

A study on Matrix Domain of Riesz-Euler Totient Matrix in the Space of *p*-Absolutely Summable Sequences

Merve İlkhan Kara¹*, Mehmet Akif Bayrakdar²

Abstract

In this study, a special lower triangular matrix derived by combining Riesz matrix and Euler totient matrix is used to construct new Banach spaces. α -, β -, γ -duals of the resulting spaces are obtained and some matrix operators are characterized. Finally by the aid of measure of non-compactness, the conditions for which a matrix operator on these spaces is compact are determined.

Keywords: Compact operators, Hausdorff measure of non-compactness, Matrix mappings, Sequence space, α -, β -, γ -duals.

2010 AMS: 46B45, 47B07, 47H08

¹ Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey, ORCID: 0000-0002-0831-1474 ² Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey *Corresponding author: merveilkhan@gmail.com Received: 22 December 2020, Accepted: 12 March 2021, Available online: 29 March 2021

1. Introduction and background

A sequence space is a vector subspace of the space ω of all sequences with real entries. Well known classical sequence spaces are ℓ_p (the space of *p*-absolutely summable sequences, $1 \le p < \infty$), ℓ_{∞} (the space of bounded sequences), c_0 (the space of null sequences), *c* (the space of convergent sequences). On the other hand, *bs*, *cs*₀ and *cs* are the most frequently encountered spaces consisting of sequences generating bounded, null and convergent series, respectively. Further ψ is the space of all finite sequences. A Banach sequence space having continuous coordinates is called a *BK* space. Examples of *BK* spaces are c_0 and *c* endowed with the supremum norm $||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|$, where $\mathbb{N} = \{1, 2, 3, ...\}$.

By virtue of the fact that the matrix mappings between *BK*-spaces are continuous, the theory of matrix mappings plays an important role in the study of sequence spaces. Let X and Y be two sequence spaces, $\mathscr{A} = (a_{nk})$ be an infinite matrix with real entries and \mathscr{A}_n indicate the n^{th} row of \mathscr{A} . If each term of the sequence $\mathscr{A}x = \{(\mathscr{A}x)_n\} = \{\sum_{k=1}^{\infty} a_{nk}x_k\}$ is convergent, this sequence is called \mathscr{A} -transform of $x = (x_n)$. Further, if $\mathscr{A}x \in Y$ for every sequence $x \in X$, then the matrix \mathscr{A} defines a matrix mapping from X into Y. (X, Y) represents the collection of all matrices defined from X into Y. Additionally, B(X, Y) is the set of all bounded (continuous) linear operators from X to Y. A matrix $\mathscr{A} = (a_{nk})$ is called a triangle if $a_{nn} \neq 0$ and $a_{nk} = 0$ for k > n.

The matrix domain $X_{\mathscr{A}}$ of the matrix \mathscr{A} in the space X is defined by

 $\mathsf{X}_{\mathscr{A}} = \{ x \in \boldsymbol{\omega} : \mathscr{A} x \in \mathsf{X} \}.$

Since this space is also a sequnce space, the matrix domain has a crucial role to construct new sequence spaces. Moreover given

A study on Matrix Domain of Riesz-Euler Totient Matrix in the Space of *p*-Absolutely Summable Sequences — 15/25

any triangle \mathscr{A} and a *BK*-space X, the sequence space $X_{\mathscr{A}}$ gives a new *BK*-space equipped with the norm $||x||_{X_{\mathscr{A}}} = ||\mathscr{A}x||_{X}$. Several authors applied this technique to construct new Banach spaces with the help of special triangles. For relevant literature, the papers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] can be referred.

The spaces

$$\begin{aligned} \mathsf{X}^{\alpha} &= \left\{ t = (t_k) \in \omega : \sum_{k=1}^{\infty} |t_k x_k| < \infty \text{ for all } x = (x_k) \in \mathsf{X} \right\}, \\ \mathsf{X}^{\beta} &= \left\{ t = (t_k) \in \omega : \sum_{k=1}^{\infty} t_k x_k \text{ converges for all } x = (x_k) \in \mathsf{X} \right\}, \\ \mathsf{X}^{\gamma} &= \left\{ t = (t_k) \in \omega : \sup_n \left| \sum_{k=1}^n t_k x_k \right| < \infty \text{ for all } x = (x_k) \in \mathsf{X} \right\}, \end{aligned}$$

are called the α -, β -, γ -duals of a sequence space X, respectively.

