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Abstract 

Contagious diseases have wreaked havoc on human communities since ancient times. Ongoing COVID-19 pandemic has caused 

millions of incidents and deaths so far and continues to affect all over the world in the near future. One of ways to stop and slow down 

a pandemic in absent from proper and effective drugs and vaccines is workplace/school closures limiting people interactions and spread 

of the disease. In this study, we consider workplace/school closures as an intervention strategy to observe the effect on overall incidents 

and deaths. Six scenarios, covering workplace and school closures together or separately and applications in different times during the 

pandemic, are tested for the SIR (Susceptible-Infectious-Recovery) network model where people can interact with others in their homes, 

schools, and workplaces daily. People in the model are divided into five age groups. Each individual is assigned to a home and school 

or workplace with a given probability regarding to his/her age. People contact with others in their networks (school, workplace, and 

home) every day and can be infected with a given probability if they interact with sick people. We calibrate sickness probability 

according to the attack rate derived from COVID-19 related data of six countries. Results show that applying any of intervention 

strategies as soon as the pandemic begins makes huge differences in terms of overall cases compared to applying them around the peak 

times. Overall cases decrease by 40% and 65% for the high attack rate (10%) and COVID-19 related attack rate (3.2%) when 

workplace/school closures are applied 2 weeks after the pandemic has started. Moreover, results imply that even closing schools and 

workplaces in two weeks does not stop the spread of diseases completely based on recovery times uniformly distributed between 6 and 

9 days.  
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Okul ve İş Yeri Kapatmalara Dayalı Senaryoların COVID-19 

Yayılımına Etkileri 
Öz 

Bulaşıcı hastalıklar eski zamanlardan beri insanlığa büyük zararlar vermişlerdir. Devam etmekte olan COVID-19 salgını şimdiye kadar 

milyonlarca insanın hasta olmasına ve ölmesine yol açmıştır ve yakın gelecekte de etkisini göstermeye devam edecektir. Etkili ilaç ve 

aşıların yokluğunda, bulaşıcı hastalıkları yavaşlatmanın ve durdurmanın yollarından biri de, kişiler arasındaki etkileşimlerin 

kısıtlanmasını ve hastalığın yayılmasını engelleyen okul/iş yeri kapatma yöntemidir. Bu çalışmada, toplam hasta ve vaka sayılarına 

etkilerini görmek için bir müdahale yöntemi olan okul/iş yeri kapatmayı göz önüne aldık. Okul ve iş yerlerinin salgının farklı 

zamanlarında, ayrı ayrı veya birlikte kapatılmasını içeren altı farklı senaryo, kişilerin okul, iş yeri ve evlerindeki insanlarla günlük 

etkileşim içinde olduğu SIR (Korumasız-Hasta-İyileşmiş) Ağ (Network) modeli için test edilmiştir. Sistemdeki kişiler yaşlarına göre 

beş farklı gruba bölünmüş ve bir ev, iş yeri veya okula atanmışlardır. Kişiler günlük olarak, kendi ağlarındaki (ev, iş yeri veya okul) 

diğer kişilerle etkileşime girip, belirli bir olasılıkla hasta kişilerden enfekte olabilmektedirler. Hastalık bulaştırma olasılığı altı farklı 

ülkenin COVID-19 istatistiklerinden yararlanılarak hesaplanmıştır. Sonuçlara bakıldığından hangi senaryo olursa olsun, salgın 

başlangıcında uygulandığında, salgının zirve yaptığı zamanlarda uygulanmasına göre, hasta ve ölüm sayısını düşürmesi bakımından 
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çok daha etkili olduğu görülmüştür. Salgın başladıktan iki hafta sonra uygulanan kapatma, toplam vakaları COVID-19 salgın şiddetinde 

(%3,2) %65 ve daha yüksek salgın şiddetinde (%10) %40 oranında azaltmıştır. Dahası 2 haftalık okul/iş yeri kapatılmasının, 6 ve 9 gün 

arasında düzgün dağılım gösteren iyileşme zamanları baz alındığında salgını tamamen durduramadığı gözlenmiştir. 

