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Abstract

This article aims to use Bohnenblust-Karlin’s fixed point theorem to obtain new results for the impulsive
inclusions with infinite delay in Banah space given by the form

Dfx(t) — Ax(t) € F(t,z), teJ=10,b], t#t,
(P) 1’(t> = \P(t)a te (—O0,0],
Ax(t;) = Li(z(t;)), i=1,..,m,
where “D? is the Caputo derivative. We examine the case when the multivalued function F'is a Carathéodory

and the linear part is sectorial operator defined on Banach space. Also, we provide an example to elaborate
the outcomes.
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derivative.
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1. Introduction

Throughout the last two decades, the topic of equations and inclusions with fractional oreder has been
considered as an interesting aspect of investigation for many researchers. Not only because of many mathe-
matical branches involved in this topic but rather its increasing significance in applications as modeling tool
in various disciplines; technology, physics, optimal control, etc. See, [I1], 15, 19, 22] for more details.
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In particular, fractional equations and inclusions problems with undergoing impulses have gained a
tremendous attention. That is since such problems can efficiently describe procedures which at particu-
lar moments change their state abruptly which cannot be modeled by classical differential schemes. One can
find some applications in [6, [17]. With regard to the background of general theory on the subject as well as
applied developments, we suggest Benchohra’s book [7], the papers [8, 10] and within references.

Nevertheless, special concern has been dictated to those differential inclusions in which the past can
arbitrary affect the time progress of the state parameter. Such differential equations and inclusions, namely
differential equations and inclusions with delay, often occur in most significant areas involving hereditary
phenomena like populations model, model of blood cell productions, electrodynamics models etc. For further
specifics and some recent work, one can see[9, 10, 14} 16l 17, 211 23 B0, 31l 32]. For instance, Shu et al. [27]
introduced a different concept of mild solutions for (P) without delay when F' is a completely continuous
single-valued function and A is a sectorial operator with {S,(¢) : ¢t > 0} and {7, : ¢ > 0} are compact.
Thereafter, in [28], Shu et al. proved that the solutions obtained in [27] was not correct and presented
the right form of the solutions when 0 < @ < 1 and 1 < a < 2. Agarwal et al. [I] proved the results of
(P) with the absence of impulses and delay in case when the dimension of E is finite and A is a sectorial
operator. They determined the dimension for mild solutions set. While Ouahab [25] investigate a version
of Fillippov’s Theorem for (P) in the case when A is an almost sectorial operator and with the absence of
impulses and delay. Alsarori et al. [3] proved the existence of solution for (P) without delay when F' is upper
semicontinuous and convex and A is not necessarily compact. Alsarori et al. [4] established new results
for (P) without delay when F' is lower semicontinuous, nonconvex and A is not compact. Shu et al. [29]
considered the mild solutions to a class of impulsive fractional evolution equations of order 0 < o« < 1. They
proposed a more appropriate new definition of mild solutions for impulsive fractional evolution equations by
replacing the impulse term operator To(t — t;) with T (t)7T, 1(t;), where T 1(¢;) denotes the inverse of the
fractional solution operator 7, (t) at t =¢;, i =1,--- ,m.

Motivated by the previous papers and work, we study a case differs from aforementioned cases. We
examine the following system:

Dfx(t) — Ax(t) € F(t,z), teJ=1[0,b], t#t, (0<a<l),
(P)< x(t) = ¥(t), t € (—o0,0],
Az(t;) = Li(z(t;)), i=1,..,m,

where ¢D? is the Caputo derivative , E is separable Banach space, A : D(A) C E — FE is sectorial operator,
F : Jx© — 2F is a Carathéodory multifunction, 0 = tg < t; < --- < tm < tme1 = b, for every
1<i<m,I;: E— E, Az(t;) =z(t]) —x(t]), =(t]) = lim - x(s), and z(t]) = lim__ .+ x(s). For
any t € J, the element x; of © represents the history of the state from —oo to the present time ¢ defined by
z(0) = x(t+0), 0 € (—00,0], U € 0. O will be specified later.