Let $(X, \|.\|_X)$ be a normed space and $B_X = \{x \in \omega : \|x\|_X = 1\}$. Given any *BK*-space $X \supset \psi$ and $t = (t_n) \in \omega$,

$$\|t\|_{\mathsf{X}}^* = \sup_{x \in B_{\mathsf{X}}} \left| \sum_k t_k x_k \right|$$

implies that $t \in X^{\beta}$.

Lemma 1.1. [16, Theorem 1.29] $\ell_1^{\beta} = \ell_{\infty}$ and $\ell_p^{\beta} = \ell_q$, where $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$. The equality $||t||_{\ell_p}^* = ||t||_{\ell_p^{\beta}}$ holds for all $t \in \ell_p^{\beta}$, where $1 \le p < \infty$.

Lemma 1.2. [16, Theorem 1.23 (a)] Given any BK-spaces X, Y and $\mathscr{A} \in (X, Y)$, there exists a linear operator $\mathscr{L}_{\mathscr{A}} \in B(X, Y)$ such that $\mathscr{L}_{\mathscr{A}}(x) = \mathscr{A}x$ for all $x \in X$.

Lemma 1.3. [16] Let $X \supset \psi$ be a BK-space and $Y \in \{c_0, c, \ell_\infty\}$. If $\mathscr{A} \in (X, Y)$, then

$$\|\mathscr{L}_{\mathscr{A}}\| = \|\mathscr{A}\|_{(\mathsf{X},\mathsf{Y})} = \sup_{n\in\mathbb{N}} \|\mathscr{A}_n\|_{\mathsf{X}}^* < \infty$$

Let \mathcal{Q} be a bounded set in a metric space X and $B(x, \delta)$ be the open ball. The value

$$\chi(\mathscr{Q}) = \inf\{\varepsilon > 0 : \mathscr{Q} \subset \bigcup_{i=1}^{n} B(x_i, \delta_i), x_i \in \mathsf{X}, \delta_i < \varepsilon, n \in \mathbb{N}\}$$

is called the Hausdorff measure of noncompactness of \mathcal{Q} .

To compute the Hausdorff measure of noncompactness of a set in ℓ_p for $1 \le p < \infty$, the following result is essential.

Theorem 1.4. [17] Let \mathscr{Q} be a bounded subset in ℓ_p for $1 \le p < \infty$ and $P_r : \ell_p \to \ell_p$ be the operator defined by $P_r(x) = (x_0, x_1, x_2, ..., x_r, 0, 0, ...)$ for all $x = (x_k) \in \ell_p$ and each $r \in \mathbb{N}$. Then, we have

$$\chi(\mathscr{Q}) = \lim_{r} \left(\sup_{x \in \mathscr{Q}} \| (I - P_r)(x) \|_{\ell_p} \right),$$

where I is the identity operator on ℓ_p .

A linear operator $\mathscr{L} : X \to Y$ is a compact operator if the domain of \mathscr{L} is all of X and for every bounded sequence $x = (x_n)$ in X, the sequence $(\mathscr{L}(x_n))$ has a convergent subsequence in Y. The idea of compact operators between Banach spaces is closely related to the Hausdorff measure of noncompactness. The Hausdorff measure of noncompactness of an operator $\mathscr{L} \in B(X,Y), \|\mathscr{L}\|_{\chi} = \chi(\mathscr{L}(B_X)) = 0$ if and only if \mathscr{L} is compact.

In the theory of sequence spaces, the Hausdorff measure of noncompactness of a linear operator plays a role to characterize the compactness of an operator between BK spaces. For the relevant literature, see [18, 19, 20, 21, 22, 23, 24].

The Euler totient matrix $\Phi = (\phi_{nk})$ is defined as in [25]

$$\phi_{nk} = \begin{cases} \frac{\varphi(k)}{n} & , & \text{if } k \mid n \\ 0 & , & \text{if } k \nmid n, \end{cases}$$

A study on Matrix Domain of Riesz-Euler Totient Matrix in the Space of *p*-Absolutely Summable Sequences — 16/25

where φ is the Euler totient function. In the recent time, by using this matrix, many new sequence and series spaces are defined and studied in the papers [26, 27, 28, 29, 30, 31, 32, 33].