 

Anahtar Kelimeler: COVID-19, Okul/İş Yeri Kapatılması, SIR Ağ Modelleri, Benzetim 

 

 

1. Introduction 

Infectious diseases have dramatically effected societies and 

caused a huge amount of infected and death people and economic 

costs for centuries. Epidemics occur year by year while 

pandemics appear irregularly and cause high number of deaths 

and hospitalizations. For example, the bubonic plague, also called 

as “Black death”, caused millions of deaths, decreased the 

population of Europe by between %30 and %60, and had 

continuously appeared till 19th century (Demirbilek, 2020). The 

other example is, 1918 Spanish Flu, the worst infectious disease 

outbreak in the last century, caused deaths between 20 and 50 

million, more than causalities during WW1 (Webby & Webster, 

2003; McConnell, 2002).  

On December 30, 2019, a cluster of patients with pneumonia 

of obscure etiology was monitored in Wuhan, China, and reported 

to the World Health Organization (WHO). By January 2, 2020, 

the full genome of a new coronavirus (SARS-CoV-2) had been 

sequenced just over a week later, the sequence had been printed 

and the Chinese National Health Commission warned of its 

potential danger. The virus was initially defined as “novel 

coronavirus 2019” (2019-nCoV) by the WHO – but, on February 

11, 2020, was given the official name of SARS-CoV-2 by the 

International Committee on Taxonomy of Viruses (The COVID-

19 Pandemic: A Summary, 2020). As shown in Fig. 1, COVID-19 

pandemic caused 56 million cases and 1.46 million deaths in the 

world, 421,000 cases and 11,740 deaths in Turkey since then 

(Worldometers.info, 2020).  

Figure 1. COVID-19 cumulative cases dashboard in December 2020 (Dong & Gardner 2020). 

 

There are some intervention strategies such as vaccination, 

school/workplace closures, quarantine, etc. to slow down or stop 

spreading of diseases. To be able to understand effects of any 

intervention strategy, researchers and decision makers must first 

model and analyse transmission dynamics of the disease. SIR 

(Susceptible-Infected-Recovery) compartmental models have 

been commonly used to model and analyse contagious diseases 

since Kermack and McKendrick (1927) developed. 

Compartmental models are methods for the mathematical 

modelling of infectious diseases. Each compartment represents a 

division of the population and individuals in a compartment show 

similar characteristics. In each time interval, a number of people 

move to the next compartment with corresponding rates. The 

main assumption of this model is that people in each compartment 

mix uniformly and randomly with each other (Demirbilek, 2020). 

However, people generally have narrower environments where 

interacting with less people daily in homes, schools, or 

workplaces. Therefore, the model that considers limited 

relationships and contacts among people is more realistic 

compared to compartmental SIR models. 

Network models have successfully been employed in many 

fields to study phenomena for which interrelationships matter 

(Craig et al., 2020). In economics, these include job referrals in 

labour markets (Calvó-Armengol and Jackson, 2007), patterns of 

international trade (Chaney, 2014), and contagion in financial 

markets (Elliott, Golub, and Jackson, 2014). Since their suitable 

structure to model the pattern of transmission, network models 

can be adapted to model and analyse disease transmissions. Each 

person in the system is considered as a node and links connect 

people in same network. If there is no a link between two 

individuals, they cannot directly contact with each other and 

spread the disease. However, indirect links can exist if there are 

some nodes ensured connections between those two. Fig. 2 simply 

illustrates the difference between compartmental and network SIR 

models.  