The article starts by addressing some preliminaries and notation with respect to topics of fractional
calculus and the set-valued analysis. Section 3 outlines the essential discussion of the paper, that is; the
proof of existence results for (P). Finally, section 4 proceeds to interpret already proved results in the

previous section through giving practical example.

2. Preliminaries

In this section, we present some primary concepts, definitions and initial facts which are useful for the
development of this article.
Let (E,| - ||) be a Banach space, C(J,E) = {u : J — E, u is continuous }, L'(J,E) = {G : J —
E, G is Bochner integrable}, L(E) = {f : E — E, f is bounded and linear operator},
P(E)={X: X CE, X # @,Xisbounded }, Py(E) ={X : X C E, X # &, Xis closed }, P,(E) = {X :
X C E, X # &,Xis compact }, P.(E) = {X : X C E, X # &, Xis convex } and Py(E) = {X : X C
E, X # @, Xis conver and compact }.



N.A. Alsarori, K.P. Ghadle, Adv. Theory Nonlinear Anal. Appl. 5 (2021), 382-392| 384

Let © = {U : (—00,0] — E} be a linear space of functions from (—o0,0] into E endowed with a seminorm
| - [le and satisfies the following axioms:

1. If  : (—o00,b] — E, such that g € ©, then Vit € J, x; € ©, and

[z < allztlle,

where a is a positive constant.

2. There are two functions pi, pe : RT™ — R™ such that

[EACITI) Sl[lp] [z(s)[| + p2(®)]|zolle,  for each t € [0,b],
s€(0,t

where 7 is continuous and ue is locally bounded.

3. The space © is complete.
Let Jo = [0,t1], J; = (ti, tix1], i = 1,--- ,m, we define the set of functions:

A={z:(-00,b] > E: x|, € C(Ji,E) and there exist z(t;) and z(t))
such that x(t;) =xz(t;), zo=Ve€O, i=1,---,m},
endowed with the seminorm
[z]la = sup{lz(s)] : s € [0,0]} + [¥]lo, = €A
Now, let us recall some important definitions and lemmas on multivalued functions and fractional calculus.

Definition 2.1. (13, [18]). Let F : X — P(Y), where X and Y are topological spaces. We say that

1. F is Upper semicontinuous (u.s.c) if F'(W) = {z € X : F(x) C W} is an open subset of X for
every open set W C Y.

2. F is Completely continuous if F(V') is relatively compact for every bounded subset V. of X.

3. F possess a fized point if 3 x € X with x € F(z).

Remark 2.2. For any closed subset U C X, if F(U) is compact and F(u) is closed for every w € U, then
F s u.s.c. iff F is closed.

Definition 2.3. Let G :J x E — P(E). We say that G is Carathéodory if

1. t = G(t,u) is measurable for every w € E.

2. u— G(t,u) is u. s. c¢. for ae.teJ.

Lemma 2.4. ([20]). Let G :J x E — Py(E) be Carathéodory multivalued map, for each w € E  the
set Sg = Sé’u ={f € LYJ,E) : f(t) € G(t,u(t)) ae. t € J} #0 and F:LY(JE)— C(J,E) be a
continuous linear map. Then the operator

foSG : C(J,E) — Pck(C(JvE))7

u— (FoSqg)(u) =F(Sq)
is a closed graph operator in C(J,E) x C(J, E).
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Definition 2.5. ([19]). Let f € L'(J, E). Fractional integration of the order a > 0 with lower limit zero for
f s defined as

1 t
I°f(t) = / (t— s)a_lf(s)ds, t>0.
I'(a) Jo
provided that the right-hand side is point-wise defined on [0, 00).

