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ABSTRACT 
This paper is devoted to the application of the disjunctive kriging method in the Choghart north anomaly iron ore 
deposit in Yazd province, Iran. The local distributions of the values of a regionalized attribute at unsampled locati-
ons can be assessed by disjunctive kriging. The case study consists of borehole samples measuring the iron con-
centration. A Gaussian isofactorial model is fitted to these data and disjunctive kriging was used to assess the lo-
cal probabilities that the actual concentrations exceed a threshold value and to divide the ore into an economic 
and uneconomic parts. The tools and concepts are complemented by a set of computer programs and applied 
to the case study. The study showed that disjunctive kriging can be applied successfully for modeling the grade 
of an ore deposit.
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ÖZ

Bu çalışma, İran’ın Yazd bölgesinde bulunan Choghant kuzeyi demir cevheri anomalisine ayırıcı kriging yönteminin 
bir uygulamasını içermektedir. Bölgeselleştirilmiş bir değişkenin, örneklenmemiş noktalardaki değerlerinin yerel da-
ğılımları ayrıca kriging ile kestirilebilmektedir. Sunulan çalışmada sondaj örneklerinde yapılan demir derişimleri kul-
lanılmıştır. Bu verilere Gauss izofaktoryel model uydurulmuş ve gözlenen derişimlerin belirli bir eşik değerden yük-
sek olma olasılıklarının kestirilmesi ve cevheri ekonomik ve ekonomik olmayan kısımlara ayırabilmek amacıyla ayırıcı 
kriging yöntemi kullanılmıştır. Bu çalışma kapsamında kullanılan araç ve kavramlar bir dizi bilgisayar programı yardı-
mıyla uygulanmıştır. Çalışmanın sonuçları, ayırıcı kriging yönteminin cevher tenörlerinin modellenmesinde başarıy-
la uygulanabildiğini göstermiştir.    

Anahtar Kelimeler: Choghant kuzey anomalisi, ayırıcı kriging, jeoistatistik, doğrusal olmayan kriging. 
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INTRODUCTION

The aim of much drill hole sampling and map-
ping is to enable miners and their advisors to 
predict values of ore deposit properties at sites 
that have not been sampled. Kriging in its vario-
us forms is one way of doing this, providing es-
timates of minimum and known variance, and 
there is now a large literature on its applicati-
ons in earth science.

Miners must decide for each block from its 
sampling estimate whether to extract it for pro-
cessing (if its concentration exceeds the eco-
nomic threshold) or send it to waste, and for 
this they want to know the probability that the 
true value exceeds the threshold. To solve this 
problem Matheron (l976) developed the met-
hod known as ‘disjunctive kriging’. The main 
advantage of disjunctive kriging over the simp-
ler techniques, whether of kriging or prediction 
from a classification, is in providing these pro-
babilities. These probabilities should enable a 
miner or his advisor to assess the risks asso-
ciated with imprecise estimates. The probabi-
lity that a critical value is exceeded depends on 
the distribution function. For a normal distribu-
tion these probabilities can be read from publis-
hed tables or calculated numerically using stan-
dard procedures.

Disjunctive kriging involves transforming data 
to a normal distribution and then determining 
for each point of interest the probability that 
the true value exceeds the threshold. Yates et 
al. (1986a, 1986b) have provided a full derivati-
on of Matheron’s method and illustrated it with 
examples in hydrology.

Other geostatistical methods used to calculate 
the probability that the true value exceeds the 
threshold are conditional simulations (Chile’s 
and Delfiner, 1999), multigaussian kriging (Verly, 
1983; Emery, 2005) or non-parametric estima-
tors such as indicator kriging and its flavors 
(Deutsch and Journel, 1998). Disjunctive kriging 
has been applied mostly in the bivariate Gaus-
sian model (Rendu, 1980; Yates et al., 1986a, 
1986b; Yates and Yates, 1988; Webster and Oli-
ver, 1989, 2001; Wood et al., 1990; Oliver et al., 
1996; Chica-Olmo and Luque-Espinar, 2002).