Although many studies (Walters et al., 2018; Prieto et al., 2012) 

related to modelling of different diseases have been conducted 

with SIR compartmental models, network models have been 

rarely employed for modelling disease purposes since the 
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computational time is the most important obstacle to model 

relatively big size populations. The existing network models are 

mostly used for general simulation purposes via off-the-shelf-

ready software and websites. FluTE (Chao et al., 2010), epiDMS 

(Liu et al., 2016), EpiFire (Hladish et al., 2012), FRED 

(Grefenstette et al., 2013), STRIDE (Kuylen et al., 2017) can be 

shown as examples for that software. Although this software can 

be very useful for researchers to observe how changing some 

parameters can affect some specific results, they do not allow 

users to configure network types, population structures, all 

parameters or to embed different environments such as schools, 

workplaces, and stores to the main frame. Although some provide 

open-source codes for software, they are very complex to make 

some modifications and to be executed in reasonable 

computational times. Therefore, a new flexible network model is 

coded in this study to consider different age groups in the 

population, environments such as schools, homes, and 

workplaces, intervention strategies explained in next sections. 

 

Figure 2. Illustration of social interactions in compartmental 

models (on the left) and network models (on the right) (Craig et 

al., 2020) 

Main purpose of the study is to examine the effect of 

school/workplace closures, an intervention strategy many 

governments have applied to stop or slow down spread of 

COVID-19 nowadays. We construct a network SIR model where 

people can interact with others in their homes, schools, and 

workplaces daily. People in the model are divided into five age 

groups. Each individual is assigned to a home and school or 

workplace with a given probability regarding to his/her age. 

People can contact and spread the disease with a given probability 

to their family members in the half of the day. In the other half of 

the day, people interact with their colleagues and schoolmates and 

spread the disease.  Each home, school, and workplace are 

consisted of a given number of people and their numbers change 

according to the size of population. We create some scenarios such 

as only schools or only workplaces closures for a given number 

of weeks and schools/workplaces closures at the same time. 

Results under no closures are compared with results of different 

scenarios and we elaborate our inferences about results. 

The next section, we explain SIR compartmental and network 

models, and experimental settings. In Section 3, the proposed 

scenarios are tested and results are discussed. In the last section, 

we conclude our study and discuss about some limitations and 

assumptions.  

2. Material and Method 

2.1. SIR (Susceptible-Infected-Recovery) 

Compartmental Models 

       This model claims that individuals must present in a state, 

susceptible, infected, or recovered, in a specific time. All people 

but initially infected start in susceptible state. Whenever a 

susceptible person is infected, he/she moves to the infected state. 

Only infected people spread the disease to susceptible people. 

After predefined recovery time, infected people move to the 

recovery state or die. These people neither spread the disease nor 

get infected. Fig. 3 shows transmission dynamics in the SIR 

model.  

 

Figure 3. Transmission dynamics in the SIR model. 

In Fig. 3, β shows the proportion of individuals moving to the 

infected compartment after interactions susceptible (S) people 

with infected (I) people whereas r represents the rate of recovery 

in a prespecified time (hour, day, etc.). The rate, β, is related to the 

spread speed of disease. If β is high, it means that the pandemic 

quickly spread as well as vanish through a population. Moreover, 

the recovery rate, r, is related to the recovery period. The longer 

recovery periods mean the less recovered people in a time lap. 

2.2. Network Models 

Although network models are commonly employed in 

epidemiology, they were initially used in social science to model 

spread of ideas and innovations. Similarly, spread of an infectious 

disease through a population has same framework; however, 

epidemiologists use different terms such as nodes, edges instead 

of actors and relations in social science.  Random, lattice, small 

world, spatial are the most common network types used in 

different models. In random networks, the spatial position of 

nodes is not relevant and connections among nodes are assigned 

arbitrarily (Keeling and Eames, 2005). In lattice networks, nodes 

are assigned on a systematic grid of points in two or three 

dimensions and only neighbour nodes interact with each other. 

Small world networks are constructed to eliminate long path 

length problem in lattice models, and lower-level clustering 

problem in random mixed models (Watts and Strogatz, 1998). 

Finally, in spatial networks, nodes are set in a specific area and 

the relation between two nodes is established with a probability 

related to their separation determined by an interaction kernel 

(Keeling and Eames, 2005; Watts and Strogatz, 1998).  

