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Abstract

Recently it was shown through simulations studies that Sub-D produces estimates
with unbiased and lower variance-covariance estimates than the ANOVA-based estima-
tor, except in case of random “one-way” balanced designs. In this designs the simulations
studies suggested that they have the same variance-covariance estimates. This paper
aims to compare the common ANOVA-based estimator to Sub-D in random “one-way”
designs with two groups of treatment and in random “one-way” balanced designs. The
comparison will be conducted through theoretical results and corroborated with simula-
tion studies. It will be proved that the ANOVA-base estimator and Sub-D have exactly
the same variance-covariance estimates in both above referred designs. The proof will be
given firstly for random “one-way” designs with two groups of treatment and then for
random “one-way” balanced designs.

!
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1. Introduction

Due to necessity of incorporate the amount of variations caused by certain uncontrol-
lable sources of variations in statistical designs with fixed effects, for example the amount
of variations within and/or between groups of treatments for that the experimenters are
not able to control and those whose the levels must be randomly selected, in research field
such as genetic, agriculture, animal breeding, and quality control and improvement, in
early 1960 several designs with both fixed and random effects terms were introduced and
widely investigated (see Khuri [4] and Silva [11]).

Among those designs we highlight the well known and widely discussed random
“one-way” designs:

zij = µ + αi + εij, i = 1, . . . , k; j = 1, . . . , ni, (1.1)

where



k is the the number of groups of treatment;
ni is the number of observations within the ith group of treatment;
µ is the general mean (the fixed effect);
αi is the random effect due to the ith group of treatment;
εij is the random error due to the jth observation within the ith

group of treatment.

It is assumed that:
αi ∼ (0, γα) , that is αi’s are i.i.d. with mean zero and variance γα;
εij ∼ (0, γε) , that is εij’s are i.i.d. with mean zero and variance γε;
cov(αi, εij) = 0, i = 1, . . . , k and j = 1, . . . , ni.
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When all groups of treatment have the same number of observations, that is ni = n, the
model 1.1 is called random “one-way” balanced design. Otherwise it is called random
“one-way” designs.

Random “one-way” designs are useful tools for modeling repeated measured data
and, in particular, small sample and longitudinal data (see Wallace [15] and Khuri et
al. [5]). For this designs several techniques and tools focussing on variance components
estimation has been developed. Among than the most popular are those based on likeli-
hood and ANOVA (see Demidenko [1] and Pinheiro and Bates [7], for instance). Recently,
while doing research for his PhD Thesis, Silva (2017) developed a new estimator for vari-
ance components named Sub-D (see Silva [11], [12], [13] and Ferreira et al. [2]). On its
approach Silva constructed and applied a finite sequence of orthogonal transformations
(which he called sub-diagonalizations) to the covariance structure of the restricted design
producing a set of sub-models which he used to create pooled estimators for the variance
components.

Through simulations it was Shown that Sub-D produces very realistic estimative in
random “one-way” balanced and unbalanced designs (see Silva [12]); in nested and
crossed “two-way” unbalanced designs (see Silva [11]); and in nested “three-way” un-
balanced designs (See Silva et al.[13]). In fact, the numerical simulation show that Sub-D
produces reasonable and comparable estimates, sometimes slightly better than those ob-
tained with REML and mostly better than tose obtained with Anova. However, due to
the correlation between the sub-models on it’s foundation, the variability of estimates
produced with Sub-D is slightly greater then tose obtained with REML except in random
“one-way” balanced designs. But, when compared with Anova, Sub-D produces esti-
mates with unbiased and lower variance estimates than Anova-based estimator except in
case of random “one-way” balanced designs. In this case, simulations studies suggested
that Sub-D and Anova-based estimator has the same variance. Thus, this work aims to
prove through theoretical results that for this designs Anova-based estimator and Sub-D
have exactly the same variance. Moreover, this work also aims to propose a correction
for a result in the deduction of one of the Sub-D’s estimators for variance components
estimators given in Silva [12].