Definition 2.6. ([19/). Let f € C™(]0,00),R). The Caputo derivative of the order o > 0 for f is defined as

cpo _ 1 t_sn—a—lnss
D"f(1) = oy | 4= )

=1""f"(t), t>0, n=[a]+1,
where [a] is the integer part of the real number .
For further details on fractional calculus, we refer to [19, 22] 24].

Definition 2.7. Let A : D(A) C E — E be linear closed operator. We say that A is sectorial if 3 w €
R, 0<c[5,n] and M >0, with

1 p(A) CEgwy ={A € C: A #w,|arg(A —w)| < 0}.

2. [|[RN A)llzpy < A€ gy

M
A —w|’
For more details on sectorial, we refer to [3, [12].

Definition 2.8. ([3]). Let (Pp) define as

Dfa(t) = Axz(t), a € (0,1),
) { #(0) = 20,

where A is closed and linear and D(A) is dense. Then, we call the family {To(t) : t > 0} C L(E) is a
solution operator for (P1) iff

1. To(t) is strongly continuous V't > 0 and To(0) = I.
2. Ta(t)D(A) C D(A) and ATy (t)x = To(t)Ax ¥V o € D(A), t > 0.

3. Ta(t)x is solution for (P1) ¥V x € D(A), t > 0.

Definition 2.9. ([5]). Let To(:) be the solution operator for (P1) such that |To(t)|zpy < Me*?, then, we
say that the operator A is belong to e®(M,w), where t >0, M >1 and w>0.

Lemma 2.10. ([27]). Let (P») define as

(Py) { *Dix(t) = Ax(t) + h(t), o€ (0,1),

If A is sectorial operator and h satisfies the uniform Holder condition with exponent o € (0, 1], then (Py) has
unique solution x(t) defined as:

2(t) = Ta(t)zo + /0 Sult — s)h(s)ds,

where To(t) = 55 [ AL RO, A)dN,  Su(t) = 55 [y eM R(AY, A)d\, and Y is a suitable path.

2mi
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Lemma 2.11. ([3]). Let o € (0,1) and A € A%(6p,wo) with wo € R and Oy € (0, 5], then

1Ta®)ll ey < Me*t and  [|Sa(t)||gp) < Ce (1 4+1t71) ,  for every t >0, w > wp.
Let

My, = sup [[Ta(t)|lz(E), Ms, = sup Ce“'(1+t*7").
0<t<b 0<t<b
Then,
1Ta®l ) < M7, 1Sa(®)ll(my < t* ' Ms,,

where A*(p,wo) = {A € e*: A generates analytic solution operators T,
of type (Oo,wo)} and e* = U{e“(w) : w > 0}.

Definition 2.12. Let x : (—oo,b] — E. The function x(t) is called solution for (P) if

U(t), t € (—o0,0]
v(t) = g (t = 5)f(s)ds, te . 1)
7;(75 — tp) [ (x )+ fO (t—s)f(s)ds, te€J;,
where it =1,---,m andeS};.

Theorem 2.13. (20]). Let E be Banach space and D € Py (E). If G: D — Py (D) is upper semicon-
tinuous and G(D) is relatively compact in E, then G has fized point in D.

3. Main Results
This section aims to prove the existence results for the problem (P).

Theorem 3.1. Let A € A%(0y,wo) such that 0y € (0, 5] and wo € R.
We assume the following conditions:

(H1) The semigroup {Sq(t) : t > 0} is compact.

(Hs) The multivalued function F : J x © — Py (FE) is Carathéodory and for every xz € ©, the set
Sll[’,rr ={feLYJ,E): f(t) € F(t,x;) a.e. t € J} is nonempty.

(H3) There is ¥ € L*(J,R") with
|F(t,z)|| =sup{|u| : v e F(t,x)} <IE)1+ ||z|le), teJ, xe€b.
(Hy) I; : E — E is continuous, compact and | I;(x)|| < hil|z|| Vz € E, where h;>0,i=1,---,m

Then (P) has a mild solution on (—o0,b] provided that there is r > 0 such that
I t

M, hr + Ms, (14 62 W] + 517~)a/ I(s)ds < r,
0

where 01 = sup,ecy p1(t), 2 =supeypa(t), and h =", h;.