In this study, we consider three environments, homes, 

schools, and workplaces, where people are randomly assigned and 

connected in the fashion of random networks. Each individual 

must be assigned to a home. Based on their ages, people will be 

assigned to a school or workplace. Each home, school, and 

workplace are consisted of a given number of people. We assume 

that people spend the half of their days at homes (Epoch 1) and 

the other half at schools or workplaces (Epoch 2) daily. We also 

consider people that stay at home in whole day such as babies, 

unemployments and elders. Fig. 4 demonstrates the network 

structure of the study. 

Disease transmission in our model is similar to 

compartmental SIR models. The first half of the day, people only 

contact with others in their homes. The rate of the fact that a 
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susceptible person, i, is infected by n infected people in his/her 

home, ri, is calculated as in Equation 1. 

𝑟𝑖 = 1 − 𝑝𝑛                                                                         (1) 

 P is the transmission probability and assumed to be same for 

everyone. If ri is equal or greater than a randomly generated 

number between 0 and 1, the person gets sick. Note that the 

greater number of infected people exists in the network of a 

person, the more chance he/she is infected. The other half of the 

day, people in homes are assigned to schools or workplaces 

according to their ages while some people (babies, elders, and 

unemployment people) stay at their homes. The infected rate of 

each person in school, home, or workplace is calculated based on 

the number of sick people in their networks. Some people are 

infected if the calculated rate is equal or greater than randomly 

generated number. Same procedure is repeated in each day during 

the pandemic horizon. Whenever a person is infected, a recovery 

period is assigned to him/her. The person continues to infect 

people until his/her recovery period finishes. After the person is 

recovered, neither he/she can infect anybody nor be infected. 

 

Figure 4. The network structure of this study 

2.3. Experimental Settings 

     We consider 120-day-pandemic period and the peak of the 

pandemic falls into the middle of the period. Attack rates, the 

percantages of infected individuals at the end of a pandemic to 

susceptible individuals at the beginning, and the number of deaths 

under no-vaccination scenario are calibrated according to attack 

rates COVID-19 as shown Table 1. Six countries` populations, 

cases, deaths data are used for the calibration process.  Population 

is divided into five different age groups, 0-4, 5-19, 20-24, 25-59, 

and 60+. Individuals between 0 and 4, and 60+ are assumed to 

stay their homes in the whole day. People between 5 and 19 are 

considered as school age children and each is assigned to a school. 

70% of individuals between 20 and 24 are considered as 

university students and the remaining are assumed to be 

employees. Finally, 85% of people between 25 and 59 are 

employees and the remaining are assumed to be unemployed. The 

number of people assigned to each age group are derived from 

demographic data of the Statistics Association of Turkey, 2019. 

Transmission probability, P, is calibrated according to normalized 

attack rates in Table 1. Recovery time for each person is uniformly 

distributed between 6 and 9 days. We start the pandemic with 15 

infected people. Table 2 shows related data in the simulation. 

    We consider six different scenarios for workplace/school 

closures. We model workplace and school closures together and 

separately. The half of scenarios are related to the timing of 

closures. We assume that workplaces/school closures are applied 

for two weeks and eight weeks after the pandemic has started. 

Each closure continues two weeks. Students and workers stay in 

their homes during this time. In this condition, interactions 

between family members increase by two times. Note that we 

consider only full closures in this study where everybody in 

schools and workplaces must stay at their homes. Although the 

number of infected and death people is carefully recorded in many 

countries thanks to their developed surveillance systems, the 

number of cases can be more than revealed since some infected 

people recover without visiting any hospital and some death cases 

are diagnosed with different illnesses. Therefore, we also consider 

10% attack rate beside attack and death rates derived from actual 

cases. 

      Fig. 5 shows pseudo codes for the pandemic simulation with 

different scenarios in this study.  

 

Figure 5. Pseudo codes for pandemic simulation with different 

scenarios. 

