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Abstract
It is necessary to consider only relevant predictor variables for prediction purpose because
irrelevant predictors in the regression model will tend to misleading inference. There are so
many model selection methods available in the literature; among these, some methods are
resistant to vertical outliers, but still, the problem of the presence of vertical outliers and
leverage points is not well studied. In this article, we have modified the Sp statistic using
the generalized M-estimator for robust model selection in the presence of vertical outliers
and high leverage points. The proposed model selection criterion selects only relevant
predictor variables by probability one for a large sample size. We found the equivalence of
this criterion and the existing Cp and Sp criteria. The superiority of a proposed criterion
is demonstrated using simulated and real data.
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1. Introduction
The prime intention behind the use of a regression model is to predict the unknown

response variable for the given values of predictor variables. The prediction of the response
variable depends on the predictor variables in the model. The relevant predictor variables
in the model give accurate predictions. Model selection methods consider only relevant
predictor variables. The general form of a multiple linear regression model is

y = Xβ + ε, (1.1)

where y is a vector of n observations on a response variable, β = (β0, β1, β2, ..., βk−1)′ is
a vector of unknown k regression coefficients, X is a matrix of size n × k of observations
on (k− 1) predictor variables X1, X2, X3, ..., X(k−1) with 1’s in the first column and ε is a
vector of errors with E(ε) = 0 and V ar(ε) = σ2In. The full model (1.1) can be written as

y = X1β1 +X2β2 + ε, (1.2)

where X and β are partitioned as X = [X1 : X2] and β′ = [β′
1 : β′

2]. X1 is n× p matrix of
observations on (p− 1) predictor variables with 1’s in the first column and β1 is a vector
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of corresponding unknown regression coefficients. Similarly, X2 is n × (k − p) matrix of
observations on remaining predictor variables and β2 is a vector of corresponding unknown
regression coefficients. Now, consider a submodel based on p−1 (p < k) predictor variables,

y = X1β1 + ε. (1.3)

We can select an appropriate model by testing the null hypothesis H0 : β2 = 0 or using
criterion function available in the literature. Many model selection criteria have been
proposed based on the classical least squares (LS) estimator. Among these, Mallows’s Cp
[22] is a well-known model selection technique. It is defined as

Cp = RSSp
σ2 − (n− 2p), (1.4)

whereRSSp is residual sum of squares of the submodel which has (p−1) predictor variables.
σ2 is an unknown error variance, and it can be replaced by its suitable estimate like residual
mean squares of the full model. The LS estimator is used to calculate RSSp and residual
mean squares in Mallows’s Cp. It is well-known that the LS estimator is optimal and
strongly efficient when assumptions of regression are satisfied. However, an outlier in the
data destroys the LS estimator, and consequently, it is also affecting on Mallows’s Cp and
other LS estimator based methods.

Several robust estimators alternative to the LS estimator have been proposed in the
literature to overcome this issue. The M-estimator [17] is prominent broad class of robust
estimators, and it reduces the effect of outliers by assigning low weights to the outliers. Re-
searchers have suggested robust model selection methods based on this M-estimator. Rao
et al. [25] have reviewed many non-robust and robust model selection criteria. Ronchetti
and Staudte [28] have proposed a robust version of Mallows’s Cp based on the M-estimator.
It is defined as

RCp = Wp

σ̂2 − (Up − Vp), (1.5)

where Wp is the weighted residual sum of squares of the submodel, Up and Vp are constants
depends on weight function and the number of parameters in the corresponding model,
and σ̂2 is a robust and consistent estimate of error variance based on a full model. The
RCp criterion selects the model whose RCp value is close to Vp. Further, Kashid and
Kulkarni [18] proposed a more simple robust model selection Sp criterion based on the
M-estimator. It is defined as

Sp = ∥ŷk − ŷp∥2

σ2 − (k − 2p), (1.6)

where ∥·∥ represents L2 norm, ŷk and ŷp are vector of predicted values of y based on full
model and submodel respectively. The M-estimator is used to calculate these predicted
values. An unknown error variance σ2 is replaced by its suitable robust estimate. The Sp
criterion selects the model whose Sp value is close to the number of unknown parameters
(p) in the submodel.

Kim and Hwang [19] proposed a method based on Mallows’s Cp called as Cp(d) by
deleting d outlying observations to select relevant predictor variables. A robust version
of Akaike information criterion (RAIC) [27] and robust version of Bayesian information
criterion (RBIC) [21] are also available in the literature to select a model in presence of
outliers. Tharmaratnam and Claeskens [32] have compared the classical AIC criterion
with a robust version of AIC based on different robust estimators in the presence of
outliers. André et al. [2], Croux and Dehon [10], Maronna et al. [23], Renaud and
Victoria-Feser [26] proposed different robust coefficient of determination based on robust
estimators to identify appropriate predictor variables and assess the quality of the model.
All the aforesaid robust model selection methods are robust to vertical outliers.
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Generally, three types of outliers namely, vertical outliers, bad leverage points and good
leverage points are considered in the regression analysis . Vertical outliers and bad leverage
points are outlying only in Y-space and X-space respectively, and these types of outliers
are located far away from the regression line. Good leverage points are outlying in both
space, and they are found near to the regression line. The vertical outliers and bad leverage
points are significantly affecting the estimated regression parameters, while good leverage
points are not affecting the estimated regression parameters [11]. All these outlying points
can be identified by using methods available in the literature [1, 3, 4, 6, 8, 12,29,30].

The M-estimator is an one of the widely used robust estimator in regression, but it fails
to account the high leverage point in the parameter estimation [33] and consequently in
model selection methods. Almost all the above-cited methods are introduced to curb the
effect of vertical outliers but are not performing well in the presence of leverage points. In
response to this problem, Mallows and Schweppe [20, 33] have suggested a generalized M
(GM) estimator as an alternative to classical M-estimator. The GM-estimator β̂ of β for
a linear regression model is the solution of an equation,

n∑
i=1

η

(
Xi,

yi −X
′
iβ

σ

)
Xi = 0. (1.7)

In general, the function η can be represented as
η(X, r) = ω(X)ψ (rν(X)) ,

where ω and ν are weight functions such that, ω : Rk → R+, ν : Rk → R+, ψ : R → R,
and r is standardized residual [13]. Mallows and Schweppe [20,33] have recommended the
function η choosing ν(X) = 1 and ν(X) = 1

ω(X) weight functions respectively. Thus, the
function η for Schweppe type estimator is defined as

η(X, r) = ω(X)ψ
(

r

ω(X)

)
,

where ψ(·) is odd, bounded, uniformly continuous, non-decreasing and ψ(u) > 0 for u > 0
[24]. Hill [14] pointed out that, Mallows and Schweppe estimators are more efficient
than several other estimators with Schweppe’s method having an advantage. The main
advantage of GM-estimator with the Schweppe’s weighting scheme is that it assigns a
weight to the high leverage point considering its distance from the regression line (i.e.
assigns low weight to the leverage point if it has high residual) [9, 13]. The diagonal
values (hii) of the hat matrix H = X(X ′

X)−1X
′ are used to identify leverage points.

Generally, hii > 2k/n (or 3k/n) indicates that the corresponding observation is a high
leverage point [6, 20, 29]. It is necessary to assign a low weight to this observation in
the parameter estimation to reduce the effect of leverage point on regression parameters.
This can be achieved by the weight function ω(Xi) =

√
1 − hii because ω(Xi) < ω(Xj)

for hii > hjj , i ̸= j = 1, 2, , n. Therefore, in this article we propose a model selection
criterion based on the GM-estimator with Schweppe’s weight function, ν(Xi) = 1

ω(Xi) and
ω(Xi) =

√
1 − hii, i = 1, 2, ..., n. Equation (1.7) can be solved using iterative method, and

at convergence the GM-estimator is given as,

β̂ = X(X ′
WX)−1X

′
Wy,

where the final diagonal weight matrix W , Wii = η(Xi,ri)
ri

, i = 1, 2, ..., n is obtained by
using ω(X) and ψ(·) function.

The remaining article has organized as follows: Section 2 explains the problem of the
existence of a vertical outlier and a leverage point in the data and evaluates the per-
formance of existing methods. In Section 3, the new criterion is proposed based on the
GM-estimator to combat the simultaneous occurrence of vertical outliers and high lever-
age points. Also, the consistency property of the proposed method has established. An
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extensive simulation study is carried out in Section 4 to illustrate the performance of the
proposed criterion and compared with existing methods through the real data. The article
ends with a discussion given in Section 5.

2. The problem
In this section, we consider an example to illustrate the effect of the simultaneous

occurrence of a vertical outlier and a leverage point in the data. Consider the regression
model

yi = 5 + 3.5Xi1 + 6Xi2 + 0Xi3 + 0Xi4 + εi,

where εi, i = 1, 2, ..., 50 are independent and identical errors generated from a standard
normal distribution. The predictor variables Xj (j=1,2,3,4) are generated from standard
uniform distribution and using the above model, we generate the response y. A vertical
outlier has introduced in the data multiplying by three to a response variable corresponding
to the highest absolute residual. The leverage point has introduced in the data multiplying
by three to a row of the X matrix (excluding 1’s column) corresponding to the highest
leverage(max(hii)). The plot of Modified Generalized Studentized Residuals (MGti) versus
the Diagnostic Robust Generalized Potential (DRGP) is used to identify the outliers in
the data [1].

(a) (b)

Figure 1. (a) MGt-DRGP plot for original data, (b) MGt-DRGP plot in the
presence of a vertical outlier and a leverage point.