First section is devoted to the introduction, and the second one to the background.
Thirty section is reserved to prove that Anova-based estimator and Sub-D has exactly
the same variance-covariance in random “one-way” balanced designs. Forth section is
reserved to simulations studies, and the last one for the discussions.

From now on, the following notations will be used without any additional comments:

• PR(X) denotes the projection matrix onto the subspace spanned by the columns of
a matrix X and PR(X)> the projection matrix onto the orthogonal complement of
the subspace spanned by the columns of X;

• Σ(x) denotes the variance-covariance matrix of a random vector x, i.e
Σ(x) = Eb >
0n,m denotes an n×m matrix, while 0n denotes a null vector of dimension n; 1n denotes
a vector of ones having both dimension n;
Jn denotes a n× n matrix of ones;
z ∼ (w, Σ) denotes a random vector z with mean w, and variance-covariance matrix Σ;
z ∼ N(w, Σ) denotes a random vector z with a normal distribution with mean w, and
variance-covariance matrix Σ;
r(A) denotes the rank of a matrix A;
tr(A) denotes the trace of a matrix A
∑n

i 6=j denotes ∑n
i=1 ∑n

j=1 for i 6= j.
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2. The Estimators: Anova and Sub-D

In this section we introduce and briefly discuss Sub-D and ANOVA-based estimators
on design 1.1. Their MSE will be discussed. We will focus on case when the design has
two groups of treatment, i.e k = 2, as well as the case when the design is balanced, that
is ni = n, i = 1, . . . , k.

2.1. ANOVA-based Estimator

The analysis of variance (ANOVA) method of estimating the variance components γα

and γε in model 1.1 consists of equating observed values of the between group mean
squares (MSB) and within group mean square (MSW) to their expected values, and solv-
ing the resulting equations for γα and γε. This method produces unbiased estimators of
γα and γε. Such estimators are respectively given as

γ̂α
A =

1
no

(MSB −MSW)

=
1
no

[
1

k− 1

k

∑
i=1

ni( ¯zi• − ¯z••)2 − 1
N − k

k

∑
i=1

ni

∑
j=1

(zij − ¯zi•)
2

]
and

γ̂ε
A = MSW =

1
N − k

k

∑
i=1

ni

∑
j=1

(zij − ¯zi•)
2, (2.1)

where no =
N2−∑k

i=1 n2
i

N(k−1) , N = ∑k
i=1 ni, ¯zi• = ∑ni

j=1
zij
ni

and ¯z•• = ∑k
i=1 ∑ni

j=1
zij
N .

Following Searle [8], [9] (see Sahai and Ojeda [3]) the variance of ANOVA estimators
γ̂α

A and γ̂ε
A, are respectively given as

Σ
(

γ̂α
A
)

=
2γ2

α(
N2 −∑k

i=1 n2
i

)2

N2
k

∑
i=1

n2
i +

(
k

∑
i=1

n2
i

)2

− 2N
k

∑
i=1

n3
i


+

4Nγαγε(
N2 −∑k

i=1 n2
i

) +
2γ2

ε N2(N − 1)(k− 1)(
N2 −∑k

i=1 n2
i

)2
(N − k)

and

Σ
(

γ̂ε
A
)

=
2γ2

ε

N − k
. (2.2)

Numerical studies carried out by Singh [14] and Caro et al. [6] for different configura-
tions of γα and γε suggested that the unbalancedness of the data results in an increase
of variance-covariance of Σ

(
γ̂α

A
)

and Σ
(

γ̂ε
A
)

. Khuri et al. [5] proved that Σ
(

γ̂α
A
)

attains its minimum for all γα and γε when the data are balanced.

2.2. Sub-D

Lets take the matrix formulation of design (1.1):

z = µ1N + Zβ + ε, (2.3)

where

Z =


1n1 0n1 0n1 . . . 0n1

0n2 1n2 0n2 . . . 0n2

0n3 0n2 1n3 . . . 0n3
...

...
. . .

...
...

0nk 0nk 0nk . . . 1nk

 , β =


α1
α2
...

αk

 and ε =


ε11
ε12
...