This paper is intended to investigate and to eva-
luate the potential and applicability of disjunc-
tive kriging as a tool for modeling the grade of 
the Choghart North Anomaly Iron Ore Depo-
sit. All of the statistical and geostatistical cal-
culations and graphical output generated for 
this case study were made using the software 
system implemented by the authors.

DISJUNCTIVE KRIGING

Principles of the disjunctive kriging of blocks 
and estimating reserves were given in detail in 
earlier works (Chile’s and Delfiner, 1999). Basi-
cally, in disjunctive kriging, the variable z0 to be 
estimated is decomposed into a sum of disjo-
int (uncorrelated) components of sample valu-
es. When kriging of the separate components 
is possible, the procedure is feasible, i.e., when 
the joint probability density function of z0 (or the 
transformed Yo) and each sample za (or Ya) is of 
isofactorial type.

In practice, a continuous variable like the iron 
grade of an ore deposit can always be transfor-
med by anamorphosis into a Guassian equiva-
lent Y, and then only a joint Guassian hypothe-
sis for the probability density function (PDF) of 
samples and blocks is required.

We start by transforming the measured variab-
le, Z(x), to one Y(x) that has a standard normal 
distribution such that

 Z x Y x( ) [ ( )]=Φ                                               (1)

This is done using Hermite polynomials, which 
are related to the normal distribution by 
Rodriguez’s formula. 
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Where; g(y) is the normal probability density 
function, k is the degree of the polynomial ta-
king values 1, 2,… and  (1/(k!)0.5 is a standardi-
zing factor. The first two Hermite polynomials 
are as follows.
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Thereafter the higher order polynomials obey 
the recurrence relation.

H y
k
yH y k

k
H yk k k( ) ( ) ( )=− −

−
− −

1 1
1 2        (4)

The Hermite polynomials are orthogonal with 
respect to the weighting function (-y2/2) on the 
interval from −∞  to +∞  ; they are indepen-
dent components of the normal distribution of 
ever increasing detail. Many functions of Y(x) 
can be represented as the sum of Hermite poly-
nomials.
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Because the polynomials are orthogonal, the 
coefficients required for Eq. (1) can be calcula-
ted as given below.
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The transform is invertible, and so the results 
can be expressed in the original units of mea-
surement. To krige the variable of interest, Z(x), 
we simply krige the Hermite polynomials sepa-
rately and sum their estimates to give the dis-
junctive kriging estimator.
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So from n points in the neighborhood of x0 esti-
mations of the Hermite polynomials are:  
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The next step is inserting them into Equation 7. 
λik are the kriging weights, which are found by 
solving the simple kriging equations.
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Or alternatively the following expression can be 
written. 
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In particular, the procedure enables us to esti-
mate Z(x0) by
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The kriging variance of ˆ { ( )}H Y xk is given by 
the following expression.
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The disjunctive kriging variance of  ˆ[ ( )]f Y x0   is 
given below.

σ σDK k k
k

x f x2
0

2 2
0

1
( ) ( )=

=

∞

∑                                      (13)

Once the Hermite polynomials have been es-
timated at x0, the conditional probability, that 
the true value there exceeds the critical value, 
Zc can be estimated. The transformation Z(x) 
=F[Y(x)] means that zc has an equivalent yc on 
the standard normal scale. Since the two sca-
les are monotonically related their indicators 
are the same.

