
234 

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 19(38), Güz 2020, 234-243. 

 

İSTANBUL TİCARET ÜNİVERSİTESİ  

FEN BİLİMLERİ DERGİSİ  
 

Istanbul Commerce University Journal of Science 
 

http://dergipark.gov.tr/ticaretfbd 

 

 

Araştırma Makalesi / Research Article 

 

NEW REPRODUCING KERNELS AND HOMOGENIZING 

TRANSFORMS FOR SOME BOUNDARY VALUE PROBLEMS 
 

BAZI SINIR DEĞER PROBLEMLERİ İÇİN YENİ ÜRETİCİ ÇEKİRDEKLER VE 

HOMOJENLEŞTİRME DÖNÜŞÜMLERİ 
 

Elif NURAY YILDIRIM
1 

 

 
Corresponding Author / Sorumlu Yazar 

enuray@ticaret.edu.tr 

 

Received / Geliş Tarihi 
22.12.2020 

 

Accepted / Kabul Tarihi 
31.12.2020-

Abstract 
 
Nonlinear boundary value problems have a significant role in the 

science. The solution approximations are also important as much 

as problems. In this study, new reproducing kernel spaces are 
constructed and reproducing kernel functions have been obtained 

for some boundary value problems. In the reproducing kernel 

theory, it is higly important to study wih homogeneous differential 
equation with the homogeneous conditions. For this purpose, 

homogenizing transformation functions have been found and 

nonlinear nonhomogeneous problems transformed to the 
homogeneous form.  

 

Keywords: Boundary value problems, nonhomogeneous ordinary 
differential equations, reproducing kernel functions, reproducing 

kernel method. 

 

Öz 
 
Lineer olmayan sınır değer problemleri fizikte ve matematikte 

önemli bir yer tutmaktadır. Problemlere dair çözüm yaklaşımları 

ise bir o kadar öneme haizdir. Bu çalışmada, bazı yeni üretici 
çekirdekli uzaylar inşa edilerek bu uzaylara ait üretici çekirdek 

fonskiyonları elde edildi. Üretici çekirdek teorisi gereği çalışılan 

denklemin ve denkleme ait sınırşartlarının muhakkak suretle 
homojen olması önemli olduğundan, homojen olmayan sınır değer 

problemleri özel dönüşüm fonksiyonları kullanılarak homojen hale 

getirildi.  
 

 

Anahtar Kelimeler: Homojen olmayan adi diferansiyel 
denklemler, sınır değer problemleri, üretici çekirdek fonksiyonları, 

üretici çekirdek metodu. 
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1.INTRODUCTION 

 

In this study, by using reproducing kernel method we aim to find the reproducing kernel 

functions and homogenizing transforms the problems in the form :  

 

(𝕃ℎ)(𝑥) = 𝜌(𝑥)𝑟𝑛(𝑥) + 𝜂(𝑥)𝑟𝑛−1(𝑥) = 𝑔(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏 
 

The reproducing kernel functions have a vital role to solve different types of differential 

equations. The theory of reproducing kernel was begin with the research of Aronszajn and 

Bergman (Aronszajn, 1950; Bergman, 1950). Since the method is very powerful, many 

researcher used the reproducing kernel functions for several kind of problems. For example Cui 

et al. (Cui and Lin, 2009) published a book about numerical analysis in the reproducing kernel 

space which is a very important study. Syam et al. (Syam et al., 2017) studied a class of 

fractional Sturm-Liouville eigenvalue problems. Jiang and Tian (Jiang and Tian, 2015) examined 

the Volterra integro-differential equations of fractional order by the reproducing kernel method. 

Li et al. (Li and Wu, 2014) applied the method for numerical solutions of fractional Riccati 

differential equations. For more details see (Akram and Rehman, 2013;Alvandi and Paripour, 

2016; Freihat et al. 2016). 

 

In many models and problems, the equations need to be solved numerically. Therefore many 

approaches have been used and there have been lots of efforts for solving non-linear higher order 

ordinary differential equations in researches. For instance, Homotopy perturbation method 

(Abbasbandy, 2006),  Adomian decomposition method (Hasan and Zhu, 2009), Chebyshev 

collocation method (Daşçıoğlu and Yaslan, 2011) used. Adomian decomposition method for 

solving initial value problems in second-order ordinary differential equations is given in 

(Wazwaz, 2002). Lu et al. Furthermore Runge- Kutta method (Wazwaz,, 1983), Predictor-

Corrector method (Fox and Mayers, 1987), decomposition method (Wazwaz, 2001), direct block 

method (Waeleh et al., 2012) have been used for solving IVP. For a further reading and more 

details one can see (Coddington and Levinson, 1971; Hoppensteadt, 1971; Sell, 1965; Yokuş and 

Kaya, 2020; Yokuş, 2020). 