In the simulated data from the model under consideration, 26th observation has the
largest absolute standardized residual and MGt value, and 18th observation has the largest
leverage and DRGP value. To make these observations as a vertical outlier and a high
leverage point multiplying by three to y26 and 18th row of an X matrix (excluding 1’s
column) respectively. Thus, the modified data has influential vertical outlier as well as
mild bad leverage point (Figure 1 (b)).

We have evaluated the performance of non-robust and robust model selection methods
using the above simulated data. We compute Cp, Sp, RCp and Sp (based on GM-estimator)
for all possible submodels using simulated data and compare by plotting values of these
statistics (see Figure 2). The classical Cp chooses different subset of predictor variables
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(X1, X2, X3), (X1, X2, X4) and (X1, X2, X3, X4) according to ‘close to p’ criterion. Hence,
Cp select overfitted model means a model having all relevant predictor variables and at
least one irrelevant predictor variable. However, the value of the Cp statistic corresponds
to correct subset X1, X2 is very small as compared to p and this incline to select overfitted
model. This indicates that, Cp statistic is sensitive to vertical outliers and leverage points.
The RCp and Sp are M-estimator based robust model selection criteria choose same subset
of predictor variables X1, X2, X3. This model has extra irrelevant variable X3 and is
overfitted.

Figure 2. a) Cp versus p, (b) Sp versus p, (c) RCp versus Vp, (d) Sp (based on
GM) versus p.

In the light of the above discussion, model selection methods based on LS estimator and
M-estimator fails to select a proper model in the presence of both a vertical outlier and
a high leverage point. Also, Sp statistic based on GM-estimator fails to select the correct
model for this situation. Hence, it is not enough to change the estimator only; it is also
needed to modify the form of criterion. In next Section, we have proposed adaptive Sp
statistic based on GM estimator to tackle the same problem.

3. Adaptive Sp (ASp)

Let β̂ be the GM-estimator of β and ŷk be the vector of predicted values of y based on
the full model (1.1) using the GM-estimator. The vector of predicted values ŷk is given
by ŷk = Xβ̂ = Hy, H = X(X ′

WX)−1X
′
W is a hat or projection matrix, W is a diagonal

matrix of non-negative weights. Let β̂1 be the GM-estimator of β1 and ŷp be the vector
of predicted values of y based on the submodel (1.3) using the GM-estimator. The fitted
equation based on submodel is ŷp = X1β̂1 = Hpy, Hp = X1(X ′

1W1X1)−1X
′
1W1 is a hat

or projection matrix, W1 is a diagonal matrix of non-negative weights. A good model
selection criterion is one which considers the goodness of fit as well as the complexity of
the model [7]. Therefore, we propose adaptive Sp statistic (ASp) based on predicted values
ŷk, ŷp and model complexity measure C(n, p). It is defined as

ASp = ∥ŷk − ŷp∥2

σ2 + C(n, p), (3.1)
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where σ2 is an unknown error variance which can be replaced by using suitable estimate
σ̂ = 1.48×Median(largest (n-k+1) absolute residuals of full model), the constant term 1.48
is used to achieve consistency of scale parameter at normal distribution [33]. The term
∥ŷk−ŷp∥2

σ2 is a measure of the discrepancy between full model and submodel. The value of
this term is large for the wrong model as compared to the correct model, and it is a good
measure to detect the correct models. However, the smallest value of this term indicates
that the submodel is closer to the full model, and its value is zero when the submodel itself
is the full model. Thus, minimization of ∥ŷk−ŷp∥2

σ2 is not a proper model selection criterion
because this can’t accomplish principle of parsimony. Hence, the measure of discrepancy
is necessary but not sufficient in model selection.

Most of the model selection criterion expressed as a goodness of fit term plus a measure
of complexity. The dimension of the model (p) is a trivial measure of the complexity of the
model. Any increasing function of p can be viewed as a complexity measure of a model.
However, it ignores the sample size, hence making the resulting criterion inconsistent for
instance AIC [16]. Hence, a good complexity measure should be an increasing function
of both dimension of the model, p and the sample size, n. To make a good criterion,
we consider an increasing function of n and p, C(n, p) as a measure of the complexity of
the model. The model having smaller value of ASp will be the best model for prediction.
Hence, we select the model having smaller ASp.

The ASp criterion based on LS estimator and M-estimator with certain C(n, p) are
equivalent to Mallows’s Cp and Sp criteria respectively. The ASp criterion can be viewed
as a generalization of Cp and Sp statistic. The Cp, Sp (or RCp) criterion selects the model
according to ’close to p (or Vp)’ rule, whereas the ASp criterion selects the model for which
its ASp value is minimum. Hence, the model selection using Cp, Sp and RCp are more
intricate as compared to ASp.

Proposition 3.1. Least squares estimator based ASp criterion with C(n, p) = 2p − k is
equivalent to Mallows’s Cp.

Proof. The ASp criterion based on the LS estimator is defined as

ASp = ∥ŷk − ŷp∥2

σ2 + C(n, p),

where LS estimator is used to estimate ŷk and ŷp values, and

∥ŷk − ŷp∥2 = ∥(ŷk − y) − (ŷp − y)∥2

= RSSk +RSSp − 2(ŷk − y)′(ŷp − y).

After simplification we get,

∥ŷk − ŷp∥2 = RSSk +RSSp − 2RSSk = RSSp −RSSk [18].

Hence, ASp criterion with penalty C(n, p) = 2p− k is

ASp = RSSp −RSSk
σ2 + 2p− k.

Since σ2 is unknown, it replaced by its suitable estimator σ̂2 = RSSk
n−k . Thus,

ASp = RSSp
σ̂2 − (n− 2p)

= Cp. �

Proposition 3.2. M-estimator based ASp criterion with C(n, p) = 2p− k is equivalent to
Sp.
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Proof. The ASp criterion based on the M-estimator with a penalty C(n, p) = 2p − k is
given as

ASp = ∥ŷk − ŷp∥2

σ2 − (k − 2p)

= Sp. �

Following [16], consider the selected model referred by Mα, α denotes the set of selected
predictor variables including the intercept. The class of models having all relevant predic-
tor variables is denoted by the class of correct models (Mc), and the class of wrong models
(Mw) is a class of models in which at least one relevant predictor is missing. A model
having only relevant predictors is known as the optimal model, and it is denoted by Mαo .

Proposition 3.3. For any correct model, E(ASp) = tr[(H −Hp)
′(H −Hp)] + C(n, p).

Proof. The expected value of ASp is given by,

E(ASp) = E( 1
σ2 [y′(H −Hp)

′(H −Hp)y] + C(n, p)).

Since, (H −Hp)
′(H −Hp) is symmetric matrix and C(n, p) is a constant,

E(ASp) = 1
σ2E[y′(H −Hp)

′(H −Hp)y] + C(n, p)

= 1
σ2 {σ2tr[(H −Hp)

′(H −Hp)] + β
′
X

′(H −Hp)
′(H −Hp)Xβ} + C(n, p).

But, for any correct model, β′
X

′(H −Hp)
′(H −Hp)Xβ = 0. Hence,

E(ASp) = tr[(H −Hp)
′(H −Hp)] + C(n, p). �

Under following mild regulatory conditions, Theorem 3.6 exhibits consistency property
of the proposed ASp criterion for fixed number of predictor variables.

Condition 3.4. For any wrong model Mα ∈ Mw, lim inf
n→∞

∥Xβ−Xαβα∥2

nσ2 > 0.

Whenever Mα ∈ Mw, it is prospect that the difference ∥Xβ −Xαβα∥2 is large and hence
the assumption is justifiable.

Condition 3.5. C(n, pα) = o(n) and C(n, pα) → ∞ as n → ∞, pα is a cardinality of a
set α (|α|).

The following theorem indicates that, if we choose a model having small ASp value from
all possible models, then asymptotically the selected model is an optimal model.

Theorem 3.6 (Consistency Property). Under Conditions 3.4 and 3.5, ASp selects the
optimal model with probability one, i.e. lim

n→∞
Pr(Mα = Mαo) = 1.

Proof. The proof is divided into two parts. In first part, we show that ASp value of any
wrong model is greater than any correct model and in second part, ASp value of optimal
model Mαo is smaller among the class of correct models Mc. For any model Mα, ŷpα is a
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vector of predicted values of y and hence

∥ŷk − ŷpα∥2 =
∥∥∥Xβ̂ −Xαβ̂α

∥∥∥2

=
∥∥∥Xβ̂ −Xβ

∥∥∥2
+
∥∥∥Xαβ̂α −Xβ

∥∥∥2
− 2(Xβ̂ −Xβ)′(Xαβ̂α −Xβ)

=
∥∥∥Xβ̂ −Xβ

∥∥∥2
+
∥∥∥Xαβ̂α −Xαβα

∥∥∥2
+ ∥Xβ −Xαβα∥2

− 2(Xαβ̂α −Xαβα)′(Xβ −Xαβα) − 2(Xβ̂ −Xβ)′(Xαβ̂α −Xαβα)

+ 2(Xβ̂ −Xβ)′(Xβ −Xαβα)

=
∥∥∥Xβ̂ −Xβ

∥∥∥2
+
∥∥∥Xαβ̂α −Xαβα

∥∥∥2
+ ∥Xβ −Xαβα∥2 + ζ1 + ζ2 + ζ3. (3.2)

Since, β̂α − βα = op(1) [24] and by law of large numbers, ζ1 = op(n), ζ2 = op(n) and
ζ3 = op(n). Thus,

∥ŷk − ŷpα∥2 =
∥∥∥Xβ̂ −Xβ

∥∥∥2
+
∥∥∥Xαβ̂α −Xαβα

∥∥∥2
+ ∥Xβ −Xαβα∥2 + op(n). (3.3)

Similarly, under some regulatory conditions, we have
∥∥∥Xαβ̂α −Xαβα

∥∥∥2
= Op(1) [9,20,24].