εknk

 , (2.4)
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with β ∼ (0k, γα Ik), ε ∼ (0N , γε IN) and β and ε mutually independent. Thus the model
(2.3) may be rewritten as follow

z ∼
(

µ1N , γαZZ> + γε IN

)
. (2.5)

Let B be the N × (N − 1) matrix whose columns are the N − 1 orthonormal eigenvec-
tors associated to the null eigenvalue of 1

N JN , where JN denotes an N × N matrix of 1’s.
Using B it is possible to define (see Silva [12]) a new design (a restricted one) by project-
ing the design (2.5) onto the orthogonal complement of the vectorial subspace spanned
by µ1N , as follow

y = B>z ∼ (µ0N−1, γα M + γε IN−1) , where M = B>ZZ>B. (2.6)

Now let Ai be the matrix whose rows are the set of gi = r(Ai) orthonormal eigenvectors
associated to the eigenvalue θi, i = 1, . . . , h, of M; Let also γ̂α

S and γ̂ε
S denote the Sub-D

estimator of γα and γε, respectively. Thus, following Silva[5], we that

γ̂α
S =

1
h∗

h

∑
i=1

θi

(
hy>Piy−

h

∑
j=1

y>Pjy

)
= y>Λαy, (2.7)

where Λα = 1
h∗ ∑h

i=1 θi

(
hPi −∑h

j=1 Pj

)
, h∗ = h ∑h

i=1 θ2
i −

(
∑h

i=1 θi

)2
, and Pi =

A>i Ai
gi

, and

γ̂ε
S =

1
h∗

h

∑
i=1

θi

(
θi

h

∑
j=1

y>Pjy−
h

∑
j=1

θjy>Pjy

)
= y>Λεy, (2.8)

where Λε =
1
h∗ ∑h

i=1 θi ∑h
j=1
(
θi − θj

)
Pj.

2.2.1. The Correct Version of Sub-D. Unfortunately, it seems that the algebraic manipu-
lation at the time of Sub-D’s deduction did not work as well as Silva [12] wished since we
found that his deduction of γ̂ε

S is wrong. The correct one is the one we presented here at
(2.8). It worth to remark that:

(1) The above elucidated error in the deduction of γ̂ε
S at Silva[5] (Section 3) lies on

(the wrong) computation of (Θ>Θ)−1. Indeed, with Θ =

θ1 1
...

...
θh 1

, we found that

Θ>Θ =

[
∑h

i=1 θ2
i ∑h

i=1 θi

∑h
i=1 θi h

]
so that (Θ>Θ)−1 =

1
h∗

[
h −∑h

i=1 θi
−∑h

i=1 θi ∑h
i=1 θ2

i

]
, (2.9)

but unfortunately a miscalculation led Silva[5] to find 1
h∗

[
h −∑h

i=1 θi
−∑h

i=1 θi ∑h
i=1 θi

]
for (Θ>Θ)−1 instead of the equation at right side of (2.9), which on it’s turn let to
a wrong deduction of γ̂ε

S.
(2) The miscalculation in the deduction of γ̂ε

S did not reflected in the section ’Numer-
ical Example’ of Silva[5], since the computation of (Θ>Θ)−1 was done through a
software (R).

From now on we refer to the correct version of γ̂ε
S given in (2.8).

The next Theorem proposes the variance-covariance of both γ̂α
S and γ̂ε

S.
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Theorem 2.1. Let λs = h2 ∑h
i=1

θs
i

gi
− 2h ∑h

i=1 θi ∑h
i=1

θs−1
i
gi

+
(

∑h
i=1 θi

)2
∑h

i=1
θs−2

i
gi

, s = 2, 3, 4.
Then:

(a) Σ
(

γ̂α
S
)
= 2γ2

α

h∗2 λ4 +
4γαγε

h∗2 λ3 +
2γ2

ε

h∗2 λ2;

(b) Σ
(

γ̂ε
S
)
= 2

h∗2 ∑h
j=1

[
(∑h

i=1 θi(θi−θj))
2

gj

] (
γ2

αθ2
j + 2γαγεθj + γ2

ε

)
.