 

 

2. PRELIMINARIES 

 

In this section, we present some essential definitions and theorems of reproducing kernel theory. 

 

Definition 2.1. [Reproducing Kernel] (Bergman, 1950) Let 𝑋 be a nonempty set. A function 

𝑄:𝑋 × 𝑋 → 𝔽 is called a reproducing kernel of the Hilbert space ℋ if and only if   

 

1.  𝑄(⋅, 𝑠) ∈ ℋ,    ∀𝑠 ∈ 𝑋, 

2.  〈  𝜓  , 𝑄(⋅, 𝑠)〉 = 𝜓(𝑠).  
 

The item (b) is called "reproducing property" of kernel 𝑄. The value of the function 𝜓 at the 

point 𝑠 is reproduced by the inner product of 𝛾 with 𝑄(⋅, 𝑠). 
 

Definitin 2.1. (Cui and Lin, 2009) The space 𝑈2
𝑚[𝑎, 𝑏] consist of the functions 𝑟: [𝑎, 𝑏] → ℝ and 

define as follows:  

 

𝑈2
𝑚[𝑎, 𝑏] = {𝑟(𝑥)|𝑟(𝑚−1)(𝑥) ∈ 𝐴𝐶[𝑎, 𝑏],    𝑟(𝑚)(𝑥) ∈ 𝐿2[𝑎, 𝑏],    𝑥 ∈ [𝑎, 𝑏]}. (1) 

 

𝑈2
𝑚[𝑎, 𝑏] equipped with the inner product  
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< 𝑟, 𝑘 >𝑈2𝑚= ∑  𝑚−1
𝑖=0 𝑟(𝑖)(𝑎)𝑘(𝑖)(𝑎) + ∫  

𝑏

𝑎
𝑟(𝑚)(𝑥)𝑘(𝑚)(𝑥)𝑑𝑥. (2) 

Here we denote the vector space of absolutely continuous (real-valued) functions with 𝐴𝐶[𝑎, 𝑏] 
and the quadratically integrable functions on the interval [𝑎, 𝑏] with 𝐿2[𝑎, 𝑏]. 
 

Lemma 2.1. If a Hilbert space has a reproducing kernel, it is called a reproducing kernel Hilbert 

space (RKHS).  

 

Lemma 2.2. (Cui and Lin, 2009) 𝑈2
𝑚[𝑎, 𝑏] function space is a reproducing kernel space.  

 

The reproducing kernel function of the space 𝑈2
𝑚 can be written as:  

 

𝑄𝑥(𝑦) =

{
 
 

 
 𝑄(𝑥, 𝑦) =∑ 

2𝑚

𝑖=1

𝑏𝑖(𝑦)𝑥
𝑖−1, 𝑥 ≤ 𝑦,

𝑄(𝑦, 𝑥) =∑ 

2𝑚

𝑖=1

𝑑𝑖(𝑦)𝑥
𝑖−1, 𝑥 > 𝑦.

                                                                                 (3) 

 

For the proof of Lemma 2 one can see (Cui and Lin, 2009). 

 

2.1. 𝑼𝟐
𝟑[𝟎, 𝟏] Reproducing Kernel Space and Its Kernel Function 

 

Let we define a function space for 𝑚 = 3  

 

𝑈2
3[1,2] = {𝑘(𝑥)|𝑘′′(𝑥) ∈ 𝐴𝐶[1,2],    𝑘′′′(𝑥) ∈ 𝐿2[1,2],    𝑥 ∈ [1,2]} 

 

with the inner product  

 

〈𝑘, 𝑄𝑦〉𝑈23[1,2] = 𝑘(1)𝑄𝑦(1) + 𝑘′(1)𝑄′𝑦(1) + 𝑘′′(1)𝑄′′𝑦(1) + ∫  
2

1

𝑘(3)(𝑥)𝑄𝑦
(3)
(𝑥)𝑑𝑥. 