For any Mα ∈ Mc, Xβ = Xαβα and by Cauchy-Schwartz inequality

∥ŷk − ŷpα∥2 =
∥∥∥Xβ̂ −Xβ

∥∥∥2
+
∥∥∥Xαβ̂α −Xαβα

∥∥∥2
− 2(Xβ̂ −Xβ)′(Xαβ̂α −Xαβα)

≤
∥∥∥Xβ̂ −Xβ

∥∥∥2
+
∥∥∥Xαβ̂α −Xαβα

∥∥∥2
+ 2

∥∥∥Xβ̂ −Xβ
∥∥∥2 ∥∥∥Xαβ̂α −Xαβα

∥∥∥2

= Op(1). (3.4)
Let ASpα and ASpα∗ are values of the ASp of any wrong model Mα ∈ Mw and correct
model Mα∗ ∈ Mc respectively. By Condition 3.4, 3.5 and combining (3.3), (3.4),

lim inf
n→∞

Pr
(
ASpα > ASpα∗

)
= lim inf

n→∞
Pr

(
∥Xβ −Xαβα∥2

σ2 + op(n) > 0
)

≥ Pr

(
lim inf
n→∞

∥Xβ −Xαβα∥2

σ2 + op(n) > 0
)

= 1. (3.5)
Thus, the value of ASp of a wrong model is greater than any correct model belongs to the
class of correct models for large sample size. In the light of Equation (3.5), it is sufficient
to show that the ASp value of the optimal model is small among the class of correct models
Mc to complete the proof of consistency property. By Condition 3.5, C(n, pα) → ∞ as
n → ∞ and C(n, pα∗) − C(n, pαo) ≥ 0 because pα∗ ≥ pαo for any correct model. From
Equation (3.4), we have

ASpα∗ −ASpαo =
∥∥ŷk − ŷpα∗

∥∥2

σ2 − ∥ŷk − ŷpαo ∥2

σ2 + C(n, pα∗) − C(n, pαo)

= Op(1) + C(n, pα∗) − C(n, pαo)
≥ 0. (3.6)

This proves that, the ASp is a consistent criterion. �

4. Performance of ASp criterion
In this section, we evaluate the performance of ASp through a simulation study by

considering three regression models and six penalty functions (Table 1). We have generated
data and introduced vertical outliers and leverage points in this data using the procedure
given in the Section 2. The good leverage point does not affect estimator of regression
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parameters and the ASp criterion based on this estimator. Therefore, throughout the
entire simulation study, bad leverage points are considered and are mentioned as leverage
points. The different combinations of the number of vertical outliers and the number of
leverage points have considered in this simulation study. The Huber ψ(·) function is widely
used for robust parameter estimation in linear regression, and the tunning constant 1.345
achieves high efficiency over LS estimator in normal case [20]. The ASp statistic for all
possible submodels calculated using Huber’s ψ(·) function with tuning constant 1.345.

Table 1. Models and Penalty functions.

Sr. No. Model Penalty function C(n, p)
1. M1 : y = 5 + 2X1 + 3X2 + 0X3 + ε P1= 3p
2. M2 : y = 4 + 3X1 − 2X2 + 7X3 + 0X4 + 0X5 + ε P2= 2p log(p)
3. M3 : y = 3 + 2.5X1 + 1.7X2 − 6X3 + 8X4 + 0X5 + 0X6 + 0X7 + ε P3= p log(n)

P4= p(log(n) + 1)
P5= 6p log(log(n))
P6= p

√
n

4.1. ASp criterion with different penalties
In Table 2 and 3, the percentage of optimal model selection based on 1000 runs for

different combinations of penalties, sample sizes, and models has recorded. For model M1,
all penalties work well in case of clean data (0-Vertical outliers and 0-Leverage points) and
select an optimal model with at least 75% when the sample size is 50. After adding vertical
outliers/and leverage points in the data still, ASp work well and selects an optimal model
with up to 81.4% in the presence of vertical outlier only, 65.6% in the presence of leverage
point only, 62.7% in the presence of both vertical outlier and leverage point for sample
size 50. Moreover, the ASp works satisfactorily for other combinations of the number of
vertical outliers and leverage points. These percentages of optimal model selection increase
with increasing sample size. The similar results have obtained from model M2.

For model M3, the ASp criterion selects the optimal model with at least 59% for clean
data and sample size 50; but as sample size increases this percentage increases. ASp
performs better in the presence of vertical outliers/and leverage points, and select optimal
model with more than 90% for large sample size. It is observed that, the performance
of the ASp criterion is based on ratio k/n. The percentage of optimal model selection
increases as k/n decreases.

Hence, for small sample size and in the presence of vertical outliers/and leverage points,
ASp performs satisfactorily. As the sample size increases, the optimal model selection per-
centage increases to 100% for P3, P4, P5 and P6 penalties. Thus, the simulation results
show that the proposed criterion is consistent. Also, the ASp criterion with P1 and P2
penalties select the optimal model preciously in the presence of vertical outliers/and lever-
age points for large sample size. Thus, the simulation study indicates that the proposed
criterion performs well and selects the optimal model more preciously for a large sample
size.

4.2. Comparative study of ASp with Cp, Sp and RCp

The comparative study of ASp and other criteria (Cp, Sp and RCp) in the presence of
vertical outlier and leverage point is carried out through model selection ability for same
simulation design and M1,M2 models. The model selection ability of these criteria has
presented in Figure 3 by using 100 simulated datasets. In Figure 3, P1, P2, P3, P4, P5 and
P6 refers to ASp criterion with P1, P2, P3, P4, P5 and P6 penalty function respectively.
This simulation study shows that the simultaneous occurrence of a vertical outlier and a
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leverage point effect on the performance of Cp, Sp, RCp criteria, and most of the times Cp
selects wrong or overfitted model. Mostly Sp select overfitted model, but the number of
the wrong model selected by Sp is small as compared to Cp. Another one robust criterion
RCp select optimal model more preciously as compare to Cp and Sp, but it performs poorly
as compared to ASp. The difference between overfitted models selected by RCp and ASp
is notable. Thus, the ASp criterion increases the optimal model selection percentage by
at least 50% relative to others. As the sample size increases, the probability of selecting
the wrong model using the above criteria approaches to zero. However, the ASp selects
an optimal model with a large percentage as compared to Cp, Sp and RCp. In conclusion,
the ASp has more model selection ability as compared to others.

Table 2. Percentage of selecting optimal model (1000 runs).

Model n 0-Vertical outliers and 0-Leverage points 1-Vertical outlier and 0-Leverage points
P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

M1

50 75.4 85.4 81.8 85.6 84.7 86.1 68.5 79.9 75.6 80.2 79.9 81.4
70 77.7 87.8 86.7 89.8 91.9 92.2 74.6 86.8 85.3 89.1 91.7 91.8
100 78.2 89.4 89.8 93.0 97.1 97.4 74.0 86.8 87.2 90.7 97.0 97.2
200 81.1 89.4 92.9 96.0 99.3 99.8 79.0 90.3 93.5 95.9 99.5 99.8
300 79.3 91.1 94.6 97.2 99.6 100.0 79.6 90.5 95.0 96.5 99.4 99.8

M2

50 75.0 86.1 81.6 85.2 85.2 86.0 65.5 80.4 74.1 79.5 81.2 82.5
70 78.1 89.4 87.1 89.7 93.3 93.3 75.1 87.3 84.0 88.2 92.0 92.3
100 77.7 91.2 89.7 93.3 97.7 98.4 73.0 89.3 87.3 91.9 96.8 97.5
200 81.3 92.2 92.8 95.6 99.1 99.9 79.7 92.1 93.0 95.4 98.8 99.8
300 80.0 91.9 94.0 96.6 99.4 100.0 79.4 91.5 94.3 96.2 99.4 99.8

M3

50 59.1 72.5 66.7 70.4 67.4 69.7 55.0 70.3 64.0 68.0 65.0 67.2
70 66.1 84.0 77.8 83.0 82.3 82.8 61.0 80.0 73.1 79.1 81.1 81.5
100 70.0 88.6 85.1 89.3 93.8 92.3 66.6 86.2 81.7 86.9 93.8 92.6
200 73.3 91.7 91.0 95.0 99.0 99.8 70.7 90.1 89.3 93.9 98.6 99.7
300 72.3 91.7 92.7 95.7 99.3 99.8 74.5 92.0 92.9 95.5 99.4 99.8

Model n 0-Vertical outliers and 1-Leverage point 1-Vertical outlier and 1-Leverage point
P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

M1

50 54.6 64.1 60.9 63.9 64.7 65.6 49.0 58.3 54.8 58.6 62.7 61.6
70 57.9 69.8 68.1 73.4 79.8 79.3 55.4 69.6 68.2 72.2 79.7 79.8
100 63.3 76.5 76.9 81.9 90.7 91.2 58.8 71.5 72.4 78.3 87.9 88.9
200 71.8 82.4 86.4 90.7 96.8 99.1 69.0 80.4 85.7 89.9 96.2 98.6
300 73.4 84.7 89.3 93.1 98.6 99.9 74.5 85.6 91.8 94.9 98.1 99.7

M2

50 52.7 65.7 59.7 65.1 71.9 70.6 45.8 60.8 53.0 59.6 68.1 64.9
70 56.1 71.0 66.2 72.4 82.1 81.4 55.7 69.3 66.0 71.2 82.4 82.0
100 60.1 77.7 75.0 80.9 90.9 91.8 59.8 77.4 74.7 80.4 90.5 91.4
200 68.6 85.1 86.4 90.8 96.9 99.0 69.8 85.0 86.8 90.2 96.8 99.1
300 73.0 88.9 91.7 94.5 98.6 99.8 74.3 86.4 90.1 92.4 97.7 99.9

M3

50 34.8 49.0 41.8 46.5 50.4 50.6 33.7 47.1 41.0 44.9 45.7 47.0
70 49.7 67.0 60.1 65.5 69.9 69.4 42.1 62.0 53.3 60.6 65.2 64.9
100 49.6 71.2 65.7 71.6 82.4 82.7 47.2 69.4 63.9 70.1 80.4 81.6
200 61.2 83.7 82.6 88.2 95.2 98.1 60.2 83.0 82.3 87.6 95.6 98.2
300 64.3 84.3 85.5 89.7 97.1 99.8 63.3 86.5 87.6 90.4 96.7 99.5
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Table 3. Percentage of selecting optimal model (1000 runs).