As it is represented, we initialize the population by considering 

age groups at the beginning. After that, individuals are distributed 

to homes, schools, and workplaces created continuously 

according to predefined distributions as Line 2. We set the number 

of closures scenarios, trials for independent t tests, and pandemic 

horizon (Line 3-5). Next, each trial starts with the initial infected 

people (Line 8) after the scenario is defined. In each day of the 

trial, individuals in homes are interacted and infected at the first 

half of the day (Line 10). If the current day is in a closure day, 

only students or workers or both must stay at their homes and they 

have only interactions with their relatives at homes (Line 11-13). 

If not, they go to schools and workplaces and interact with their 

collegues (Line 14-17). In each day, the data of new infected and 
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death people are collected as in Line 19. Moreover, previously 

assigned recovery days decrease by 1 for infected people. After 

the trial finishes, the algorithm records total number of infected 

and death individuals, and the percantages of infected places as in 

Line 22. As soon as all trials are executed, the algorithm prints 

average results and moves to the next scenario. 

Since there are many stochastic parameters such as the recovery 

period, home/school/workplace sizes, being infected, etc. in this 

study, we make 30 trials to test each scenario to be able to 

understand whether results are statistically meaningful. We 

conduct an independent sample t-test for each scenario and 

provide associated p-value. The model is coded in Python 

programming language. All tests are conducted in a PC with Intel 

i5 7200U 2.5 GHz CPU and 8 GB Ram.   

 

 

Table 1. Calculations of attack and death rates according to populations, COVID-19 related cases and deaths of six countries 

(Worldometers.info, 2020). 

Country Population Case Attack Rate Death Death Rate 

USA 331,002,651 13,249,447 0.040 269,597 0.020 

Germany 83,783,942 1,005,307 0.012 15,767 0.016 

UK 67,886,011 1,574,562 0.023 57,031 0.036 

France 65,273,511 2,183,660 0.033 50,957 0.023 

Spain 46,754,778 1,637,844 0.035 44,374 0.027 

Italy 60,461,826 1,509,875 0.025 52,850 0.035 

Normalized Rates … … 0.032 … 0.024 

 

Table 2. Simulation settings and scenarios. 

Attack Rate 0.032, 0.1 Workplace Size (person)  Uniform (50,100) 

Death Rate 0.024 Scenario 1 Only school closure in 2. week 

Population (million) 1 Scenario 2 Only workplace closure in 2. week 

Initial Infectious 15 Scenario 3 School/workplace closure in 2. week 

Recovery Period (day)  Uniform (6,9) Scenario 4 Only school closure in 8. week 

House Size (person)  Uniform (1,7) Scenario 5 Only workplace closure in 8. week 

School Size (person)   Uniform (290,310) Scenario 6 School/workplace closure in 8. week 

Closure (week) 2 Baseline Do nothing (No closure) 

 

3. Results and Discussion  

     Table 3 shows the number of infected and death people, and 

percentages of infected houses and schools under different 

scenarios based on COVID-19 attack and death rates. Baseline 

scenario represents the number of cases under no intervention 

strategy. P-values denote whether results of scenarios are 

statistically meaningful compared to the Baseline scenario. We set 

the threshold value as 0.05 to test p-values. If p-values are less 

than the threshold value, we accept the alternative hypothesis, the 

difference between results is statistically significant. The first 

three scenarios show results of applied intervention strategies two 

weeks after the pandemic has started whereas the last three 

scenarios demonstrate results of applied intervention strategies 

eight weeks after the pandemic has started. Since we consider a 

120-day pandemic period, the last three scenarios are applied 

around the peak time of the pandemic. Results clearly represent 

that the number of cases significantly decrease if any intervention 

strategy is applied as soon as the pandemic has begun. The 
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number of cases resulted from the two-week school closure eight 