 

We use integration by parts and obtain 

 

< 𝑘,𝑄𝑦 >𝑈23[1,2] = 𝑘(1)𝑄𝑦(1) + 𝑘′(1)𝑄′𝑦(1) + 𝑘′′(1)𝑄′′𝑦(1) + 𝑘′′(2)𝑄𝑦
(3)
(2)

−𝑘′′(1)𝑄𝑦
3(1) − 𝑘′(2)𝑄(4)(2) + 𝑘′(1)𝑄(4)(1) + 𝑘(2)𝑄(5)(2)

−𝑘(1)𝑄(5)(2) − ∫  
2

1

𝑘(𝑥)𝑄(6)(𝑥)𝑑𝑥.

 

 

We have 𝑄𝑦(1) = 0 = 𝑄𝑦(2) by the conditions in 3. Therefore we get,  

 

< 𝑘,𝑄𝑦 >𝑈23[1,2] = 𝑘′(1)𝑄′𝑦(1) + 𝑘′′(1)𝑄′′𝑦(1) + 𝑘′′(2)𝑄𝑦
(3)
(2) − 𝑘′′(1)𝑄𝑦

3(1)

−𝑘′(2)𝑄𝑦
4(2) + 𝑘′(1)𝑄𝑦

4(1) − ∫  
2

1

𝑘(𝑥)𝑄𝑦
(6)
(𝑥)𝑑𝑥.

 

 

 

 

 

 

 



E. Nuray Yıldırım   New Reproducing Kernels and Homogenizing Transforms for Some Boundary Value Problems 

237 

 

If we have the following equations:   

 

1.  𝑄𝑦
′ (1) + 𝑄𝑦

(4)(1) = 0.  

2.  𝑄𝑦
′′(1) − 𝑄𝑦

′′′(1) = 0.   

3.  𝑄𝑦
(3)(2) = 0.   

4.  𝑄𝑦
(4)
(2) = 0.                                                                                                                      (4) 

 

We will get  

 

< 𝑘,𝑄𝑦 >𝑈23[1,2]= −∫  
2

1

𝑘(𝑥)𝑄𝑦
(6)
(𝑥)𝑑𝑥. 

 

Note that property of the reproducing kernel is  

 

< 𝑘,𝑄𝑦 >𝑈23[1,2]= 𝑘(𝑦). 

 

Thus, we reach  

 

−∫  
2

1

𝑘(𝑥)𝑄𝑦
(6)
(𝑥)𝑑𝑥 = 𝑘(𝑦). 

 

This gives us the Dirac-Delta function 

 

−𝑄𝑦
(6)
(𝑥)𝑑𝑥 = 𝛿(𝑥 − 𝑦). 

 

When 𝑥 ≠ 𝑦, we get  

 

𝑄𝑦
(6)
(𝑥) = 0. 

 

Therefore, we obtain the reproducing kernel function 𝑄𝑦 as:  

 

𝑄𝑦(𝑥) =

{
 
 

 
 ∑ 

6

𝑖=1

𝑏𝑖𝑥
𝑖−1, 𝑥 ≤ 𝑦,

∑  

6

𝑖=1

𝑑𝑖𝑥
𝑖−1, 𝑥 > 𝑦.

 

 

There are twelve unknown coefficients. So we need twelve equations to find these unknown 

coefficients. By Dirac-Delta function:  

 

5.  𝑄𝑦+(𝑦) = 𝑄𝑦−(𝑦).   8.  𝑄′′′𝑦
+
(𝑦) = 𝑄′′′𝑦−(𝑦).

6.  𝑄′𝑦+(𝑦) = 𝑄
′
𝑦−
(𝑦).   9.  𝑄

𝑦+
(4)(𝑦) = 𝑄𝑦−

(4)(𝑦).

7.  𝑄′′𝑦+(𝑦) = 𝑄
′′
𝑦−
(𝑦).   10.  𝑄

𝑦+
(5)
(𝑦) = 𝑄𝑦−

(5)
(𝑦).

