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Abstract 

Information extraction from EEG signals for use in Brain Machine Interface systems has been a highly effective research topic recently. Due to 

the complexity, high dimension, and subject specific behavior of the EEG signals make feature extraction and selection very important. For this 

reason, there are many studies in the direction of feature extraction and selection which affect the performance of the Brain Machine Interface 

system at a high level. In this study, different statistical characteristics were obtained from wavelet coefficients obtained by wavelet transform 

by using BCI Competition IV-2b data set. The selection of the efficient ones of these features is provided by Principal Component Analysis. 

The fitness of logistic regression model established with both feature groups was measured by Akaike Information Criteria. The results 

indicated that relatively better statistical performance can be obtained by using fewer features thanks to PCA. These results are important in 

terms of statistical comparison and demonstration of the success in extracting information from EEG signals. 
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1. Introduction 

Brain Machine Interface (BMI) is a system that enables human and machine interaction for establish a connection between 

the brain and an external mechanism [1]. BMI are systems that enable people to use a computer, an electromechanical arm or 

various neuroprosthesis without using their motor nervous system. The information created by the communication of a large 

number of neurons with each other can be recorded with electrodes that will be placed in different parts of the brain. BMI 

systems for chronic neuromuscular disorders, amyotrophic lateral sclerosis (ALS), stroke, high-level spinal cord injury, motor or 

tetraplegia patients to control a vehicle with Electroencephalogram (EEG) signals taken from the relevant part of their brain are 

becoming increasingly widespread [2]. These systems, called motor imagery-based BMI (MI-BMI) systems, should have in 

excellent performance in terms of real-time data processing capability. The EEG method is the most commonly used method as 

the signal collection method in MI-BMI systems due to its easy applicability and non-invasiveness. In studies using MI-BMI 

systems, mu (8-13 Hz) and beta (13-30 Hz) rhythms are widely researched due to their high temporal resolution and ability to 

identify mental tasks associated with different movement [3]. 

Signal processing algorithms developed for use in MI-BMI systems are a very common research area. The signal processing 

procedure to be used for MI-BMI systems consists of five main steps. These can be listed as signal acquisition, preprocessing, 

feature extraction, feature selection and classification [4]. In this study, public access MI-BMI data set was used. The records in 

the data set, whose details can be accessed from [5] were preprocessed with 0.5 Hz-100 Hz Butterworth filter and 50 Hz Notch 

filter. From the wavelet coefficients obtained by wavelet transform from these filtered records; Statistical features such as mean 

absolute value, mean square root, standard deviation and variance were obtained. Principal Component Analysis (PCA) was used 

to determine those that better represent the data among all the features obtained separately for each subject. The performance of 

the logistic regression model established with all features and the features reduced by PCA was examined. Also, the fit of the 

models was compared with the Akaike Information Criterion [6]. 
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2.  Material and Methods 

2.1. Data Set 

The data set used in this study was collected by “Graz University of Technology” within the scope of BCI Competition IV 

[5]. Of the records taken from 9 people, 2 sessions without feedback were used. 10 trial records were taken from each subject for 

6 times in each session. Records were used for a total of 120 trials. 3-channel bipolar EEG signal was taken with the help of Ag-

AgCl electrode. For these recordings, channels named C3, Cz and C4 were used according to the 10-20 electrode placement 

system, while Fz was used as the ground electrode. Since 3 EEG records are used, there are 360 trial records for each of the 18 

subjects. From these records, in 180 trials, subjects were given a visual stimulus in the form of a right arrow to imagine raising 

their right hand, and a visual stimulus in the form of a left arrow to imagine raising their left hand for the remaining 180 trials. 

Recordings with a sampling frequency of 250 Hz were applied a 0.5 Hz-100 Hz Butterworth filter and a 50 Hz Notch filter. 

 

Figure 1. Experimental paradigm 

In the experiment procedure, as can be seen in Figure 1, each trial starts with the presentation of the auditory stimulus (1 kHz, 

70ms) simultaneously with the appearance of the plus signal on the screen. Then, the right or left arrow mark seen in Figure.1 is 

randomly displayed for 1.25s. The subject is expected to imagine raising his hand in the direction of the arrow indicated for 4 s. 