Proof. (See Shayle et al. [10] for variance-covariance of a quadratic form) Part (a):

Σ
(

γ̂α
S
)

= 2tr
(

y>Λαy
)
= 2tr

[
(Λα(γα M + γε))

2]
= 2γ2

αtr
[
(Λα M)2

]
+ 4γαγεtr [Λα MΛα] + 2γ2

εtr
[
Λ2

α

]
=

2γ2
α

(h∗)2

h2
h

∑
i=1

θ4
i

gi
− 2h

h

∑
i=1

θi

h

∑
i=1

θ3
i

gi
+

(
h

∑
i=1

θi

)2 h

∑
i=1

θ2
i

gi


+

4γαγα

(h∗)2

h2
h

∑
i=1

θ3
i

gi
− 2h

h

∑
i=1

θi

h

∑
i=1

θ2
i

gi
+

(
h

∑
i=1

θi

)2 h

∑
i=1

θi

gi


+

2γ2
α

(h∗)2

h2
h

∑
i=1

θ2
i

gi
− 2h

h

∑
i=1

θi

h

∑
i=1

θi

gi
+

(
h

∑
i=1

θi

)2 h

∑
i=1

1
gi


=

2
(h∗)2

(
λ4γ2

α + 2λ3γαγε + λ2γ2
ε

)
. (2.10)

Part (b):

Σ
(

γ̂ε
S
)

= 2tr
(

y>Λεy
)

= 2γ2
αtr
[
(Λε M)2

]
+ 4γαγεtr [Λε MΛε] + 2γ2

εtr
[
Λ2

ε

]
=

2γ2
α

(h∗)2

h

∑
j=1

θ2
j

gj

(
h

∑
i=1

θi(θi − θj)

)2

+
4γαγε

(h∗)2

h

∑
j=1

θj

gj

(
h

∑
i=1

θi(θi − θj)

)2

+
γ2

ε

(h∗)2

h

∑
j=1

1
gj

(
h

∑
i=1

θi(θi − θj)

)2

=
2

(h∗)2

h

∑
j=1


(

∑h
i=1 θi(θi − θj)

)2

gj

 (γ2
αθ2

j + 2γαγεθj + γ2
ε

)
. (2.11)

�

3. Estimation in Designs with two groups of treatments

It is not so evident a strict comparison between the variance-covariance of Sub-D and
Anova-based estimators, but when the design has a fixed k = 2 groups of treatment,
no matter the number of observation for each group, it seems that they are somehow
comparable.
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When k = 2 it follows that N = n1 + n2 and n0 =
N2−(n2

1+n2
2)

N2 , and so the ANOVA-based
estimators reduce to

γ̂α
A =

1
n0

[
n1( ¯z1• − ¯z••)2 + n2( ¯z2• − ¯z••)2)

]
− 1

no(N − 2)

[
n1

∑
j=1

(
z1j − ¯z1•

)2
+

n2

∑
j=1

(
z2j − ¯z2•

)2

]
and

γ̂ε
A =

1
N − 2

[
n1

∑
j=1

(
z1j − ¯z1•

)2
+

n2

∑
j=1

(
z2j − ¯z2•

)2

]
.

As we may easily conclude, their respective variance-covariance will be given as

Σ
(

γ̂α
A
)

= 2γ2
α +

(
2N

n1n2

)
γαγε +

N2(N − 1)
2(n1n2)2(N − 2)

γ2
ε and

Σ
(

γ̂ε
A
)

=
2γ2

ε

N − 2
. (3.1)

When k = 2, it follows that h = 2, that is M will only have two eigenvalues, θ1 and θ2,
and since r(M) = k− 1 = 1 it follows that θ2 = 0. Under these conditions we have that

Λα =
P1 − P2

θ1
and Λε = P2, (3.2)

and therefore the estimators boils down to

γ̂α
S = y>

(
P1 − P2

θ1

)
y and γ̂ε

S = y>P2y.