 

 

We have the following equations:   
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11. 𝑄𝑦(1) = 0    ,      12. 𝑄𝑦(2) = 0.  (5) 

 

So we have twelve unknown coefficients and twelve equations. when we solve these equations 

by using Maple 17, we get the reproducing kernel function for 𝑥 ≤ 𝑦 as: 

 

𝑄𝑦(𝑥) =
3

13
𝑥𝑦 −

1

156
𝑥𝑦5 +

5

156
𝑥𝑦4 −

5

78
𝑥𝑦3 −

5

26
𝑥𝑦2 +

21

104
𝑥2𝑦2 −

1

624
𝑥2𝑦5  

+
5

624
𝑥2𝑦4 −

5

312
𝑥2𝑦3 −

5

26
𝑥2𝑦 +

7

104
𝑥3𝑦2 −

1

1872
𝑥3𝑦5 +

5

1872
𝑥3𝑦4

−
5

936
𝑥3𝑦3 −

5

78
𝑥3𝑦 −

1

104
𝑥4𝑦 +

1

3744
𝑥4𝑦5 −

5

3744
𝑥4𝑦4 +

5

1872
𝑥4𝑦3

+
5

624
𝑥4𝑦2 −

1

18720
𝑥5𝑦5 +

1

3744
𝑥5𝑦4 −

1

1872
𝑥5𝑦3 −

1

624
𝑥5𝑦2 −

1

156
𝑥5𝑦

+
1

120
𝑥5. 

 

2.2. 𝑼𝟐
𝟒[𝟎, 𝟏] Reproducing Kernel Space and Its Kernel Function 

 

Because of the theory, in order to find the reproducing kernel function we first need to construct 

the space which is related to the derivative of the problem. If we choose 𝑚 = 4 in the equation 

(1) then we get space definition as follows: 

 

𝑈2
4[0,1] = {𝑘(𝑥)|𝑘′′(𝑥) ∈ 𝐴𝐶[0,1],    𝑘′′′(𝑥) ∈ 𝐿2[0,1],    𝑥 ∈ [0,1]} 

 

with the inner product  

 

< 𝑘,𝑄𝑦 >𝑈24[0,4𝜋] = 𝑘(0)𝑄𝑦(0) + 𝑘′(0)𝑄′𝑦(0) + 𝑘′′(0)𝑄′′𝑦(0) − 𝑘
(3)(0)𝑄𝑦

(3)
(0)

+∫  
1

0

(𝑘(𝑥)(4)(𝑥)𝑄𝑦
(4)
(𝑥))𝑑𝑥.

 

  

Integrating this equation by parts for four times, we have  

 

< 𝑘,𝑄𝑦 >𝑈24[0,1]= 𝑘(0)𝑄𝑦(0) + 𝑘′(0)𝑄′𝑦(0) + 𝑘′′(0)𝑄′′𝑦(0) − 𝑘
(3)(0)𝑄𝑦

(3)
(0) 

+𝑘(3)(1)𝑄𝑦
(4)
(1) − 𝑘(3)(0)𝑄𝑦

(4)
(0) − 𝑘′′(1)𝑄𝑦

(5)
(1) 

+𝑘′′(0)𝑄𝑦
(5)
(0) + 𝑘′(1)𝑄𝑦

(6)
(1) − 𝑘′(0)𝑄𝑦

(6)
(0) 

−𝑘(1)𝑄𝑦
(7)
(1) + 𝑘(0)𝑄𝑦

(7)
(0) + ∫  

1

0

𝑘(𝑥)𝑄𝑦
(8)
(𝑥)𝑑𝑥. 

 

Because of the conditions, we get the following equations: 

  

1. 𝑄𝑦(0) = 0,   2.  𝑄𝑦
′ (0) = 0, 3.  𝑄𝑦

′′(0) = 0.  (6) 

 

With these three functions being zero we obtain: 

 

< 𝑘,𝑄𝑦 >𝑈24[0,1]= 𝑘
(3)(0)𝑄𝑦

(3)
(0) + 𝑘(3)(1)𝑄𝑦

(4)
(1) − 𝑘(3)(0)𝑄𝑦

(4)
(0) 

−𝑘′′(1)𝑄𝑦
(5)
(1) + 𝑘′(1)𝑄𝑦

(6)
(1) − 𝑘(1)𝑄𝑦

(7)
(1) + ∫  

1

0

𝑘(𝑥)𝑄𝑦
(8)
(𝑥)𝑑𝑥. 

  

When the equation is rearranged we get the following equations: 
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4.  𝑄𝑦
(3)(0) − 𝑄𝑦

(4)(0) = 0. 

5.  𝑄𝑦
(4)(1) = 0. 

6.  𝑄𝑦
(5)(1) = 0. 

7.  𝑄𝑦
(6)(1) = 0. 