Proof. We will turn problem (P) into fixed point problem. Define the multivalued function IT: A — P(A)
such that II(y) = {y € A} with

(1), t € (—o0,0]
y(t) = fo (t —s)f(s)ds, t € Jo,
Lma te) Iu(z(ty) + fo Salt — ) f(s)ds, te J;,
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wherei =1,--- ,mand f € S}. Clearly, mild solutions of (P) are just fixed points of Il. Let Q : (—00,b] — E
such that

R M

This means, Q= V. For all v € C(J, E) with v(0) = 0, let us define the function v as

)0, t € (—o0,0];
o) = {v(t), tel '

Let 2y = Q4 + g, t € (—o0,b]. Then, z(-) satisfies (1)) iff vg = 0, and for each ¢t € J we have

(t) = fo f(s)ds, t e Jo,
v
I]z llT ( )Ik(Q(tk "‘ v tk + fO t - S S)dS, t [ Ji)

where i =1,--- ;mand f € S},(,QJFE). Let A = {v € A : vy = 0}, for each v € A we have
[o]lx = sup [o(®)]| + [[volle = sup [[o(£)]]-
teJ teJ
Therefore, (A, ||-|5) is Banach space.

Now, let G : A — P(A) be an operator define as follows: G(v) = {y € A} such that

s)ds, t € Jo,
o = [l 9 ° 2)
o1 ( t) I (Qt, ) +0(t,)) + fo (t—s)f(s)ds, teJ,

where i =1,--- ,;m and f € SF( a4p)- Clearly, IT has fixed point iff G has fixed point. So, we show that
G has fixed point by using Theorem For better readability, we break the proof into a sequence of steps.
Step 1. G(v) C A is convex for each vEA.

Let v € A, y1,y2 € G(v), and A € (0,1). If t € Jp from , we have

w0+ (1= Nie) = | Salt = $)MA(S) + (L= A)fa(s)]ds

where f1, fo € Slly(.,Q_F ) Since F' has convex values, S F(0+7) is convex. Then, [Afi + (1 —X)f2] € (-247)"
Thus, Ay1(t) + (1 — N)y2(t) € G(v), Vt € Jo.

Similarly, we can prove that Ayi(¢) + (1 — Ny2(t) € G(v) for all t € J;, i =1,--- ,m. This means that G(v)
is convex for each v € A.

Step 2. Let D = {v € A : v(0) = 0, ||v|][x < r}. Obviously, D is bounded, convex and closed set in A. We
show that G(D) C D. Let y € G(v) , v € D, by using Lemma (3.5) in [2], Lemma [2.11] with Hj, for t € Jo,
we get

t
ly@l < / Salt — 5)f(s)ds]| < Ms, / (t— 5)* 9(s)(1 + |Q + To)ds
0
t
§Mga(1—|—52||\11\|+51r)/ (1 — 5)*L9(s)ds
0

b t
< Ms, (1 + 6] + 517“)a/ I(s)ds < r.
0
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Similarly, if ¢t € J;, i =1,2,--- ,m by using Hy in addition we get

k=1

t
by < 11D Talt — i) I(Qty) + o) + I/0 Sa(t —s)f(s)ds|

k=1

t
< M, hr+ Ms, / (t = 5)*19(s) (1 + |2 + Do )ds
0
b t
< M, hr + Ms, (14 62/ ¥ + 51T)a/ I(s)ds <.
0

Which follows that y € D. Then, G(D) C D. B
Step 3. G maps bounded sets into equicontinuous sets in A. Let v € D with y € G(v), from the definition
of G, there is f € F( Q —1—@) such that

(t) = fo f(s)ds, t e Jy,
i ’ZiT( L) + T + [ Salt — ) f(s)ds, t € T,

Ifte Jy. Let © > 0 with t + ¢ € Jy. Then

t+¢
I+ -yl <l [ Saltti—s)f ds—/s (t — 5)f(s)ds]
0
< / 1St + 1 — $)£(5) — Salt — 5)£(s)ds
0

t+e
4 / 1St + o — $)1£(s)ds
< R1 + Ro,

where
Ry = /O 1Salt + 1 — $)£(5) — Salt — 5)1(5)ds,

t+e
Ry = / 1Salt + ¢ — )l (s)llds.