The results for their respective variance-covariance follow as a consequente of Theo-
rem 2.1.

Corollary 3.1. Consider the conditions of Theorem 2.1, and let Let k = 2. Then,

(a) Σ
(

γ̂α
S
)
= 2γ2

α +
4
θ1

γαγε + 2
(

g2+1
g2θ2

1

)
γε2 ;

(b) Σ
(

γ̂ε
S
)
= 2γ2

ε
g2

.

Proof. Nothing that h = 2, and so g1 = 1 and θ2 = 0, and applying Theorem 2.1 the
results follow. �

It worth to notice that since both Sub-D and Anova-based estimators are unbiased their
respective mean square error (MSE) are equal to their respective variance-covariance.
This remark allows us to infer about the quality of these estimators.

Remark 3.1. With MSE(q̂) denoting the MSE of an estimator q̂ of a parameter q, we notice the
following:

• Sub-D: MSE
(

γ̂α
S
)
= Σ

(
γ̂α

S
)

and MSE
(

γ̂ε
S
)
= Σ

(
γ̂ε

S
)

;

• Anova: MSE
(

γ̂α
A
)
= Σ

(
γ̂α

A
)

and MSE
(

γ̂ε
A
)
= Σ

(
γ̂ε

A
)

.

The next result gives a comparative framework of the estimators in design with two
groups of treatment.

Proposition 3.1. Let k = 2. Then:
(a) MSE

(
γ̂ε

S
)
= MSE

(
γ̂ε

A
)

;

(b) MSE
(

γ̂α
S
)
= MSE

(
γ̂α

A
)

, if θ1 = 2n1n2
n1+n2

.
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Proof. These results are consequences of Corollary 3.1. Indeed, since r(M) = 1 we have
that g1 = k− 1 = 1 and g2 = N − K = N − 2, so that

4
θ1

=
2(n1 + n2)

n1n2
=

2N
n1n2

and
2(g2 + 1)

g2θ2
1

=
N2(N − 1)

2 (n1n2)
2 (N − 2)

, (3.3)

provide θ1 = 2n1n2
n1+n2

. �

The condition θ1 = 2n1n2
n1+n2

for which MSE
(

γ̂α
S
)
= MSE

(
γ̂α

A
)

imposed in Proposi-
tion 3.1 consists in a measure to compare the quality of estimators, in the sense that if
θ1 < 2n1n2

n1+n2
it holds that Sub-D is better than Anova-based estimator for γα and Anova

based estimator is better if θ1 > 2n1n2
n1+n2

. In fact, as we may see through simulations studies
(see tables 1 and 2),

θ1 =
2n1n2

n1 + n2

whatever the values of n1 and n2, and so γ̂α
S and γ̂α

A have exactly the same MSE.
For some combinations of parameters γα and γε ranging over {0.1, 0.5, 0.75, 1.0} we

simulated s = 10000 repeated designs, using β ∼ N (0, γα) and e ∼ N (0, γε), and
n1 = 101 and n2 = 20. For each simulated design both estimators was applied and the
parameters γα and γε was estimated. Next, the average of the estimated values for the
parameters was computed as well as the standard deviations of the respective estimated
values. See the results in Tables 1 and 2 and an R function for simulating both estimators
in tables 3. As we may see, independently of the configuration for the parameters γα and
γε as well as the configuration for the number of elements in each groups of treatment, the
estimates and the respective standard deviations found are the same for both estimators.
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Table 1. Simulations for different values of γα and γε ranging over
{0.1, 0.5, 0.75, 1.0}, with n1 = 101, n2 = 20 and s = 10000. Actual value de-
notes the actual values of the parameters; Estimate denotes the estimated values
of the parameters; Stand. Dev. denotes the standard deviations of the estimated
values.

Sub-D γα γε ANOVA γα γε

Actual value
Estimate

Stand. Dev.

0.5
0.50129
0.75534

1
0.99912
0.12768

AV
Estimate
Stand. Dev.

0.5
0.50129
0.75534

1
0.99912
0.12768

Actual value
Estimate

Stand. Dev.