Model n 0-Vertical outliers and 2-Leverage points 2-Vertical outliers and 0-Leverage points
P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

M1

50 52.3 58.0 55.2 55.6 51.8 53.7 82.8 87.3 85.0 86.7 79.3 82.7
70 62.7 71.0 69.9 72.2 72.5 72.3 85.7 91.5 90.5 91.6 89.7 90.6
100 69.0 77.7 77.9 81.2 86.5 86.0 88.3 94.3 94.3 96.3 97.5 96.8
200 73.6 81.1 84.4 87.6 94.8 97.6 88.5 93.5 95.1 96.8 99.0 99.9
300 81.5 89.2 92.9 94.4 98.2 99.7 90.2 94.9 96.9 98.6 99.9 100.0

M2

50 44.0 54.5 50.4 53.3 59.6 59.6 69.2 79.4 75.5 78.3 76.0 78.4
70 46.7 60.2 55.6 61.1 71.7 70.9 75.4 88.1 84.7 87.4 88.3 88.7
100 51.6 67.5 64.7 71.0 82.6 84.6 78.8 91.7 89.4 94.0 97.4 97.3
200 63.4 79.2 81.0 85.7 93.1 96.3 79.0 91.9 92.9 95.8 99.6 100.0
300 66.1 82.7 86.7 90.3 96.8 98.9 81.1 93.6 95.5 97.6 99.5 100.0

M3

50 30.4 36.7 33.5 35.6 33.9 34.7 62.0 66.9 66.0 65.9 54.3 58.9
70 33.6 46.9 42.8 46.0 48.9 49.4 66.3 81.0 75.3 80.3 76.1 77.0
100 42.5 62.2 57.7 62.5 71.1 71.3 73.3 90.6 87.2 90.3 92.3 90.4
200 51.1 73.5 72.8 77.8 90.5 95.1 71.9 91.8 91.1 94.5 98.9 99.4
300 54.0 76.9 78.7 83.0 94.9 98.7 74.3 92.3 92.9 95.6 99.3 100.0

Model n 1-Vertical outlier and 2-Leverage points 2-Vertical outliers and 1-Leverage point
P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

M1

50 52.1 58.3 55.5 57.0 53.2 55.3 65.9 71.8 69.7 70.7 68.8 70.5
70 60.5 68.0 66.4 67.4 68.2 68.4 77.0 84.0 82.0 84.5 84.5 85.0
100 65.7 75.9 76.1 80.0 85.5 86.0 78.5 85.4 85.4 88.7 93.4 94.0
200 76.0 84.4 87.4 89.8 95.3 97.9 84.1 91.2 93.1 95.5 98.4 99.5
300 79.7 87.6 91.4 93.6 97.4 99.2 84.2 91.4 95.1 96.8 98.8 99.8

M2

50 39.8 54.5 48.0 53.5 61.9 59.7 54.5 66.9 61.0 65.9 67.8 68.0
70 44.7 59.6 54.7 60.9 70.3 70.0 60.1 73.3 69.1 74.2 81.5 81.2
100 51.6 69.1 65.8 72.2 82.5 84.4 64.2 81.0 78.7 84.0 91.8 93.2
200 61.9 78.5 80.4 84.3 93.8 96.5 72.0 86.5 87.5 90.6 97.2 99.3
300 68.2 82.5 85.1 88.1 96.5 99.6 75.4 89.5 92.2 94.6 98.9 99.9

M3

50 26.6 36.1 31.8 35.1 34.0 35.3 36.4 47.6 42.4 45.5 43.7 44.6
70 35.3 48.2 43.3 47.5 49.6 50.3 47.7 62.8 57.2 61.8 62.7 63.0
100 40.3 58.7 53.9 59.3 68.1 69.2 56.0 74.8 69.9 75.5 82.7 82.1
200 50.4 73.6 73.0 78.8 90.5 94.4 62.6 84.9 84.3 89.5 96.6 98.1
300 53.1 77.9 79.8 84.7 94.7 99.0 64.8 85.3 86.9 90.2 97.4 99.5

Model n 2-Vertical outliers and 2-Leverage points
P1 P2 P3 P4 P5 P6

M1

50 45.6 51.6 48.6 49.2 48.2 49.3
70 61.1 67.2 64.8 67.1 68.2 68.5
100 66.8 75.3 75.6 78.4 83.3 83.4
200 77.1 83.5 86.8 89.3 95.6 98.1
300 80.4 88.1 92.3 94.1 97.6 99.7

M2

50 38.4 52.1 44.9 51.1 58.5 58.1
70 44.7 58.3 53.5 59.1 69.9 69.5
100 49.8 64.9 62.2 69.8 81.1 81.8
200 59.9 74.5 76.2 81.3 90.8 95.2
300 63.1 79.5 84.3 87.9 95.9 99.0

M3

50 24.6 32.4 28.2 30.5 33.6 33.4
70 33.8 48.0 42.3 45.5 50.1 50.6
100 39.0 56.3 51.9 57.1 67.5 68.3
200 50.2 72.6 71.8 78.1 90.1 95.2
300 55.8 79.0 81.2 85.4 95.5 99.1
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Figure 3. (a)-(j) Model selection ability of ASp, Cp, Sp and RCp.

4.3. Example: Agglomeration in Bayer precipitation data
Sommer and Staudte [31] and Bab-Hadiashar and Suter [5] analyzed Bayer precipitation

data on the agglomeration of aluminium trihydroxide (Al(OH)3) crystals by means of the
Bayer precipitation process. Data has 51 observations on the response variable y (An
agglomeration of crystals with size exceeding 45 microns, i.e. the difference between the
percentage of crystals exceeding this size, which leave the agglomerator tank and those
which enter it) and nine predictor variables X1 −X9 [5,31]. Figure 4 shows that, the data
has 11 vertical outliers, 6 bad leverage points and 5 good leverage points.

For this data, we compared the performance of non-robust as well as robust criteria. The
Cp and RCp recommend several submodels with three or more variables, and Sp suggests
model containing at least five variables (Figure 5). Whereas, the ASp would consider
five predictor variables X1, X3, X4, X5, X8. Thus, the model having X1, X3, X4, X5, X8
variables seems to be "good", according to ASp criterion with different penalties (Table
4). Sommer and Staudte [31] suggest X1, X3, X4, X5, X7, X8 predictor variables using
RCp with Mallows weight, and Bab-Hadiashar and Suter [5] suggest three best subsets
(X1, X3, X4, X5, X8), (X1, X3, X4, X5, X7, X8) and (X1, X3, X4, X5, X7, X8, X9) for the same
data.
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Figure 4. MGt-DRGP plot for Bayer Precipitation data.

Figure 5. Cp, RCp and Sp plots for Bayer Precipitation data: (a) Cp versus p,
(b) RCp versus Vp, (c) Sp versus p.

For a real-life data set, it is difficult to show which submodel is good. Generally, the pre-
diction error increases due to an addition of irrelevant variables in the model [34]. Consider
three models suggested by [5] for further study, and compare the prediction error of these
three models using GM-estimator and k-fold cross-validation (k=10). The prediction er-
ror of (X1, X3, X4, X5, X8), (X1, X3, X4, X5, X7, X8) and (X1, X3, X4, X5, X7, X8, X9) are
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57.8597, 69.4523 and 67.7013 respectively. The k-fold cross-validation study indicates that
the model selected by ASp has a small prediction error as compared to other, and the pre-
diction error of the model increases due to an addition of X7 or X7 and X9. Thus, a subset
of predictor variables namely X1, X3, X4, X5, X8 is appropriate for fitting the model.

Table 4. ASp values and selected variables corresponding to different penalties.

