, the biasing current is chosen for IB=5µA. In order to evaluate simulation results, it is compared 

the nonlinear transfer characteristic of the circuit with the ideal hyperbolic tangent function, defined as 

I0ut=α. tanh(βIin).  

     (a)                                                                                                   (b) 

Fig. 7. a)  Simulated circuit output characteristic and ideal characteristic for hyperbolic tangent function. b) The 

proposed hyperbolic tangent function circuit with 0.18 µm CMOS technology layout. 

As it can be seen from Fig.7a, the ideal characteristic obtained for α=1.088 and β=7800 is quite 

compatible with the simulation results. The average error is found to be as 3%. According to these 

results, it can easily be said that the proposed hyperbolic tangent function generator gives a much more 

accurate result compared to the other analog circuit generator in reference [9,22], at the cost of having 

more complicated circuitry. Besides this, in order to provide a fair comparison with other circuits in the 

literature in terms of the area, accuracy and power consumption, it is obtained the circuit layout as shown 

in Fig.7b. Crucial performance figures of the proposed circuit and the recently presented works are 

tabulated in Table 1.  

Table.1 Comparison table with the previous works 

Structure Hybrid[21] Hyperbolic 

tangent [9] 

Hyperbolic tangent[22] proposed 

Area(µm2) 3646 39 90 3500 

Maximum error 3.6% 19.7% 29.33% 3% 

Power consumption NA 62.5 µW 137 µW 244µW 

Technology 180-nm 

CMOS 

180-nm 

CMOS 

180-nm 

CMOS 

180-nm 

CMOS 

As it is known from the literature, in such circuits, digital only solutions (LUT) suffers from large chip 

area and from large power consumption [20]. As a remedy, hybrid realization has been proposed, which 

achieves better accuracy while providing acceptable chip area and power consumption [21]. 

Accordingly, as shown in Table 1, the proposed circuit offers a more advantageous solution in terms of 

the area and the accuracy compared to the hybrid circuit. Beside this, it is clear that the proposed circuit 

provides much better error performance compared to the other analog circuits. In addition, it is also 

found the power consumption of the proposed circuit as 244µW. 
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5. Application

In today state-of-the art technologies, the realization of artificial neural networks (ANN) featuring large 

number of neurons and huge number of interconnection between them poses significant challenges to 

the integrated circuit designers. 

(a)       (b) 

Fig.8.a) General structure of analog neural network. b) The analog neural network circuit performing character 

recognition 

(a) 

Fig.9. a) Representation of the regular characters with a 5x3 matrix. b) Examples of noisy inputs where the network 

generates correct outputs (black color 10uA, white color 0uA, gray levels represent the level between 0u -10u of 

output current) 
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Therefore, many studies on the application and implementation of the ANNs are presented in the 

literature [22-23]. The general scheme of ANN is given in Fig.8a. In order to illustrate the usefulness of 

this work, the proposed hyperbolic tangent function generator is used as an activation function in ANN 

circuit in Fig.8a. The required weighted summing operation are realized using current mirrors in which 

the weights are set by adjusting transistor aspect ratios. The resulting circuit is shown in. Fig.8b. This 

circuit with one hidden layer operates in current mode and is used for the character recognition from the 

inputs set up to represent the letters of the alphabet from the letter "A" to the letter "E". These characters 

are expressed in a 5X3 matrix and represented by black and white patterns. The representation of these 

letters are shown in Fig.9. The training of the network and derivation of the proper weights are derived 

using MATLAB. These values are inserted to the proposed CMOS circuit using Cadence simulation 

program. Thus, by applying the input set that provides each character, the characters corresponding to 

the output values are obtained. It has also been tested whether the ANN is capable of generalization and 

fault tolerant. For this purpose, some of the incorrect input values are deliberately applied to the network 

and it is determined that the network generates correct results despite this error. Therefore, it can be said 

that for this ANN, where the proposed CMOS circuit performs the activation function, it is a fault 

tolerant circuit.  

6. Conclusion

In this study, a new circuit that provides tangent hyperbolic function characteristics is proposed 

using Padé approximation. With the proposed approach, it is aimed to realize the tangent hyperbolic 

function algebraically simple. Thus, the circuit implementation of the tanh function is also reduced to a 

much simple form. In order to demonstrate the usefulness of the proposed circuit, this circuit is used as 

an activation function in an ANN with 15 inputs, 5 outputs and performing character recognition. The 

proposed circuit is based on the translinear principle and consists of sub circuits such as squarer and 

multiplier. By comparing the proposed circuit with those given in the literature, it can easily be said that 

the circuit still covers a small area while providing an accuracy of 3%. The proposed circuit has been 

applied to a simple character recognition problem, which is a well-known problem in the literature, and 

its usefulness and applicability have been proven. 
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