1
0.99809
1.42519

0.5
0.50001
0.06520

AV
Estimate
Stand. Dev.

1
0.9980
1.42519

0.5
0.50001
0.06520

Actual value
Estimate

Stand. Dev.

0.75
0.756304
1.08095

0.5
0.50095
0.06576

AV
Estimate
Stand. Dev.

0.75
0.75630
1.08095

0.5
0.50095
0.06576

Actual value
Estimate

Stand. Dev.

0.5
0.50144
0.75143

0.75
0.74989
0.09628

AV
Estimate
Stand. Dev.

0.5
0.50144
0.75143

0.75
0.74989
0.09628

Actual value
Estimate

Stand. Dev.

0.5
0.49695
0.71919

0.1.
0.10004
0.01301

AV
Estimate
Stand. Dev.

0.5
0.49695
0.71919

0.1
0.10004
0.01301

Actual value
Estimate

Stand. Dev.

0.1
0.10171
0.16582

0.5.
0.50099
0.06458

AV
Estimate
Stand. Dev.

0.1
0.10171
0.16582

0.5
0.50099
0.06458
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Table 2. Simulations for different values of γα and γε ranging over
{0.1, 0.5, 0.75, 1.0}, with n1 = 20, n2 = 101 and s = 10000. Actual value de-
notes the actual values of the parameters; Estimate denotes the estimated values
of the parameters; Stand. Dev. denotes the standard deviations of the estimated
values.

Sub-D γα γε ANOVA γα γε

Actual value
Estimate

Stand. Dev.

0.5
0.50746
0.75025

1
1.00002
0.12910

AV
Estimate
Stand. Dev.

0.5
0.50746
0.75025

1
1.00002
0.12910

Actual value
Estimate

Stand. Dev.

1
1.00721
1.44209

0.5
0.50095
0.06572

AV
Estimate
Stand. Dev.

1
1.00721
1.44209

0.5
0.50095
0.06572

Actual value
Estimate

Stand. Dev.

0.75
0.74427
1.07430

0.5
0.50020
0.06574

AV
Estimate
Stand. Dev.

0.75
0.74427
1.07430

0.5
0.50020
0.06574

Actual value
Estimate

Stand. Dev.

0.5
0.50204
0.74323

0.75
0.75085
0.09775

AV
Estimate
Stand. Dev.

0.5
0.50204
0.74323

0.75
0.75085
0.09775

Actual value
Estimate

Stand. Dev.

0.5
0.50690
0.71661

0.1.
0.09980
0.01299

AV
Estimate
Stand. Dev.

0.5
0.50690
0.71661

0.1
0.09980
0.01299

Actual value
Estimate

Stand. Dev.

0.1
0.10217
0.16710

0.5.
0.49945
0.06501

AV
Estimate
Stand. Dev.

0.1
0.10217
0.16710

0.5
0.49945
0.0650

Table 3. The R Code applied to Simulate and test Sub-D and ANOVA-based es-
timators in an unbalanced “one-way” random with two groups of treatments.
Tables 1 and 2 show some examples.

With regard to the optimality of design (1.1) Sub-D allows to set theoretical and con-
sistent results. Optimality designs provide accurate statistical inference by choosing the
number of groups of treatments and number of observations at each group in oder to
minimize the variance of estimating interested parameters, such as γ̂α

S and γ̂α
A, which

is our case.
According with Corollary 3.1,

Σ
(

γ̂α
S
)
= 2γ2

α +
4
θ1

γαγε +
2(N − 1)
(N − 2)θ2

1
γε2 and

Σ
(

γ̂ε
S
)
=

2γ2
ε

N − 2
, (3.4)

recalling g2 = N − 2 and θ1 = 2n1n2
n1+n2

Noting that θ1 depends on N through n1 and n1, and N−1
N−2 ≈ 1 providing N is a large

natural number, results in (3.4) allow us to remark that the bigger is θ1 the smaller are
Σ
(

γ̂α
S
)

and Σ
(

γ̂ε
S
)

. More over, it can be proved that θ1 is not greater than the maxi-
mum of n1 and n2.
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Proposition 3.2. Whatever n1 and n2,

θ1 ≤ max{n1, n2}.