After each trial, there is a break of at least 1.5 s. This break is changed up to 1s to prevent focus. In the trial records taken from 

each subject, randomly 60 of them are shown right arrow and 60 of them left arrow. Figure 2 shows the 40 th trial record of the 

subject numbered B01, which is known to show the left arrow signal. Here, the 1st second represents the moment when the 

auditory stimulus is given. Between 2 and 3.5 seconds, it is the time period in which the arrow is displayed on the screen. The 

subject is asked to imagine raising his hand in the direction indicated by the arrow from the second to the end of the experiment. 

 

Figure 2. A sample of EEG signal during the experiment 
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2.2. Preprocessing 

The recordings filtered with 0.5 Hz-100 Hz Butterworth filter and 50 Hz Notch filter were analyzed in wavelet transform. It is 

very important to use the appropriate wavelet function and decomposition level in order to obtain efficient features. Although 

wavelet families such as Daubechies 2-10, Biorthogonal 2.2, 3.3, 4.4, Coiflets 1-5, Morlet and Mexican Hat are used for EEG 

signal decomposition to classify left and right hand movement, Daubechies 4 wavelet providing the best kappa value was 

preferred in this study. The level of decomposition was selected as 7, taking into account the maximum decomposition level 

given in Equation (1) [7]. 

𝑆 = 𝑖𝑛𝑡(𝑙𝑜𝑔2 𝑁) (1) 

 

where, S is the maximum decomposition level, N is the time series length of signals, int (.) is rounding an integer. Thus, each 

trial of the EEG signal of each subject is divided into the detailed sub-band D1-D7 and the approximate sub-band A7. 

2.3. Feature Extraction 

Utilizing statistical features during information extraction from EEG signals is a frequently used approach [8],[9]. At this 

stage, instead of using the wide frequency band, three sub-bands containing frequencies belonging to the mu and beta band 

which are frequently used to extract information from MI-BMI systems were used. Here, detailed sub-bands covering mu and 

beta frequencies are D4, D5, D6. Statistical features are extracted for each of these sub-bands. These are four different statistical 

properties: mean absolute value, mean square root, standard deviation and variance [3]. 

2.4. Feature Selection 

Principal Component Analysis (PCA) was used for feature selection. PCA provides reduced size of linear feature spaces 

using a statistical approach [8],[9]. PCA is the arrangement of the axes of the data to keep the high dimensional inter data 

variance at the highest level. The component with the highest variance value is selected as the main component and the other 

components are ranked in descending order according to the variance [10]. In this study, PCA was applied to the feature vector 

obtained by feature extraction and the features were reduced by selecting the features that explain the data with 95% variance. 

2.5. Classification 

Feature vectors applied and not applied PCA were classified by Logistic Regression method separately for each subject, and 

the classification performance of the methods was recorded [11]. 

3. Results and Discussion 

Since the number of statistical features extracted from the Wavelet coefficients obtained using the data set is 4 and the 

number of EEG channels is 3, the sizes of the feature vector obtained at the end of the feature extraction process are (720x13) for 

the B01, the B02, the B03, the B06, the B07and the B09 subjects, (780x13) for the B04 and the B05 subjects and, (840x13) for 

the B08 subject. Here, 720,780 and 840 are the number of trials that the subject imagined raising his right or left hand, giving the 

row size of feature matrix. The last column of the feature vector contains the right or left directional behavior information in the 

relevant experiment. It is indicated by 1 if the subject imagined of raising his right hand in the relevant trial, and 0 if he imagined 

of raising his left hand. Among these features, the number of columns for the feature vector formed by selecting the features that 

explain the EEG data with 95% variance with the PCA method is 6. Table 1 shows the accuracy values of the logistic regression 

model. Table 2 shows the logistic regression model kappa values. The accuracy values given in Table 1 are calculated according 

to Equation (2) [12]. 