weeks after the pandemic started (Scenario 4) is not statistically 

different than results of the Baseline scenario. School and 

workplace closure (Scenario 6) around the peak time of the 

pandemic decrease the number of infected people by 20% and 

death people by 18% whereas the number of overall cases goes 

down by 65% if closures are applied two weeks after the 

pandemic started (Scenario 3). The other important issue is that 

the closure of workplaces seems more useful than the closure of 

schools in terms of decreasing overall cases. However, many 

studies show that vaccinating schoolchildren helps to prevent 

overall incidents during epidemics and pandemics (Tsuzuki et al., 

2019; Medlock and Galvani, 2009; Kawai et al., 2011; Glasser et 

al., 2010) since schoolchildren are the most responsible for 

transmission, and their parents can be considered as bridges to 

spread disease to the rest of the population. In this study, 

workplaces are considered as relatively small networks compared 

to schools. As we mentioned, each workplace consists of between 

50 and 100 people whereas each school consists of between 290 

and 310 children. We generate around 5.380 workplaces and 956 

schools for a-million population. As a result, we cut more 

connections among people in different networks when the 

workplace closures are applied. Furthermore, we consider that 

schools are serving children that live in same area. Thus, when the 

disease starts to spread in a school, mostly children and parents 

that live in same area are affected and the possibility of spreading 

the rest of network (other homes, schools, workplaces) is 

relatively low. Finally, when we test the opposite situation 

(workplace consists of between 290 and 310 people whereas each 

school consists of between 50 and 100 children), it is observed 

that school closures significantly decrease the number of cases 

compared to workplace closures.  

Table 4 shows the number of infected and death people, and 

percentages of infected houses and schools under different 

scenarios based on 10% attack rate and associated death rates. 

Results show similar pattern with COVID-19 calibrated results. 

Applied any intervention strategy two weeks after the pandemic 

has started reduces the overall cases much more than applied 

those eight weeks after it has started. However, comparing to 

COVID-19 based results, declines in terms of the percentage are 

relatively low. For example, the number of overall cases decreases 

by 65% whereas it decreases only by 40% in Scenario 3 when we 

observe more aggressive attack rate (0.1). Similarly, Scenario 6 

provides 20% less cases under the COVID-19 based attack rate 

while cases only reduce by 17% under the 10% attack rate. 

Workplace closures work better than school closures as previous 

results. The number of infected houses, workplaces, and schools 

proportionally increases in higher attack rate. However, 

percentage inclines for COVID-19 calibrated attack rate are 

higher. Note that all differences between results are statistically 

significant.

 

Table 3. The number of infected and death people, and percentages of infected houses, workplaces, and schools under different 

scenarios based on COVID-19 attack and death rates. 

Scenario Infected p-value Death House School Workplace 

Baseline 35.158 … 824 4,46% 4,81% 4,70% 

1 28.109 6,51E-07 659 3,57% 4,31% 3,79% 

2 21.323 2,51E-15 503 2,90% 3,37% 3,37% 

3 12.407 5,61E-27 291 1,73% 2,70% 2,11% 

4 33.459 8,86E-02 792 4,25% 4,69% 4,48% 

5 31.418 3,78E-04 743 4,07% 4,49% 4,39% 

6 28.337 1,91E-07 672 3,66% 4,26% 4,01% 

 

Table 4. The number of infected and death people, and percentages of infected houses, workplaces, and schools under different scenarios 

based on the 10% attack rate and associated death rate. 

Scenario Infected p-value Death House School Workplace 

Baseline 98.863 … 2.316 11,70% 12,59% 12,48% 

1 86.405 4,66E-04 2.032 10,20% 11,45% 10,92% 

2 69.902 7,12E-11 1.665 8,34% 9,08% 9,14% 

3 59.898 5,42E-17 1.409 7,10% 8,27% 7,81% 

4 92.473 4,38E-02 2.161 10,92% 11,95% 11,64% 

5 88.130 1,04E-04 2.075 10,44% 11,27% 11,23% 

6 81.379 8,43E-07 1.909 9,61% 10,63% 10,36% 
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4. Conclusions and Recommendations 