8.  𝑄𝑦
(7)
(1) = 0.                                                                                                                             (7) 

 

Then we will get:  

 

< 𝑘,𝑄𝑦 >𝑈24[0,1]= ∫  
1

0

𝑘(𝑥)𝑄𝑦
(8)
(𝑥)𝑑𝑥 

  

With the knowledge of reproducing kernel property, the function 𝑘(𝑦) can be written in the 

form:  

 

< 𝑘,𝑄𝑦 >𝑈24[0,1]= 𝑘(𝑦). 

 

For this reason, we reach  

 

∫  
1

0

𝑘(𝑥)𝑄𝑦
(8)(𝑥)𝑑𝑥 = 𝑘(𝑦).                                                                                                                        (8) 

  

Because of the definition of Dirac-Delta function, it is obvious that the equation (8) is equal to 

the 𝛿(𝑥 − 𝑦). That gives us the following equation:  

 

𝑄𝑦
(8)
(𝑥) = 𝛿(𝑥 − 𝑦). 

  

When 𝑥 ≠ 𝑦, the reproducing kernel function 𝑄𝑦 can be written in the form as: 

 

𝑄𝑦(𝑥) =

{
 
 

 
 ∑ 

8

𝑖=1

𝑏𝑖𝑥
𝑖−1, 𝑥 ≤ 𝑦,

∑  

8

𝑖=1

𝑑𝑖𝑥
𝑖−1, 𝑥 > 𝑦.

 

 

By using the feature of Dirac-Delta function, the following equations can be written: 

  

9.     𝑄𝑦+(𝑦) = 𝑄𝑦−(𝑦). 

10.  𝑄𝑦+
′ (𝑦) = 𝑄𝑦−

′ (𝑦). 

11.  𝑄𝑦+
′′ (𝑦) = 𝑄𝑦−

′′ (𝑦). 

12.  𝑄𝑦+
′′′ (𝑦) = 𝑄𝑦−

′′′ (𝑦). 

13.  𝑄
𝑦+
(4)(𝑦) = 𝑄𝑦−

(4)(𝑦). 

14.  𝑄
𝑦+
(5)(𝑦) = 𝑄𝑦−

(5)(𝑦). 

15.  𝑄
𝑦+
(6)(𝑦) = 𝑄𝑦−

(6)(𝑦). 

16.  𝑄
𝑦+
(7)
(𝑦) − 𝑅𝑦−

(7)
(𝑦) = 1.                                                                                                         (9) 
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In order to find the reproducing kernel function of the given space, we need to solve the 

differential equation system above. For this purpose, we needed sixteen equation since the (2.2) 

has sixteen coefficients and we obtained them. If we solve the system thus we get the 

reproducing kernel function as: 

 

𝑄𝑦(𝑥) =
1

288
𝑥3𝑦3 +

1

5760
𝑥3𝑦7 −

7

5760
𝑥3𝑦6 +

7

1920
𝑥3𝑦5 −

7

1152
𝑥3𝑦4 +

1

1152
𝑥4𝑦3  

+
1

23040
𝑥4𝑦7 −

2

23040
𝑥4𝑦6 +

7

7680
𝑥4𝑦5 −

7

4608
𝑥4𝑦4 −

1

240
𝑥5𝑦2

−
1

38400
𝑥5𝑦7 +

7

38400
𝑥5𝑦6 −

7

12800
𝑥5𝑦5 +

7

7680
𝑥5𝑦4 +

7

1920
𝑥5𝑦3

+
1

720
𝑥6𝑦 +

1

115200
𝑥6𝑦7 −

7

115200
𝑥6𝑦6 +

7

38400
𝑥6𝑦5 −

7

23040
𝑥6𝑦4

−
7

5760
𝑥6𝑦3 −

1

806400
𝑥7𝑦7 +

1

115200
𝑥7𝑦6 −

1

38400
𝑥7𝑦5 +

1

5760
𝑥7𝑦3

−
1

5040
𝑥7. 

 

 

3. BOUNDARY VALUE PROBLEMS AND HOMOGENIZING TRANSFORMS 

 

In this section we will determine the homogenizing transforms of the given problems.  