[ ( ) ] [ ( ) ]Z x z Y x yc c≤ = ≤                          (14)

For [ ( ) ]Y x yc , which is the complement of

[ ( ) ]Y x yc≤ , the kth Hermite coefficient is as 
below.
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The coefficient for k=0 is the cumulative distri-
bution to yc.

f G yc0 = ( )                                                                                                        (16)             

And for larger k

f
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The indicator can be expressed in terms of the 
cumulative distribution and the Hermite polyno-
mials:
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Its disjunctive kriging estimate is obtained by 
as follow.
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Where, L is some small numbers. The kriged 
estimates ˆ { ( }H y xk

k
0  approach to zero rapidly 

with increasing k, and so summation need ex-
tend over only few terms. This is the same as 
ˆ [ ( ) ] .DK

cz x z0 ≤Ω  In this instance, we are 
interested in the probability of excess, and so 
we compute. 
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CASE STUDY

The deposit under scrutiny in the case study 
is an iron deposit, which is in the northwest of 
the famous Choghart mine in the Central Iran 
Zone (Figure 1). The deposit is composed of 
magnetite-hematite with varying amounts of al-
kali amphiboles. It occurred in large low-grade 
orebodies. There is no general consensus re-
garding the origin of this iron oxide deposit. 
Some authors (Moor and Modabberi, 2003) be-
lieve that it has been formed directly from mag-
mas filling volcanic diatrems or flowing as la-
vas, while others (Samani, 1988) suggest me-
tasomatic replacement of preexisting rocks by 
hydrothermal (deuteric) solutions charged with 
iron that leached from cooling felsic plutons. 
The orebody and the metamorphosed country 
rock are cut by several diabasic dikes.

Hematite is the second most ubiquitous mine-
ral after magnetite. Although some primary he-
matite is also found in the drill cores, most of 
the hematite is secondary in origin. Some goet-
hite and hydrous iron oxide occur on the surfa-
ce, but disappear rapidly with increasing depth. 
Calcite, dolomite, secondary hematite and 
talc occur throughout the orebody as veinlets 
and cementing material of oxidized ore. Ruti-
le and goethite are probably the results of a to-
tal transformation of the earlier formed martite. 
According to field observations, the host rocks 
are metamorphic rocks, hornblendite–pyroxe-
nite, volcanic rocks (rhyolite, andesite) and the 
pyroclastic fill of the vent.

Principally, this deposit was explored by 26 bo-
reholes (Figure 2). The data file gives the name 
of each drill, the coordinate of drills, the grade 
of each element, the measure depth and azi-
muth of each drill, the inclination of boreholes 
and level, and lithology coding etc.  In general, 
the drilling grid is irregular (see Figure 2). As the 
bench height for mining is fixed at 12 m, bore-
hole samples were regularized at 12.5 m inter-
vals. 
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APPLICATION

Data Transformation

Usually, the random field that represents the 
regionalized attributes under study does not 
have any univariate distributions, and therefo-
re must be transformed into a field with a dist-
ribution suited to a known isofactorial model. 
In the Gaussian case, this procedure is known 
as normal scores transformation. The problem 
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Figure 1.	The location of the North Anomaly of Choghart deposit in central Iran.
Şekil 1.	 Choghart cevheri kuzey anomalisinin Orta İran’daki konumu.

 

 

 

 

Figure2. 
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Figure 2.	Borehole sample location map of North 
Anomaly of Choghart deposit.

Şekil 2.	 Choghart cevheri kuzey anomalisinden alı-
nan örnek yerleri.
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in this case is that the variable is not normally 
(Gaussian) distributed, and therefore, it has to 
be transformed from the original distribution 
into a standard Gaussian distribution, the pro-
cess being known as a Gaussian anamorphosis 
transformation. The histogram of the iron con-
centrations (Figure 3) is not normal. Under the-
se conditions, as suggested by Chile`s and Del-
finer (1999), a Guassian model is preferred. In 
a first attempt, the data are transformed to va-
lues with a standard normal distribution. As, to 
give an example from the data of the authors, 
the raw distribution of Fe is shown in Figure 3,  
and Figure 4 shows the transformed Gaussian 
distributions. 