Penalty Selected Variables ASp (minimum)
P1

X1, X3, X4, X5, X8

24.9337
P2 28.4348
P3 30.5247
P4 36.5247
P5 56.2214
P6 49.7823

4.4. The performance of ASp criterion for different ψ(·) functions
We have compared the performance of the ASp criterion based on GM-estimator and

M-estimator with different ψ(·) functions in this section. The data was generated using
the model and procedure explained in Section 2. The performance of three types of
ψ(·) functions [15] i) Monotonic- Huber, Fair, ii) Soft Redescending- Cauchy, Welsch
and iii) Hard Redescending- Tukey’s bisquare (or biweight), Talwar has examined. The
percentages of optimal model selection are calculated using 1000 simulated datasets, and
the results are recorded in Tables 5-6. It is observed that, the hard and soft rescending
functions are working well as compared to the monotonic functions. The performance of
the M-estimator with redescending function is notable, and among redesceding functions,
the Tukey’s bisquare function has better performance. Nevertheless, the ASp criterion
based on the GM-estimator selects the optimal model more precisely as compared to that
based on the M-estimator. The performance is dependent on the choice of penalty, and
the penalty function satisfying Conditions 3.4, 3.5 are selecting the optimal model with
a high percentage. Overall, the criterion based on GM-estimator with the redescending
function will be a better choice for small as well as large n.

4.5. The performane of ASp criterion for difference ω(·) weight functions
In the previous simulation study, the weight function ω(Xi) =

√
1 − hii based on the

hat matrix has considered to compute the ASp criterion value. The hat matrix is ham-
pered by a masking effect, and consequently, the diagonal values of the hat matrix do
not always detect leverage points [30]. To overcome this problem, we can use alternative
ω(·) weights based on robust measures. The Robust Mahalnobis Distance (RMD) based
on Minimum Volume Ellipsoid (MVE) can be used to identify leverage points [11,29,30].
The Generalized Potential (GP) is an another measure used to identify the leverage point,
and the observation is said to be a high leverage point if corresponding GP value is greater
than the threshold value Median(GPi) + 3MAD(GPi) [1].

In this section, the superiority of the ASp criterion based on GM-estimator with different
ω(·) weights (Table 7) and ψ(·) functions is checked for severe cases: 5% vertical outliers
and 5% leverage points, 10% vertical outliers and 10% leverage points, 15% vertical outliers
and 15% leverage points. The data was generated using the model explained in the Section
2. Vertical outliers were included in the data multiplying by three to the response variable
corresponding to maximum absolute residual, and bad leverage points were included in
the data multiplying by three to response variable and row of the matrix X (excluding 1’s
column) corresponding to maximum leverage (hii). The results are reported in the Table
8. A weight function ω1 is unable to detect all leverage points for large n and consequently,
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it effect on the performance of the ASp criterion in presence of multiple leverage points. It
is observed that, ASp criterion based on GM-estimator with robust weights ω3, ω4 and ω5
perform better in presence of multiple outliers. Also, the performance of ω2 is remarkable.
The ASp criterion with hard rescending functions and robust weights perform well. Hence,
the ASp criterion with hard rescending function with robust weight is a better choice in
presence of multiple outliers.

Table 5. Performance of ASp criterion for GM-estimator and M-estimator with
different ψ(·) functions.

n Estimator ψ(·)
function

1-Vertical outlier and 1-Leverage point 2-Vertical outliers and 1-Leverage point
P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

50

GM
estimator

Huber 52.90 64.30 60.80 66.90 80.40 75.80 49.30 62.40 58.10 65.10 77.10 73.80
Fair 43.00 53.80 49.70 55.60 70.40 65.00 40.10 51.80 46.80 53.80 66.90 63.50

Cauchy 59.60 71.10 66.70 73.30 84.50 81.90 55.80 68.80 64.10 71.00 83.20 79.40
Welsch 61.30 74.10 69.30 76.20 86.60 83.50 59.30 70.00 66.10 72.30 84.20 81.30

Bisquare 61.50 74.00 69.50 76.50 86.90 83.50 59.30 69.70 66.40 72.50 84.50 81.20
Talwar 60.00 71.80 67.60 73.70 83.10 80.70 58.50 69.10 65.90 71.20 82.80 80.40

M
estimator

Huber 29.40 38.80 36.40 41.00 50.60 47.60 29.20 38.20 35.40 40.20 49.40 46.20
Fair 23.30 31.70 28.10 32.90 41.60 40.10 22.30 31.00 28.50 32.90 42.60 40.00

Cauchy 38.60 47.80 44.70 50.70 60.50 57.70 36.60 48.00 44.20 50.00 61.20 57.60
Welsch 44.80 54.70 52.00 56.60 65.60 63.60 43.00 53.40 50.20 55.40 65.70 63.00

Bisquare 43.60 54.40 51.30 56.30 65.20 63.00 43.20 53.60 49.90 55.50 65.50 63.00
Talwar 30.20 37.60 35.20 39.00 45.30 44.10 29.40 37.50 34.10 38.70 45.70 43.90

70

GM
estimator

Huber 60.10 71.90 70.40 75.60 86.70 85.90 56.00 69.70 67.70 74.10 86.30 85.30
Fair 48.50 61.10 59.30 64.90 78.20 77.60 47.50 58.80 57.50 62.30 77.80 76.70

Cauchy 64.60 77.10 75.60 81.50 89.80 89.50 60.70 74.20 72.50 78.50 89.50 88.60
Welsch 66.80 79.50 78.10 83.60 91.40 90.90 62.50 76.30 75.00 80.70 92.00 91.30

Bisquare 66.60 79.10 77.90 83.70 91.50 91.20 63.40 76.60 75.40 81.10 92.00 91.60
Talwar 66.40 77.80 76.60 81.30 89.50 89.30 63.70 77.70 75.80 81.40 90.70 90.50

M
estimator

Huber 38.10 49.60 47.90 53.10 64.60 64.50 38.00 49.20 46.70 52.70 65.30 63.80
Fair 30.90 40.60 39.60 44.30 54.80 53.70 31.20 40.00 39.00 44.50 55.40 54.90

Cauchy 50.60 62.70 61.40 67.30 78.00 77.30 47.40 60.00 57.70 64.50 76.90 75.90
Welsch 57.30 70.30 68.10 74.00 84.80 84.40 53.90 65.90 63.80 70.60 82.40 81.40

Bisquare 57.40 70.30 68.30 74.40 85.00 84.50 54.80 66.80 64.40 71.10 82.70 81.70
Talwar 47.00 57.40 56.00 60.80 68.30 67.90 46.30 56.40 54.60 59.60 69.10 68.80

100

GM
estimator

Huber 65.00 75.50 75.90 80.30 91.20 92.50 63.50 73.50 74.00 79.20 91.90 92.80
Fair 54.70 66.60 67.40 73.60 86.30 87.50 52.20 63.90 64.90 70.60 84.90 87.00

Cauchy 68.90 79.50 80.20 84.20 94.00 95.30 66.60 79.40 80.30 85.20 95.10 95.80
Welsch 70.70 82.20 82.60 86.80 95.30 96.90 69.50 80.90 81.50 86.50 95.80 96.50

Bisquare 71.20 82.70 82.90 87.00 95.20 96.80 69.80 81.30 82.10 87.30 95.90 96.50
Talwar 71.30 81.60 82.40 86.70 95.90 96.50 69.90 81.30 81.80 87.60 95.60 96.50

M
estimator

Huber 49.40 60.30 60.70 65.60 79.00 81.50 49.50 59.80 59.90 64.30 78.90 81.10
Fair 40.10 50.10 50.40 54.80 68.40 70.70 37.90 48.40 48.60 53.40 68.50 70.50

Cauchy 58.80 69.40 70.10 76.30 87.40 89.20 58.10 70.20 70.50 75.20 86.70 88.70
Welsch 65.60 77.20 77.70 82.70 92.30 93.60 63.30 75.80 76.30 81.30 91.80 93.60

Bisquare 65.30 77.00 77.80 83.30 92.30 93.80 64.50 76.20 77.00 82.30 92.20 93.40
Talwar 61.10 72.00 72.60 77.00 86.80 87.80 61.70 72.40 72.70 78.30 87.00 88.30

200

GM
estimator

Huber 68.70 81.40 85.10 89.30 95.90 98.40 67.20 81.20 85.20 88.90 96.70 98.60
Fair 59.80 73.40 79.60 84.40 92.90 97.40 60.20 72.80 77.80 83.10 92.80 98.20

Cauchy 72.80 85.10 89.30 92.30 97.30 99.50 72.60 84.90 88.40 91.50 97.60 99.50
Welsch 74.40 87.00 89.70 92.40 98.30 99.60 74.90 86.50 90.10 94.10 98.20 99.70

Bisquare 74.40 87.20 89.70 92.40 98.30 99.60 75.00 86.60 90.40 94.10 98.30 99.60
Talwar 74.60 87.50 90.20 93.30 97.80 99.50 74.70 87.40 90.60 93.80 98.40 99.70

M
estimator

Huber 61.40 74.70 79.20 84.70 93.20 97.20 61.10 74.00 79.10 83.30 93.20 97.70
Fair 50.40 64.90 69.60 75.80 87.40 93.30 50.20 64.90 69.30 74.20 86.40 92.50

Cauchy 68.50 81.10 86.00 89.70 95.60 98.50 68.50 81.40 85.10 88.30 96.60 99.00
Welsch 71.10 85.60 89.10 91.60 97.60 99.20 71.90 84.60 88.30 92.20 98.00 99.60

Bisquare 71.90 86.10 89.10 91.90 97.70 99.20 73.10 85.40 89.20 92.90 98.00 99.60
Talwar 71.60 85.00 88.70 91.90 97.50 99.10 73.00 85.10 87.90 91.60 97.60 99.20

300

GM
estimator

Huber 73.60 85.40 90.60 93.10 98.20 100.00 72.70 85.40 91.20 93.60 98.40 99.80
Fair 66.90 80.90 87.00 89.70 96.40 99.90 67.60 80.10 86.30 89.60 96.80 99.50