Since f € F(-,2+ ), hence f dependant of Q + @, so by the definition of S, and Theorem of Lebesgue
Dominated Convergence, we get

¢
lim Ry <lim [ ||Sa(t4¢—35)f(s) —Sa(t —s)f(s)|ds
t—0 =0 Jo

< /0 lin [|Sa -+~ 5) () — Salt — 5)f(s)|ds = 0.

For Ry we have
t+e

«
lim Ry < lim Mg, —(1+ 6| ¥ + 817) [ 9(s)ds = 0.
1—0 t—0 (0% t

IfteJ, = (ti,tzq_ﬂ,i: 1,--- ,m. Let t,t + ¢ € J;, we have

ly(t+ ) =y @)
< D MTalt + o = i) Ie(Qt,) +0(t;)) = Talt — te) (1) +0(8)]
1

i

B
Il

t+e

w0 s +L—s)f(s)ds—/ Sult — 5)f(s)ds]|.
0 0
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Similar discussion as before with consider that 7T, is strongly continuous, we get
lim [ly(t +¢) — y(t)[| = 0.
1—0

Therefore, G(D) is equicontinuous.
Step 4. (GD)(t) ={y(t) : y € G(D)} is relatively compact in E for each t € J.
Fort € Jo=[0,t1], let 0 <t <s<t; and e € (0,t). For v € D we define

t—e

Ye(t) = ; Sa(t — 5)f(s)ds,

where f € F(-,Q2+ ). Since S,(t) is compact for ¢ > 0, the set Yz = {y.(¢) : y. € G(D)} is relatively

compact in E. Moreover,
t

ly(t) —y=(O)] < |l t Sa(t — ) f(s)ds| (3)
—€
Similarly, for t € J; = (t;,tiv1],i=1,--- ,m. Let t; <t < s <t;11 and € € (0,t). For v € D, we define
= t—e
=2 Talt = t)Ik(Qt;) + () + | Salt = 5)f(s)ds,
— 0
where f € F(-,247). Since S,(t) is compact for ¢ > 0 and the functions Iy, k = 1,--- ,m are compact, the

set Yz = {y:(t) : y- € G(D)} is relatively compact in E. Furthermore,

t

ly(@) =y <1l | Salt =) f(s)ds]. (4)

t—e
Obviously, the right hand side of (3) and ( . ) tend to zero as € — 0. Hence, there exists a relatively compact
set that can arbitrary close to (GD) t) = {y(t) : y € G(D)} for t € J. Therefore, (GD)(t) is relatively
compact in E for t € J.
As a consequence of Step 2 to 4 together with the Arzela-Ascoli theorem we conclude that G is completely
continuous.
Step 5. G has closed graph. Let v, — v*, y, € G(vn), yn — y*, as n — oo. We claim that y* € G(v*).

Because, y, € G(v,), n > 1, from the the deﬁnltlon of G, there exists f, € S FC.Qnt7) with
y (t) f(] ( )dS te J(),
" ’;37( — ) () +Ta(t))) + [ Salt — 8) fu(s)ds, t € J;.

For t € Jy, we prove that there is f* € SF( Q45 with

_ /Ot Sult — 8)f*(s)ds.
_ /t Sult — 5)f(s)ds.