Variography

Taking spatial variety and randomicity into ac-
count, the variogram function can reflect the 
spatial variable structure of a regional variable. 
Regarding the variogram analysis of the normal 
scores data, Figures 5 and 6 of the variogram 
in different directions do not allow one to detect 
an anisotropy, so only an omnidirectional mo-
del is considered. The model consists of a pure 
nugget effect with 0.32 plus a spherical sche-
me with sill 0.90 and range 150 m. This model 
is required since disjunctive kriging estimation 
will be based on it as well as on the block ana-
morphosis calculated before.
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Figure 3.	Raw histogram of borehole sample iron 
concentrations.

Şekil 3.	 Kuyu örneklerine ait demir derişim yatay sü-
tun diyagramı.

Figure 5.	Variogram in different azimuths for Chaghart 
North anomaly.

Şekil 5.	 Choghart cevheri kuzey anomalisinde farklı 
azimutlar için varyogramlar.

Figure 4.	Transformed histogram of borehole sample 
iron concentrations.

Şekil 4.	 Kuyu örneklerinde demir derişimlerine ait 
dönüştürülmüş histogram.

Figure 6.	Variogram in different dips for Chaghart 
North anomaly.

Şekil 6.	 Choghart cevheri kuzey anomalisinde farklı 
eğimler için varyogramlar.
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Figure 9 
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Estimation by Disjunctive Kriging 

To verify the practical usefulness of disjunctive 
kriging to estimate block values, the theory has 
been applied to the Choghart north anomaly 
iron ore deposit. The estimate of the grade of 
the survey samples only is not enough. The fact 
that the grade of a block is estimated at 10%, 
e.g., does not mean that this grade, as it will be 
known at the time of extraction, cannot exceed 
a threshold of 20%. So forecasting the probabi-
lity of the Y(x) past the threshold of 20% is sig-
nificant. Consider that in this case study 20% is 
cut off. It means that more than 20% is ore and 
lower is waste.  Figures 7 and 8 show the grade 
and estimated error variance maps computed 
by disjunctive kriging. According to these two 
figures, a decision can be made. Figures 9 and 
10 give the probability and probability error va-
riance maps for a threshold of 20 %.

CONCLUSIONS

This work addressed the problem of assessing 
the uncertainty and estimating the conditional 

distributions in the values of a spatial attribu-
te (Fe in this case), using disjunctive kriging ins-
tead of simple or ordinary kriging. Implementa-
tion of disjunctive kriging is fairly simple when 
done within the scope of a bivariate isofactorial 
model. In practice, given the wide range of pos-
sibilities in the modeling, trial-and-error proce-
dures are often necessary to choose a type of 
bivariate distribution and fit its parameters. This 
choice may be based on the experience of the 
practitioners and their understanding of the 
data. From the case study, we concluded that 
disjunctive kriging can be used to model the 
uncertainty of mapping iron ore concentrations 
in an ore deposit. It is hoped that this example, 
taken from very different application fields will 
encourage practitioners to apply disjunctive kri-
ging with models that extend the capabilities of 
the bigaussian model. We end by saying that if 
the data are relatively marginally skewed and 
the goal is to predict nonlinear functional, then 
disjunctive kriging would be suitable.

Figure 7.	Estimated block averages of iron by DK.
Şekil 7.	 Ayırıcı kriging yöntemiyle tahmin edilen de-

mir ortalamaları.

Figure 9.	Conditional probabilities that block avera-
ges of iron are more than 20%.

Şekil 9.	 Demir ortalamalarının %20’den büyük oldu-
ğu koşullu olasılıklar.

Figure 8.	Estimated block averages error variance by 
DK.

Şekil 8.	 Ayırıcı kriging yöntemiyle tahmin edilen orta-
lamaların hata varyansları.

Figure 10. Conditional probabilities error variance that 
block averages of iron are more than 20%.

Şekil 10.	Demir ortalamalarının %20’den büyük oldu-
ğu hata varyanslarının koşullu olasılıkları.  
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