Cauchy 76.20 89.60 93.30 95.10 98.60 99.90 77.00 88.80 92.30 95.90 98.90 100.00
Welsch 78.20 89.60 94.10 95.90 98.70 99.90 77.90 89.20 93.90 96.60 99.00 100.00

Bisquare 78.30 89.70 94.20 95.90 98.80 99.90 77.50 89.40 93.60 96.70 99.00 100.00
Talwar 78.90 89.70 94.20 96.00 98.90 99.70 78.00 88.30 93.30 96.30 99.00 100.00

M
estimator

Huber 69.00 81.20 88.00 90.50 97.00 99.90 69.20 82.20 87.60 91.90 97.00 99.50
Fair 61.00 75.00 81.70 85.90 94.90 99.30 62.40 75.20 81.80 85.80 93.90 98.70

Cauchy 73.90 87.20 92.00 94.30 98.20 99.80 74.40 87.30 91.30 94.70 98.40 99.70
Welsch 76.70 89.00 93.40 95.80 98.60 99.70 76.10 88.40 92.70 96.00 98.70 99.90

Bisquare 77.30 89.10 93.90 95.80 98.60 99.70 76.40 88.20 92.70 96.40 98.90 100.00
Talwar 77.30 88.80 93.30 95.30 98.50 99.70 76.70 87.30 92.50 95.90 99.10 100.00
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Table 6. Performance of ASp criterion for GM-estimator and M-estimator with
different ψ(·) function.

n Estimator ψ(·)
function

1-Vertical outlier and 2-Leverage points 2-Vertical outliers and 2-Leverage points
P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

50

GM
estimator

Huber 30.90 41.40 37.40 44.10 58.50 53.60 31.70 42.10 38.60 44.70 59.70 55.70
Fair 21.50 31.90 27.00 33.80 46.40 43.10 23.90 33.80 30.70 35.50 47.20 43.30

Cauchy 40.80 53.00 48.20 55.30 68.10 63.40 39.50 51.80 47.50 53.20 66.60 63.60
Welsch 47.30 58.90 55.00 61.00 72.90 69.20 46.50 58.10 54.00 60.00 71.90 67.90

Bisquare 47.50 58.60 55.50 60.60 72.90 69.70 48.10 59.00 55.10 60.90 72.90 69.40
Talwar 38.40 46.90 43.60 48.20 57.50 54.90 38.70 48.30 45.10 49.60 59.80 57.60

M
estimator

Huber 13.70 19.20 16.60 20.10 29.70 28.00 15.50 20.80 18.90 21.70 29.40 27.70
Fair 12.60 18.20 16.00 19.10 24.40 22.90 14.20 18.90 16.90 19.20 25.40 23.60

Cauchy 18.10 24.10 21.70 25.80 35.20 33.00 17.20 23.50 21.10 24.90 34.50 30.90
Welsch 24.10 31.40 28.30 33.10 41.30 38.60 23.50 30.90 28.70 32.80 41.00 38.90

Bisquare 24.70 32.00 29.00 33.80 41.70 38.60 23.70 30.90 28.90 32.80 41.80 39.80
Talwar 12.90 17.00 15.20 17.90 24.00 22.10 16.70 20.60 18.50 21.40 26.60 24.90

70

GM
estimator

Huber 39.50 49.50 48.10 53.40 68.70 67.00 39.60 52.00 49.80 55.90 71.10 69.50
Fair 29.10 39.40 38.00 42.70 56.50 55.90 30.70 40.50 38.90 44.70 57.40 56.60

Cauchy 51.00 60.60 58.90 65.60 79.20 78.10 50.90 63.10 61.00 66.80 80.50 80.10
Welsch 56.10 67.10 65.00 72.20 83.90 82.90 58.70 68.70 67.30 73.10 84.20 83.30

Bisquare 56.30 67.50 65.90 72.10 83.70 83.20 59.10 69.70 67.90 73.60 85.30 84.00
Talwar 50.40 60.30 58.40 64.30 76.20 75.80 53.60 64.40 62.50 67.80 79.50 78.70

M
estimator

Huber 21.00 28.60 27.40 31.70 42.70 42.10 23.90 31.10 30.10 34.20 46.00 45.00
Fair 15.40 22.80 21.20 24.50 33.40 33.00 19.10 25.90 25.20 27.40 36.10 35.30

Cauchy 32.00 41.10 40.00 44.60 55.50 54.70 31.90 40.30 39.70 43.00 58.60 56.80
Welsch 42.80 52.20 50.90 56.60 68.80 68.30 44.10 57.00 54.60 60.30 71.20 70.90

Bisquare 43.40 52.10 50.90 56.80 68.40 68.10 44.40 56.60 54.70 59.90 71.20 70.90
Talwar 26.70 33.40 32.20 36.00 43.30 43.00 29.90 36.10 34.80 38.80 47.50 47.00

100

GM
estimator

Huber 43.60 54.90 55.40 61.20 74.80 76.70 40.00 53.10 53.60 59.60 74.60 76.40
Fair 32.80 44.60 45.30 50.60 64.30 66.80 31.80 42.70 43.10 48.10 62.00 63.90

Cauchy 52.10 65.10 66.30 72.90 85.90 87.90 49.90 64.80 65.00 72.30 85.30 86.80
Welsch 59.40 73.10 73.80 78.80 90.30 91.50 57.50 70.80 71.60 77.10 89.40 90.90

Bisquare 59.70 73.90 74.80 79.30 90.40 91.80 57.70 71.20 71.80 77.20 89.50 90.70
Talwar 55.90 69.90 70.10 74.60 86.40 87.70 56.50 69.30 69.80 75.20 86.60 88.00

M
estimator

Huber 28.40 38.20 38.50 43.40 57.10 59.70 27.70 37.10 37.30 42.20 54.70 57.70
Fair 21.60 29.10 29.30 33.70 46.20 49.90 20.30 27.20 27.70 33.00 45.20 47.50

Cauchy 39.80 50.40 50.70 54.50 68.40 70.70 37.10 48.40 49.40 54.90 68.60 70.60
Welsch 49.40 63.80 64.80 71.00 83.00 84.50 49.60 62.10 62.80 68.40 81.50 83.90

Bisquare 50.60 65.50 66.40 71.40 83.30 84.80 50.80 62.80 63.70 69.50 82.60 84.10
Talwar 41.50 53.20 53.50 58.10 68.20 70.00 42.00 53.60 53.90 60.10 69.80 71.40

200

GM
estimator

Huber 55.30 68.50 72.70 77.20 88.30 94.10 56.90 67.60 72.60 77.20 89.70 94.80
Fair 43.10 57.80 60.40 65.80 78.50 86.10 45.30 57.80 61.80 66.50 79.70 88.00

Cauchy 65.10 79.60 84.00 87.00 95.50 97.30 66.20 78.80 82.90 87.00 95.10 98.40
Welsch 70.10 82.50 87.30 91.50 96.80 98.10 71.00 83.00 87.90 90.50 96.50 99.30

Bisquare 70.40 82.40 87.50 91.40 97.10 98.20 71.70 83.80 88.00 90.90 96.90 99.40
Talwar 69.30 81.60 86.80 91.00 96.50 97.90 71.90 83.90 87.60 90.80 96.60 98.60

M
estimator

Huber 44.90 58.10 63.10 67.60 80.40 88.40 47.50 60.80 64.10 68.40 82.00 88.80
Fair 34.00 45.10 49.80 55.00 68.70 77.50 35.70 47.50 51.90 56.70 70.30 79.40

Cauchy 57.80 72.30 77.40 81.50 91.00 95.50 59.80 71.90 75.60 80.80 90.50 95.80
Welsch 67.00 79.90 84.80 89.30 95.70 97.50 67.20 80.60 84.80 87.90 95.50 98.20

Bisquare 67.50 79.50 85.10 89.40 95.90 97.60 68.20 81.80 85.70 89.30 96.10 98.60
Talwar 65.50 78.90 83.80 87.90 94.60 96.80 68.90 80.70 84.50 87.70 93.60 96.80

300

GM
estimator

Huber 63.10 76.10 82.50 86.50 95.60 98.70 62.60 76.00 82.70 86.90 94.90 98.70
Fair 52.80 66.50 72.90 77.80 89.40 96.60 53.90 64.60 72.70 77.70 89.00 97.00

Cauchy 70.20 83.60 90.10 93.00 97.60 99.40 72.10 84.70 90.10 92.90 97.80 99.70
Welsch 73.40 86.10 92.10 94.60 98.20 99.90 75.10 87.10 91.20 93.70 98.60 99.90

Bisquare 73.70 86.70 92.20 94.50 98.50 99.90 74.90 87.70 91.30 94.00 98.90 99.90
Talwar 74.30 86.90 91.50 94.80 98.40 99.80 75.60 86.80 92.00 94.10 98.70 99.90

M
estimator

Huber 57.00 70.00 77.50 82.10 91.90 97.40 57.80 68.60 77.30 81.40 91.60 98.00
Fair 45.30 58.90 66.90 71.10 83.10 93.70 46.70 58.40 65.40 69.90 83.40 92.70

Cauchy 66.20 80.30 86.50 90.00 96.60 98.80 66.90 79.60 86.40 90.80 96.70 98.90
Welsch 71.40 84.90 91.40 93.40 98.00 99.70 73.20 86.00 90.30 93.00 98.20 99.70

Bisquare 72.30 84.80 91.60 93.40 98.10 99.80 73.50 86.30 90.30 93.10 98.40 99.70
Talwar 72.40 85.20 90.50 93.60 98.10 99.50 73.70 85.30 91.00 93.10 98.50 99.80

Table 7. List of ω(·) weight functions.