𝐵 = 1 −
∑ |𝑡[𝑑] − 𝑦[𝑑]|𝐷

𝑑=1

𝐷
 (2) 

 

where, B is classification accuracy criterion, D is the total number of trials for each subject, t [d] is the predicted response of 

the logistic regression model, and y [d] shows the actual behavioral information, respectively. y [d] is denoted by 1 if the subject 

imagined of raising his right hand in the relevant trial, and 0 if he imagined of raising his left hand. The kappa values given in 

Table 2 are calculated according to Equation (3).  
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𝐾 =
𝐵 − 𝐵0

1 − 𝐵0

 (3) 

 

where, K shows the kappa value criterion, B shows the classification accuracy calculated for the established classification 

model and 𝐵0  shows the expected accuracy value, respectively. For a two-class problem, the expected accuracy value is 0.5. 

These results show that when the real-time data processing procedure is considered, it is possible to extract information from 

EEG signals with relatively close performance by reducing the number of features. In addition, the Akaike Information Criterion 

[6] values of logistic regression models in which all features are used together and features reduced by PCA are given in Table 3.  

Accordingly, in terms of Akaike Information Criterion [6], there is no significant difference between the model in which all 

features are used and the model using reduced features with PCA. However, the Akaike Information Criterion values of the 

features using PCA are relatively low. This situation shows that the model in which the features reduced by PCA analysis is used 

is a relatively more suitable model. The lower the AIC value, the better the logistic regression parameters established represent 

the EEG data. Akaike Information Criterion values are calculated as given Equation (4). 

𝐴𝐼𝐶 = 2 log(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡)) + 2𝑘 +
2𝑘(𝑘 + 1)

𝐷 − 𝑘 − 1
 (4) 

 

where, 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔𝑡ℎ) is likelihood function of regression parameters, k is the number of predicted logistic 

regression parameters, D is total number of trials. 

Table 1. Comparison of the Accuracy Criteria 

Subject 
All of Features Features of reduced with PCA 

Accuracy Number of Features Accuracy Number of Features 

B01 56 12 55.72 4 

B02 62.78 12 61.97 4 

B03 56.53 12 57.67 3 

B04 59.36 12 59.46 4 

B05 55.64 12 56.13 4 

B06 58.89 12 58.64 4 

B07 58.75 12 56.42 4 

B08 58.33 12 57.55 3 

B09 59.86 12 55.31 3 

Mean 58.46 12 57.65 ~ 4 

 

Table 2. Comparison of the Kappa Value Criteria 

Subject 
All of Features Features of reduced with PCA 

Kappa Number of Features Kappa Number of Features 

B01 0.12 12 0.11 4 

B02 0.26 12 0.24 4 

B03 0.13 12 0.15 3 

B04 0.19 12 0.19 4 

B05 0.11 12 0.12 4 

B06 0.18 12 0.17 4 

B07 0.18 12 0.13 4 

B08 0.17 12 0.15 3 

B09 0.20 12 0.11 3 

Mean 0.17 12 0.15 ~ 4 
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Table 3. Comparison of Akaike Information Criteria Values 

Subject 
All of Features Features of reduced with PCA 

Difference 
Akaike Information Criteria Values Akaike Information Criteria Values 

B01 1000 993 7 

B02 970 965 5 

B03 1008 999 9 

B04 1078 1070 8 

B05 1093 1084 9 

B06 985 981 4 

B07 997 994 3 

B08 1166 1157 9 

B09 1000 998 2 

4. Conclusions 

In this study, it is aimed to extract information with similar performance by using fewer features in order to speed up BMI 

systems. For this purpose, statistical features were obtained by using Wavelet coefficients and using all trials separately for each 

subject. PCA has been used to reduce these attributes. Performance criteria were calculated by modeling all features and the 

feature reduced with PCA using logistic regression. In addition, Akaike Information Criteria values were calculated and 

compared for both cases. All these results show that efficient information can be extracted from EEG signals with similar 

performance by using fewer features. In addition, higher performance can be obtained by using other feature reduction methods 

in the literature instead of PCA. In future studies, the present study will be developed with different feature matrices and different 

feature selection methods. The current study is also a positive step towards accelerating BMI systems. 
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