Proof. Firstly, lets suppose n1 = n2. Then θ1 =
2n2

1
n1

= n1.
Now, without lost of generality, let n1 > n2. Then there exists a natural number b

holding 0 < b ≤ n1 such that n2 = n1 − b. Thus,

θ1 =
2n2

1 − 2bn1

2n1 − b
. (3.5)

By contradiction, suppose θ1 > n1, i.e.

2n2
1 − 2bn1

2n1 − b
> n1 ↔ −bn1 > 0,

which is an absurd since by definition n1 > 0 and b > 0. Therefore, θ cannot be greater
than n1. For the case when n2 > n1 we proceed identically. �

The proof of Proposition 3.2 provide a robust tool to discuss the optimality of de-
sign (1.1) with respect to Sub-D. In fact, supposing (with out lost of generality) that
n1 ≥ n2 and so n2 = n1 − b and θ = 2n1n2

n1+n2
, for some natural b, we easily prove that

θ1 −→ n1 as b −→ 0. (3.6)

In practice, this means the “more balanced” the model is the smaller the variances of

γ̂α
S and γ̂ε

S are. In order to do that lets consider the real function t(b) = θ1 =
2n2

1−2bn1
2n1−b ,

0 ≤ b ≥ n1. Thus, we found the following: since t′(b) =
−2n2

1
(2n1−b)2 < 0 (meaning that θ1

is a decreasing function of b) and t′′(b) =
−4n2

1
(2n1−b)3 < 0 (meaning that θ1 is a face-down

concavity function of b), results (3.6) follows. t′(b) and t′′(b) denote the first and second
derivate of function t(b) at b, respectively.

4. Estimation in Balanced “One-Way” Designs

For random “one-way” balanced designs, that is the case when ni = n, i =, 1 . . . , k,
the ANOVA estimators for variance components γ1 and γ2, are given as (see Sahai and
Ojeda [3]).

γ̂α
Ab =

1
n

[(
1

k− 1

) k

∑
i=1

n( ¯zi• − ¯z••)2 −
(

1
k(n− 1)

) k

∑
i=1

n

∑
j=1

(zij − ¯zi•)
2

]

γ̂ε
Ab =

(
1

k(n− 1)

) k

∑
i=1

n

∑
j=1

(zij − ¯zi•)
2, (4.1)

with n = ni, ¯zi• = 1
n ∑n

j=1 zij and ¯z•• = 1
kn ∑k

i=1 ∑n
j=1 zij. The variance of the ANOVA

estimators γ̂α
Ab and γ̂ε

Ab are respectively given as

Σ
(

γ̂α
Ab
)

=
2γ2

1
k− 1

+
4γ1γ2

n(k− 1)
+

2k(n− 1)γ2
2

kn2(n− 1)(k− 1)
and

Σ
(

γ̂ε
Ab
)

=
2γ2

ε

k(n− 1)
. (4.2)

When discussing Sub-D for such a design, we found that M has only two eigenvalues:
θ1 = n with multiplicity g1 = k− 1, and θ2 = 0 with multiplicity g2 = N − k = k(n− 1).
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In this case the respective Sub-D estimators for variance components γα and γε, be-
come:

γ̂α
Sb = y> (Λαb) y and γ̂ε

Sb = y> (Λεb) y, (4.3)

where

Λαb =
A>1 A1

n(k− 1)
− A>2 A2

nk(n− 1)
and Λεb =

A>2 A2

k(n− 1)
. (4.4)

As a consequence of Proposition 2.1 we find that:

Σ
(

γ̂α
Sb
)
=

2
k− 1

γ2
α +

4
n(k− 1)

γ2
αγ2

ε +
2(kn− 1)

kn2(n− 1)(n− 1)
γ2

ε = Σ
(

γ̂α
Ab
)

, and

Σ
(

γ̂ε
Sb
)
=

2γ2
ε

k(n− 1)
= Σ

(
γ̂ε

Ab
)

, (4.5)

and so, consequently, we have the following corollary.