Sr. No. ω(·) weight function
1. ω1(Xi) =

√
1 − hii

2. ω2(Xi) =
{

1, if hii ≤ 2p
n

0, otherwise

3. ω3(Xi) =
{

1, if RMDi ≤ Median(RMDi) + 3MAD(RMDi)
0, otherwise

4. ω4(Xi) =
{

1, if RMDi ≤
√
χ2

p,0.95
0, otherwise

5. ω5(Xi) =
{

1, if GPi ≤ Median(GPi) + 3MAD(GPi)
0, otherwise
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Table 8. Performance of ASp criterion for different ω(·) weight functions.

n ω(·)
weight

ψ(·)
function

5%-Vertical outliers and 5%-Leverage points 10%-Vertical outliers and 10%-Leverage points 15%-Vertical outliers and 15%-Leverage points
P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

100

ω1(Xi)

Huber 8.40 11.50 11.70 14.10 24.10 25.90 1.70 3.10 3.20 4.00 7.50 8.60 1.00 1.90 1.90 2.20 5.00 6.00
Fair 6.80 10.10 10.60 11.70 19.10 20.90 2.60 3.70 3.80 5.00 8.40 9.70 1.80 2.70 2.70 3.70 9.20 10.90

Cauchy 16.00 22.60 23.00 27.00 37.00 39.30 1.90 3.10 3.10 4.10 8.00 8.60 0.60 1.30 1.30 1.70 3.60 4.30
Welsch 37.50 47.50 47.80 53.50 65.20 66.50 6.20 8.20 8.30 10.20 13.80 14.70 1.70 2.50 2.60 3.00 4.60 5.40

Bisquare 38.30 48.70 48.80 54.60 67.00 68.20 6.60 9.60 9.70 11.40 15.70 17.10 2.20 2.80 2.80 3.00 6.00 6.10
Talwar 22.00 28.90 29.30 32.10 40.30 41.50 3.00 4.10 4.10 4.80 7.80 8.20 1.50 2.30 2.60 3.10 4.80 5.80

ω2(Xi)

Huber 44.50 57.40 57.70 63.60 77.00 80.10 20.10 31.40 31.90 37.00 52.70 56.50 10.00 16.10 16.50 21.70 35.30 38.20
Fair 38.40 50.50 51.00 56.00 71.30 74.60 11.80 19.90 20.20 25.60 39.80 43.50 5.50 10.40 9.90 12.80 21.90 24.50

Cauchy 47.80 58.80 58.90 66.10 80.30 81.90 25.80 38.60 38.70 44.70 60.90 64.80 21.30 30.30 30.30 36.20 50.70 54.20
Welsch 49.40 61.00 61.50 67.50 81.40 83.00 31.70 43.90 44.40 49.40 65.30 67.90 30.70 40.90 41.80 47.30 63.60 66.50

Bisquare 50.00 61.50 61.60 67.80 81.90 82.90 31.70 44.10 44.30 49.80 65.70 69.00 30.50 42.10 42.70 48.40 63.60 67.80
Talwar 50.50 62.60 63.30 68.80 82.00 85.10 31.80 44.50 45.20 50.20 66.40 69.70 30.90 42.00 43.30 49.50 63.60 66.90

ω3(Xi)

Huber 46.50 57.40 58.00 63.80 76.70 80.40 21.60 33.20 33.50 38.80 54.20 57.50 12.80 22.20 22.30 28.10 43.70 46.50
Fair 39.30 52.00 52.40 57.00 71.30 74.80 14.60 22.70 23.00 28.30 42.80 46.20 6.40 14.20 13.90 17.50 29.60 32.70

Cauchy 47.90 59.10 59.00 65.90 79.40 81.20 26.30 39.00 39.40 45.10 61.60 65.00 25.00 34.80 34.90 39.40 57.20 60.10
Welsch 49.20 60.70 61.30 67.50 81.10 83.00 31.50 44.20 44.80 49.70 65.30 67.70 30.60 40.50 41.50 48.00 63.70 66.50

Bisquare 49.70 61.10 61.30 67.80 81.60 83.00 31.70 44.50 44.80 50.00 65.30 68.60 30.60 41.70 42.40 48.50 63.90 67.80
Talwar 50.50 62.00 62.70 68.00 81.70 84.70 31.90 44.70 45.30 50.50 66.30 69.90 31.50 42.50 43.80 50.30 64.60 67.50

ω4(Xi)

Huber 44.50 55.80 56.70 62.70 76.20 79.70 23.00 33.00 33.60 38.60 54.50 58.10 14.00 24.20 24.40 29.70 44.70 48.20
Fair 38.10 51.10 51.80 56.30 70.70 74.10 16.00 24.30 24.20 29.80 43.50 46.60 7.70 15.00 14.90 18.80 31.10 33.90

Cauchy 47.60 58.90 58.90 64.50 79.70 80.90 27.40 38.80 39.40 45.30 62.00 64.90 25.40 34.90 35.10 40.40 57.50 59.90
Welsch 49.70 60.30 60.60 66.70 81.10 83.50 30.90 44.20 44.80 50.10 65.20 67.50 30.70 41.10 41.90 48.30 63.80 66.50

Bisquare 49.80 60.20 60.80 67.40 81.70 83.90 31.40 44.50 45.00 50.20 65.20 68.40 30.70 42.10 42.60 48.80 64.00 68.00
Talwar 49.90 62.00 62.80 68.20 82.20 84.90 31.60 44.90 45.30 50.90 66.60 69.90 32.20 43.30 44.50 50.90 65.20 68.00

ω5(Xi)

Huber 45.20 56.70 57.10 62.90 76.70 80.00 22.80 33.50 33.60 39.00 54.90 58.60 13.60 23.50 23.50 29.00 46.30 48.60
Fair 38.50 49.50 49.90 56.00 72.10 75.50 15.60 24.30 24.60 29.80 44.00 47.10 7.90 15.20 15.20 19.10 30.90 34.00

Cauchy 47.90 58.60 58.90 65.70 80.00 81.60 27.00 38.90 39.20 45.30 61.40 64.50 25.40 34.90 35.20 41.10 58.20 60.50
Welsch 49.40 60.60 61.30 66.60 81.20 82.90 31.30 43.90 44.30 49.60 65.30 67.80 30.20 40.60 41.60 48.40 64.30 67.10

Bisquare 49.70 60.90 61.20 66.80 81.50 82.90 31.40 44.10 44.20 49.80 65.50 68.80 30.20 41.70 42.50 48.80 64.20 68.10
Talwar 50.60 62.00 62.80 68.00 82.10 85.30 31.60 44.40 45.10 50.50 66.60 69.90 31.10 42.80 44.10 50.80 65.40 68.40

200

ω1(Xi)

Huber 1.20 2.30 2.80 4.40 8.60 12.40 0.00 0.00 0.00 0.00 0.90 1.70 0.00 0.20 0.20 0.30 0.70 1.20
Fair 1.20 1.70 2.10 2.90 5.90 9.50 0.00 0.10 0.10 0.10 0.70 2.40 0.30 0.30 0.50 0.60 1.00 2.50

Cauchy 5.50 8.20 10.20 11.70 18.30 24.80 0.00 0.00 0.10 0.10 0.30 1.60 0.00 0.00 0.10 0.20 0.30 0.70
Welsch 40.50 50.20 54.50 58.50 69.80 78.30 2.90 4.00 4.90 5.40 8.00 10.40 0.20 0.40 0.40 0.40 0.70 1.70

Bisquare 43.10 53.30 58.00 63.30 74.30 83.10 5.80 8.00 9.10 10.10 14.20 17.80 0.30 0.40 0.50 0.50 1.80 2.20
Talwar 27.70 34.80 38.80 41.50 50.70 56.90 0.70 0.90 0.90 1.30 2.50 3.50 0.20 0.30 0.40 0.40 0.80 1.40

ω2(Xi)

Huber 43.60 56.60 62.60 68.80 82.60 91.70 22.80 33.80 38.20 43.40 59.90 72.80 9.80 17.30 20.20 25.40 41.50 54.40
Fair 37.00 48.70 55.00 60.40 78.40 87.50 12.40 20.80 25.30 30.80 47.10 59.00 3.00 7.20 9.10 11.90 22.60 35.40

Cauchy 47.70 59.70 64.70 70.50 85.00 92.90 30.90 42.10 46.70 51.70 67.00 78.60 21.30 33.50 37.80 43.50 60.10 72.20
Welsch 49.90 61.80 67.00 72.20 84.80 93.60 33.80 46.10 50.70 54.80 69.60 81.00 33.90 43.50 46.70 52.20 67.80 78.40

Bisquare 49.70 62.00 67.30 72.30 84.80 93.80 33.10 46.20 50.80 55.40 70.10 81.40 34.10 44.10 47.70 52.50 67.80 79.00
Talwar 50.10 62.90 68.30 73.40 86.00 93.70 33.50 46.60 51.20 56.30 70.70 82.00 34.10 43.70 47.50 52.60 68.40 78.70

ω3(Xi)

Huber 43.30 57.40 63.20 68.50 82.90 92.20 23.20 34.80 39.60 44.50 60.70 72.20 12.70 22.70 25.90 29.60 46.30 59.50
Fair 36.80 49.40 55.20 60.50 78.70 87.50 12.40 21.30 25.30 30.60 47.30 60.30 4.70 9.60 12.00 15.30 27.90 40.70