Obviously, F is continuous linear operator. From Lemma 2 FoSi > is closed graph operator. Also, for all
t € Jy, we get

Let F: L'(Jy, E) — C(Jo, E) defined by

yn(t) € F(S}?(~,Qn+m))~
Since v, — v* and y, — y*, Vt € Jy we have

- / Salt = $) 1 (s)ds,
0
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for some f* € S}V( 0 17)"

Similarly, for any t € J;, ¢ =1,---,m, we have

k=1

Z (t = t) I(Qn(t, ) +Tn(t;)) /S (t —s)fn(s)ds
=1

We prove that for t € J;, there is f* € S}V(-,Q*JFT*) with
k=i
y*(t) = ZTa(t—tk)Ik(Q*(tk +v*(t;)) / Sa(t — ) f*(s)ds.
k=1
For eacht € J;, i =1,2,--- ,m, we have
k=i
1yn(®) = ) Talt — te) Iu(Qm(ty,) +Tn(ty))]
k=1
k=i
—ly*(t) — ZTa(t — ) L (5 (t,) + v ()] = 0 as n— oo.
k=1

Now, let us define the linear continuous operator F : L'(J;, E) — C(J;, E) such that

:/ﬂ%@—sﬁ@M&
0

By Lemma and definition of F we have F o S}T is a closed graph operator. Moreover, for every t € J;,

i

[yn(t) = D Talt — ti) I(Qn(ty) + Oa(t;))] € F(Sk( 0, om):
1

B
Il

Since v,, — v*, for some f* € S! it follows that, for each t € J;, i = 1,--- ,m, we have
Y Y

F(79*+U7) ’

k=1
Y1) = 3 Talt — ) (@ (1) + 77 (15)) /Stﬂ (s)ds.

k=1

Then, G is closed. By Remark , G is u. s. c.. Hence, by Theorem [2.13] G has fixed point v € A which is
mild solution for the problem (P).

O
4. Example
For all z € [0,7], and i=1,2,---,m, consider the problem:
oult, =) — ult, 2) € R(t,u(v, 2), te0,1], t £ 1,
u(t,0) = 0,
( ™) = (5)
() (2 ﬂl@z wydp cos(u(ti)(2)),
(t,z) = uo(v,z), —oo < v <0,

where 0§ is the Caputo fractional partial derivative (0 < o < 1), ¢ € [0,1], z € [0,7] and §; : R — R,
i=1,---,m. Put E = L*([0,7]]), and let A: D(A) C E — E defined by Ay = y", such that D(A) = {y €
E :y,y are absolutely continuous, y” € E,y(0) = y(7) = 0}.
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Then,
Ay = 0’ yn)yn, Y € D(A),

n=1

where y,,(s) = v/2sin(ns), n € N, is the orthogonal set of eigenvectors of A. From [26], A generates analytic
semigroup {7'(t) :t >0} in E given by

oo
Ze y?Qnyna Vye E,Vit>D0.

n=1

So, {T'(t) : t > 0} is uniformly bounded compact. Therefore, R()\, A) = (A — A)~! is a compact operator
for each A € p(A). This means A € A%*(6p,wo).

Set

Ii(z( / Bi(t; — w)dp cos(u(t;)(z)), i1=1,---,m.
Also, we define ¥ : (—00,0] — E by
U(t) =up(v,z), —oo<v<0, ze€l0,n].
If F(t,xt)(z) = R(t,u(t, 2)), z € [0,7]. Then, we can rewrite as:

‘D(t) — Ax(t) € F(t,z), teJ=1[0,1,t#t,i=1,..,m,
x(t) = U(t), —o0 <t <0,
Ax(t;) = Li(z(t;)), i=1,..,m.

If we put stable conditions on F' as in Theorem the system has a mild solution on (—o0, 1].

Conclusion

The present article succeeded to capture sufficient conditions with which the given system (P) has mild
solutions. Beside various techniques and methods, we mainly relied on Bohnenblust-Karlin’s fixed point
theorem. In essence, the results drawn by this paper extended and improved some previous related studies.
To enhance our findings, we manage to provide a numerical example in the last section.
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