Corollary 4.1. Let ni = n, i = 1, . . . , k. Then:

(a) MSE
(

γ̂ε
S
)
= MSE

(
γ̂ε

A
)

;

(b) MSE
(

γ̂α
S
)
= MSE

(
γ̂α

A
)

.

For simulation purpose, we toke the same combinations of the parameters γα and γε

ranging over {0.1, 0.5, 0.75, 1.0}, and simulated s = 10000 repeated designs, using β ∼
N (0, γα) and e ∼ N (0, γε) and k = 10 and n = 23. For each simulated design, both
estimators are applied and the parameters γα and γε was estimated. Then the average of
the estimated values for the parameters was computed as well as the standard deviations
of the respective estimated values. The number of groups of treatments and number of
observations for each groups was respectively chosen as k = 10 and n = 23. These
values was chosen with no reason other then the simulation purpose. As shown through
theoretical results the estimates for both estimators will be equal no matter the number of
groups and number of observations for each groups are taken. The results are in Table 4
and an R function to simulate both estimators in Table 5. As we may see, independently of
the configuration for the parameters γα and γε, the estimates and the respective standard
deviations found are the same for both estimators.

116



Journal of Statistics & Applied Science, Volume 1, Issue 2

Table 4. Simulations for different values of γα and γε ranging over
{0.1, 0.5, 0.75, 1.0}, with k = 10, n = 23 and s = 10000. Actual value denotes
the actual values of the parameters; Estimate denotes the estimated values of the
parameters; Stand. Dev. denotes the standard deviations of the estimated values.

Sub-D γα γε ANOVA γα γε

Actual value
Estimate

Stand. Dev.

0.5
0.49668
0.25322

1
0.99980
0.09545

AV
Estimate
Stand. Dev.

0.5
0.49668
0.25322

1
0.99980
0.09545

Actual value
Estimate

Stand. Dev.

1
0.99885
0.47794

0.5
0.50044
0.04757

AV
Estimate
Stand. Dev.

1
0.99885
0.47794

0.5
0.50044
0.04757

Actual value
Estimate

Stand. Dev.

0.75
0.75206
0.36972

0.5
0.49970
0.04706

AV
Estimate
Stand. Dev.

0.75
0.75206
0.36972

0.5
0.49970
0.04706

Actual value
Estimate

Stand. Dev.

0.5
0.50078
0.25221

0.75
0.74935
0.07101

AV
Estimate
Stand. Dev.

0.5
0.50078
0.25221

0.75
0.74935
0.07101

Actual value
Estimate

Stand. Dev.

0.5
0.50214
0.23539

0.1.
0.09996
0.00954

AV
Estimate
Stand. Dev.

0.5
0.50214
0.23539

0.1
0.09996
0.00954

Actual value
Estimate

Stand. Dev.

0.1
0.10025
0.05769

0.5.
0.49985
0.04768

AV
Estimate
Stand. Dev.

0.1
0.10025
0.05769

0.5
0.49985
0.04768

Table 5. The R Code applied to Simulate and test Sub-D and ANOVA-based es-
timators in random “one-way” balanced designs. Table 4 shows an example.

5. Discussion

As we may see in Silva et al. [2], Silva [12], Silva [11] and Silva et al.[13], through simu-
lations studies, Sub-D has proven its value. When compared to Anova-based estimator it
was shown that Sub-D produces estimates with unbiased and lower standard deviations,
except in case of random “one-way” balanced designs. In this sense we tough convenient
to investigate the performance of both estimators in such a designs; and we found that
not only they have the same performance in random “one-way” balanced designs but
also in random “one-way” designs with two groups of treatments. In fact this was proven
through theoretical results (see Proposition 3 and Corollary 4.1), corroborated with sim-
ulations studies (see tables 1, 2, and 3, regarding the random “one-way” designs with
two groups of treatments, and tables 4 and 5, regarding the random “one-way” balanced
designs.)
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