Cauchy 47.50 59.90 64.50 70.50 84.90 93.00 31.00 42.10 47.30 52.00 67.30 78.90 25.00 37.50 40.60 46.40 61.90 74.10
Welsch 49.90 61.80 67.00 72.20 84.80 93.80 34.00 46.30 50.70 55.10 69.60 81.30 34.10 43.50 47.60 52.30 68.10 78.50

Bisquare 49.60 62.00 67.30 72.20 85.00 93.90 33.30 46.30 50.90 55.50 70.00 81.40 34.20 44.10 48.40 52.90 68.50 79.10
Talwar 50.30 62.90 68.30 73.40 86.00 93.90 33.90 46.70 51.20 56.50 70.70 82.10 34.20 44.10 47.70 53.30 69.10 79.20

ω4(Xi)

Huber 43.40 57.80 62.70 68.70 82.70 92.00 22.60 34.20 39.30 44.40 61.00 72.60 13.40 22.80 25.80 28.90 46.20 59.60
Fair 37.20 49.60 55.50 60.40 78.30 87.70 12.80 20.90 25.40 30.70 47.20 60.80 4.70 9.60 12.00 16.20 27.70 40.80

Cauchy 46.60 59.80 64.60 70.60 84.70 93.00 31.00 41.50 46.90 52.00 67.50 78.90 24.50 37.00 41.30 46.60 61.50 74.80
Welsch 49.50 61.60 67.00 71.70 85.10 93.60 33.90 46.50 50.80 55.20 69.40 81.20 34.10 43.40 47.50 52.30 68.00 78.70

Bisquare 49.10 62.00 67.10 72.00 85.10 93.80 33.40 46.40 51.00 55.60 69.80 81.40 34.30 44.00 48.40 52.80 68.30 79.10
Talwar 49.80 63.10 68.40 73.10 86.30 93.70 34.00 46.80 51.30 56.40 70.60 81.90 34.30 44.10 47.90 53.50 69.00 79.20

ω5(Xi)

Huber 43.20 57.30 62.60 68.90 82.80 91.90 23.00 34.00 39.50 44.60 61.00 72.50 13.50 21.70 25.00 29.00 46.80 60.00
Fair 37.10 49.40 55.10 59.70 78.10 87.60 12.80 20.70 25.20 30.50 47.20 61.00 4.60 9.30 12.30 16.10 27.20 41.60

Cauchy 47.10 59.70 64.30 70.40 84.90 92.90 30.70 42.00 47.10 51.90 67.50 78.60 25.00 36.50 41.10 45.80 61.40 74.70
Welsch 49.60 61.80 66.70 71.90 84.70 93.60 33.80 46.20 50.80 55.30 69.60 81.20 34.20 43.40 47.50 52.30 68.10 78.50

Bisquare 49.30 62.10 67.00 72.10 84.80 93.80 33.40 46.20 51.00 55.50 70.20 81.30 34.20 44.10 48.40 52.80 68.30 78.90
Talwar 50.00 62.80 68.20 73.30 86.00 93.80 33.80 46.60 51.20 56.50 70.80 82.00 34.30 44.20 47.90 53.50 69.10 79.10

300

ω1(Xi)

Huber 0.30 0.40 0.60 0.60 1.30 4.30 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.30
Fair 0.00 0.20 0.20 0.40 0.70 2.60 0.00 0.00 0.00 0.00 0.20 0.60 0.00 0.00 0.00 0.00 0.10 0.60

Cauchy 1.20 2.50 2.90 3.30 5.50 12.10 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.20
Welsch 34.30 44.90 52.20 56.60 71.50 80.80 1.30 1.80 2.00 2.50 4.50 6.70 0.00 0.00 0.00 0.00 0.10 0.20

Bisquare 38.90 52.10 58.60 64.00 78.20 87.20 6.50 9.10 10.20 11.50 15.50 20.70 0.20 0.20 0.30 0.30 0.30 0.80
Talwar 29.50 38.40 43.30 47.70 56.90 66.40 0.20 0.50 0.50 0.60 0.90 2.30 0.00 0.00 0.00 0.10 0.10 0.60

ω2(Xi)

Huber 40.40 55.60 64.60 69.50 83.70 93.30 23.70 35.30 43.70 49.40 66.90 82.80 7.50 16.40 22.60 26.30 42.10 62.40
Fair 31.50 46.70 56.00 62.50 78.10 91.30 12.40 20.70 28.90 32.90 48.80 71.50 2.10 5.90 9.10 11.40 22.20 41.50

Cauchy 44.50 58.60 66.00 71.70 85.90 95.40 31.20 44.60 53.50 59.00 73.00 87.70 21.40 31.60 38.80 44.60 60.80 76.60
Welsch 46.50 61.20 67.90 73.10 87.20 95.90 38.00 50.80 57.00 62.70 76.80 89.20 30.40 41.70 49.20 54.80 68.60 83.50

Bisquare 46.80 61.60 67.80 73.50 87.50 96.30 38.00 50.90 57.60 63.50 76.90 89.90 31.30 42.20 50.00 54.90 69.10 83.80
Talwar 48.80 62.50 68.90 74.60 86.90 96.10 39.30 51.50 59.00 64.20 78.60 90.50 32.50 42.90 50.20 55.20 69.40 83.80

ω3(Xi)

Huber 40.20 56.00 65.00 69.50 83.40 93.40 24.40 36.50 43.60 49.90 68.10 83.80 9.10 18.40 24.60 30.20 45.30 65.60
Fair 30.90 47.10 56.10 62.40 77.80 91.20 13.20 22.40 29.60 34.50 50.50 72.40 2.30 6.80 10.70 13.20 24.90 45.60

Cauchy 44.40 58.80 65.80 71.50 85.90 95.40 32.10 45.20 53.60 59.40 73.80 87.30 22.40 32.60 40.70 46.80 62.50 78.20
Welsch 46.50 61.30 68.00 72.90 87.30 95.90 38.10 50.90 57.20 62.80 77.00 89.30 31.90 42.80 49.90 55.00 69.00 83.60

Bisquare 46.80 61.60 67.80 73.50 87.60 96.30 38.10 51.00 57.60 63.60 77.00 89.90 31.80 43.00 50.20 54.90 69.40 83.50
Talwar 48.70 62.50 68.90 74.60 87.00 96.10 39.30 51.30 58.70 64.00 78.60 90.50 33.10 43.50 50.40 55.50 69.60 84.10

ω4(Xi)

Huber 40.20 56.00 64.80 69.40 83.50 93.50 24.20 35.80 43.90 49.90 67.90 84.10 9.60 17.90 24.90 29.50 44.40 66.00
Fair 30.90 47.30 55.90 62.60 77.50 90.90 13.80 22.90 29.80 34.20 50.00 72.60 2.80 7.70 12.00 15.00 24.80 46.20

Cauchy 44.70 59.20 66.00 71.50 85.60 95.50 32.40 45.30 53.60 59.40 73.60 87.30 22.00 32.60 40.60 47.20 61.70 78.60
Welsch 46.50 61.40 67.90 72.90 87.10 95.90 38.20 51.00 57.30 62.90 77.00 89.30 31.90 42.90 50.10 54.90 69.10 83.40

Bisquare 46.90 61.70 68.00 73.50 87.40 96.30 38.40 51.20 57.70 63.80 77.10 89.90 31.80 43.10 50.30 54.80 69.40 83.50
Talwar 48.50 62.50 69.20 74.90 87.00 96.10 39.40 51.30 58.80 64.10 78.70 90.50 33.10 43.60 50.50 55.40 69.70 84.20

ω5(Xi)

Huber 39.90 55.40 65.00 69.50 83.40 93.40 24.10 35.70 43.80 49.60 68.10 84.00 9.20 16.80 24.70 28.70 45.30 65.90
Fair 31.00 46.70 55.70 62.00 77.70 91.10 12.70 23.10 29.40 34.70 50.20 71.60 2.80 7.20 10.80 14.90 25.10 45.80

Cauchy 44.30 58.90 65.70 71.60 85.50 95.40 32.50 45.10 53.10 59.40 73.30 87.20 21.80 32.40 40.80 46.70 62.10 78.30
Welsch 46.50 61.50 67.90 73.20 87.00 95.90 38.40 50.80 57.20 62.70 77.00 89.30 31.80 43.20 50.10 54.80 69.20 83.50

Bisquare 46.70 61.70 67.90 73.60 87.40 96.20 38.30 51.00 57.60 63.50 77.00 89.90 31.70 43.10 50.40 54.70 69.40 83.60
Talwar 48.70 62.60 68.90 74.80 87.00 96.00 39.30 51.20 58.80 64.00 78.70 90.50 33.10 43.60 50.50 55.50 69.80 84.30
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5. Discussion
We have suggested the ASp model selection criterion based on GM-estimator. It can

be viewed as a generalization of Cp and Sp criteria. The proposed criterion takes into
account a discrepancy between the full model and submodel as well as complexity in the
model. This criterion has consistency property and selects an optimal model with a high
probability for large n. The simulation study reveals that the proposed criterion works
well in the four different situations: clean data, vertical outliers, leverage points, and both
vertical outliers and leverage points. The proposed criterion performs well and simple as
compared to Cp, Sp and RCp. The ASp criterion based on the GM-estimator with hard
redescending ψ(·) function and robust weight can be a better choice.
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