 

Example 3.1. Consider the nonlinear boundary value problem (Hasan and Zhu, 2009) 

 

𝑦′′′ −
2

𝑥
𝑦′′ − 𝑦 − 𝑦2 = 𝑔(𝑥)  (10) 

𝑦(0) = 0, 𝑦′(0) = 0, 𝑦(1) = 2,71828182,  (11) 

 

where 𝑔(𝑥) = 7𝑥2𝑒𝑥 + 6𝑥𝑒𝑥 − 6𝑒𝑥 − 𝑥6𝑒2𝑥. The exact solution of the problem is  

𝑦(𝑥) = 𝑥𝑒𝑥.  

 

It is needed to transform the differential equation to the homogeneous type for reproducing 

kernel method. For this reason we seek the function 𝑦 of the form 𝑦(𝑥) = 𝑌(𝑥) + 𝑆(𝑥). This 

will provide new boundary conditions which are homogeneous. We call transformation function 

with 𝑌(𝑥) which satisfies the initial conditions and 𝑌(𝑥) will be the new homogeneous initial 

value problem. For the equation (3), let we use the transformation function given follow as:  

 

𝑆(𝑥) = 𝑎𝑥2. 
  

Here 𝑎 = 2,71828182. Let we write 𝑦 function as:  

 

𝑦(𝑥) = 𝑌(𝑥) + 𝑎𝑥2 
 

With the help of the deravative calculations we get  

 

𝑦′(𝑥) = 𝑌′(𝑥) + 2𝑎𝑥, 
𝑦′′(𝑥) = 𝑌′′(𝑥) + 2𝑎, 

𝑦′′′(𝑥) = 𝑌′′′(𝑥). 
 

By substituting these equations into the (3), the equation will transform to  
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𝑌′′′(𝑥) −
2

𝑥
𝑌′′(𝑥) − 𝑌(𝑥)(1 + 2𝑎𝑥2) = 𝑌2(𝑥) + 𝑔(𝑥) +

4

𝑥
𝑎 + 𝑎𝑥2 + 𝑎2𝑥4, 𝑥 ∈ [0,1] 

 

with the boundary conditions  

 

𝑌(0) = 𝑌′(0) = 𝑌(1) = 0. 
 

This is the new homogeneous boundary value problem. 

 

Example 3.2. Consider the nonlinear boundary value problem (Hasan and Zhu, 2009):  

 

𝑦′′ −
1

𝑥
𝑦′ =

4𝑥2

4+𝑥2
𝑒𝑦,

𝑦(0) = 𝑙𝑛 (
1

4
) , 𝑦(1) = 𝑙𝑛 (

1

5
)

  (12) 

  

with the exact solution 𝑦(𝑥) = 𝑙𝑛 (
1

4+𝑥2
).  

 

Similar to the previous example we choose the transformation function as:  

 

𝑇(𝑥) = 𝑙𝑛 (
4

5
) 𝑥 + 𝑙𝑛 (

1

4
). 

 

Hence, the 𝑦(𝑥) will become  

 

𝑦(𝑥) = 𝑌(𝑥) + 𝑙𝑛 (
4

5
) 𝑥 + 𝑙𝑛 (

1

4
). 

 

By calculating the necessary derivatives we obtain  

 

𝑦′(𝑥) = 𝑌′(𝑥) + 𝑙𝑛 (
4

5
), 

𝑦′′(𝑥) = 𝑌′′(𝑥). 
 

If we put these functions into the 3 we arrive 

 

𝑌′′(𝑥) −
1

4
(𝑌′(𝑥) + 𝑙𝑛 (

4

5
)) =

4𝑥2

4 + 𝑥2
𝑒[𝑌(𝑥)+𝑙𝑛(

4
5
)𝑥+𝑙𝑛(

1
4
)]

 

𝑌′′(𝑥) −
1

4
𝑌′(𝑥) =

𝑥2

4 + 𝑥2
(
4

5
)
𝑥

𝑒[𝑌(𝑥)+𝑙𝑛(
4
5
)𝑥+𝑙𝑛(

1
4
)] +

1

4
𝑙𝑛 (

4

5
). 

 

The last equation is the new boundary value problem with homogeneous boundary conditions 

below  

 

𝑌(0) = 0, 𝑌(1) = 0. 
 

 

4. CONCLUSION 

 

In this study, we presented the new reproducing kernel functions and their special reproducing 

kernel Hilbert spaces which belongs to the problems given section 3 . By homogenizing the 

given problems we obtained new boundary conditions and new boundary value problems which 
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are ready to apply the reprocuding kernel method. This study is important and opens a door for 

the further studies to apply the kernel method easily. 
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