For $p \in \mathbb{N}$ with $p \neq 1$, $\varphi(p)$ gives the number of positive integers less than p which are coprime with p and $\varphi(1) = 1$. Also, the equality

$$p = \sum_{k|p} \varphi(k)$$

holds for every $p \in \mathbb{N}$. For $p \in \mathbb{N}$ with $p \neq 1$, the Möbius function μ is defined as

$$\mu(p) = \begin{cases} (-1)^r & \text{if } p = p_1 p_2 \dots p_r, \text{ where } p_1, p_2, \dots, p_r \text{ are} \\ & \text{non-equivalent prime numbers} \\ 0 & \text{if } \tilde{p}^2 \mid p \text{ for some prime number } \tilde{p} \end{cases}$$

and $\mu(1) = 1$. The equality

$$\sum_{k|p} \mu(k) = 0 \tag{1.1}$$

holds except for p = 1.

The Riesz matrix $E = (e_{nk})$ is defined as

$$e_{nk} = \begin{cases} \frac{q_k}{Q_n} & , & \text{if } 0 \le k \le n, \\ 0 & , & \text{if } k > n, \end{cases}$$

where (q_k) is a sequence of positive numbers and $Q_n = \sum_{k=0}^n q_k$ for all $n \in \mathbb{N}$. By using these matrix, the authors of [34] introduced the Riesz sequence spaces of non-absolute type.

The main purpose of this study is to construct new *BK* spaces $\ell_p(R_{\Phi})$ for $1 \le p < \infty$. The matrix R_{Φ} is obtained by combining Euler totient matrix and Riesz matrix. After studying certain properties of the resulting spaces, α -, β - and γ -duals are computed. Finally some matrix mappings from the spaces $\ell_p(R_{\Phi})$ to the classical spaces are characterized and compact operators are studied.

2. The sequence space $\ell_p(R_{\Phi})$

In the present section, we introduce the sequence space $\ell_p(R_{\Phi})$ by using the matrix R_{Φ} , where $1 \le p < \infty$. Also, we present some theorems which give inclusion relations concerning this space.

The matrix $R_{\Phi} = (r_{nk})$ is defined as

$$r_{nk} = \begin{cases} \frac{q_k \varphi(k)}{Q_n} &, & \text{if } k \mid n \\ 0 &, & \text{if } k \nmid n, \end{cases}$$

where $Q_n = q_1 + q_2 + ... + q_n$. We call this matrix as *Riesz Euler Totient matrix operator*. The inverse $R_{\Phi}^{-1} = (r_{nk}^{-1})$ of the matrix R_{Φ} is computed as

$$r_{nk}^{-1} = \begin{cases} \frac{\mu(\frac{n}{k})}{\varphi(n)} \frac{Q_k}{q_n} &, & \text{if } k \mid n \\ 0 &, & \text{if } k \nmid n \end{cases}$$

for all $k, n \in \mathbb{N}$.

Now, we introduce the sequence space $\ell_p(R_{\Phi})$ by

$$\ell_p(R_{\Phi}) = \left\{ x = (x_n) \in \boldsymbol{\omega} : \sum_n \left| \frac{1}{Q_n} \sum_{k|n} q_k \boldsymbol{\varphi}(k) x_k \right|^p < \infty \right\} \quad (1 \le p < \infty).$$

Unless otherwise stated, $y = (y_n)$ will be the R_{Φ} -transform of a sequence $x = (x_n)$, that is, $y_n = (R_{\Phi}x)_n = \frac{1}{Q_n} \sum_{k|n} q_k \varphi(k) x_k$ for all $n \in \mathbb{N}$.

Theorem 2.1. The space $\ell_p(R_{\Phi})$ is a Banach space with the norm given by $||x||_{\ell_p(R_{\Phi})} = \left(\sum_n \left|\frac{1}{Q_n}\sum_{k|n} q_k \varphi(k) x_k\right|^p\right)^{1/p}$, where $1 \le p < \infty$.

Proof. We omit the proof which is straightforward.

Corollary 2.2. The space $\ell_p(R_{\Phi})$ is a BK-space, where $1 \leq p < \infty$.

Theorem 2.3. The space $\ell_p(R_{\Phi})$ is linearly isomorphic to ℓ_p , where $1 \le p < \infty$.