As many infectious diseases, COVID-19 has dramatic effect 

on people all over the world.  Although almost more than a year 

has passed since the first cases has appeared, thousands of people 

are still being infected and dying every day. There are some 

intervention strategies such as vaccinations, antiviral drugs, 

quarantine, workplace and school closures to be able to stop or 

slow down spread of infectious diseases. Unfortunately, scientists 

have not been developed 100% effective antiviral drugs and 

vaccines against COVID-19 so far in despite of their enormous 

and invaluable efforts. Therefore, workplace and school closures 

have been applied by many governments all over the world to stop 

and slow down the progression of COVID-19. In this study, we 

also consider school/workplace closures as an intervention 

strategy to observe how applications of workplace and school 

closures together or separately and different times during the 

pandemic effect on results. To be able to achieve that, we test 6 

scenarios that consider school and workplace closures separately 

or together and applications of closures in two different time 

periods, two and eight weeks after the pandemic started. On the 

other hand, we proposed a network SIR model to mimic spread of 

COVID-19 on the population by considering five age groups 

based on the demographic structure of Turkey.  

We considered a-million population size and 120-day 

pandemic period for the simulation. People contact with others in 

their networks (school, workplace, and home) every day and can 

be infected with a given probability if they interact with sick 

people. If they are infected, they start to spread the disease to 

others in their networks until they recover or die. We calibrate 

sickness probability according to the attack rate derived from 

COVID-19 related data of six countries. Since the cases in the 

countries are observed after some precautions have been already 

applied, the higher attack rate is also taken into consideration 

when testing scenarios. Results show that applying any of 

intervention strategies as soon as the pandemic begins makes huge 

differences in terms of overall cases compared to applying them 

around the peak times. Overall cases decrease by 40% and 65% 

for the high attack rate and COVID-19 related attack rate when 

workplace/school closures are applied 2 weeks after the pandemic 

has started. These rates decrease to 17% and 20% when we apply 

closures around in eighth week. Furthermore, closures of 

workplaces seem to decrease overall cases much more than 

closures of schools. The reason is that workplaces in this study are 

defined much smaller than schools in terms of the number of 

individuals and the number of workplaces is several times higher 

than the number of schools. Therefore, people in workplaces can 

contact with more people in different networks directly or 

indirectly and closures of workplaces significantly limit 

interactions among people and decrease overall cases more than 

school closures. When we repeat same tests for larger workplaces 

and smaller schools, it is observed that school closures decrease 

overall cases much more than workplace closures. Finally, results 

imply that even closing schools and workplaces in two weeks 

does not stop the spread of diseases completely based on recovery 

times uniformly distributed between 6 and 9 days. Obviously, 

people can interact with family members more during closures 

and continue to spread disease in their homes. After closures 

finish, new infected individuals start to spread diseases in 

workplaces or schools again.  

Some limitations and assumptions exist in this study. First, 

infectious probability is assumed same for each person 

independent of his/her age even though the possibility of being 

sick can highly change according to ages, chronical illnesses, even 

jobs of people in real life. However, since COVID-19 pandemic 

is still ongoing and related data are relatively insufficient and 

unreliable, we use overall attack rates to calibrate sickness 

probabilities. We assume that people can contact with other 

people only in their workplaces, homes, and schools. However, 

people have interactions in other places such as public 

transportations, restaurants, shopping malls, etc. Since network 

models are complex systems and need high computational times 

to run simulations, we ignore other places and interactions not to 

make the model even more sophisticate. Finally, we assume that 

infected people continue to contact with as many people as they 

contact before they are infected.  

In this study, we consider only effect of school/workplace 

closures on the number of infected and death people during a 

pandemic. In future research, other intervention methods, 

vaccinations and antiviral drugs, can be considered beside of 

school/workplace closures and some optimization methods can be 

applied to select the best strategy or strategies to be able to 

minimize the number of cases and related economic costs. 
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