Proof. Let *f* be a mapping defined from $\ell_p(R_{\Phi})$ to ℓ_p such that $f(x) = R_{\Phi}x$ for all $x \in \ell_p(R_{\Phi})$. It is clear that *f* is linear. Also it is injective since the kernel of *f* consists of only zero. To prove that *f* is surjective, consider the sequence $x = (x_n)$ whose terms are

$$x_n = \sum_{k|n} \frac{\mu(\frac{n}{k})}{\varphi(n)} \frac{Q_k}{q_n} y_k$$

for all $n \in \mathbb{N}$, where $y = (y_k)$ is any sequence in ℓ_p . It follows from (1.1) that

$$(R_{\Phi}x)_n = \frac{1}{Q_n} \sum_{k|n} q_k \varphi(k) x_k = \frac{1}{Q_n} \sum_{k|n} q_k \varphi(k) \sum_{j|k} \frac{\mu(\frac{k}{j})}{\varphi(k)} \frac{Q_j}{q_k} y_j$$
$$= \frac{1}{Q_n} \sum_{k|n} \sum_{j|k} \mu(\frac{k}{j}) Q_j y_j = \frac{1}{Q_n} \sum_{k|n} \left(\sum_{j|k} \mu(j) \right) Q_{\frac{n}{k}} y_{\frac{n}{k}} = \frac{1}{Q_n} \mu(1) Q_n y_n = y_n$$

and so $x = (x_n) \in \ell_p(R_{\Phi})$. *f* preserves norms since the equality $||x||_{\ell_p(R_{\Phi})} = ||f(x)||_{\ell_p}$ holds.

Remark 2.4. The space $\ell_2(R_{\Phi})$ is an inner product space with the inner product defined as $\langle x, \tilde{x} \rangle_{\ell_2(R_{\Phi})} = \langle R_{\Phi}x, R_{\Phi}\tilde{x} \rangle_{\ell_2}$, where $\langle ., . \rangle_{\ell_2}$ is the inner product on ℓ_2 which induces $\|.\|_{\ell_2}$.

Theorem 2.5. The space $\ell_p(R_{\Phi})$ is not an inner product space for $p \neq 2$.

Proof. Consider the sequences $x = (x_n)$ and $\tilde{x} = (\tilde{x}_n)$, where

$$x_n = \begin{cases} \frac{\mu(n)}{\varphi(n)} \frac{Q_1}{q_n} + \frac{\mu(\frac{n}{2})}{\varphi(n)} \frac{Q_2}{q_n} &, & \text{if } n \text{ is even} \\ \frac{\mu(n)}{\varphi(n)} \frac{Q_1}{q_n} &, & \text{if } n \text{ is odd} \end{cases}$$

and

$$\tilde{x}_n = \begin{cases} \frac{\mu(n)}{\varphi(n)} \frac{Q_1}{q_n} - \frac{\mu(\frac{n}{2})}{\varphi(n)} \frac{Q_2}{q_n} &, & \text{if } n \text{ is even} \\ \frac{\mu(n)}{\varphi(n)} \frac{Q_1}{q_n} &, & \text{if } n \text{ is odd} \end{cases}$$

for all $n \in \mathbb{N}$. Then, we have $R_{\Phi}x = (1, 1, 0, ..., 0, ...) \in \ell_p$ and $R_{\Phi}\tilde{x} = (1, -1, 0, ..., 0, ...) \in \ell_p$. Hence, one can easily observe that

$$\|x + \tilde{x}\|_{\ell_p(R_{\Phi})} + \|x - \tilde{x}\|_{\ell_p(R_{\Phi})} \neq 2(\|x\|_{\ell_p(R_{\Phi})} + \|\tilde{x}\|_{\ell_p(R_{\Phi})}).$$

Theorem 2.6. The inclusion $\ell_p(R_{\Phi}) \subset \ell_q(R_{\Phi})$ strictly holds for $1 \leq p < q < \infty$.

Proof. It is clear that the inclusion $\ell_p(R_{\Phi}) \subset \ell_q(R_{\Phi})$ holds since $\ell_p \subset \ell_q$ for $1 \le p < q < \infty$. Also, $\ell_p \subset \ell_q$ is strict and so there exists a sequence $z = (z_n)$ in $\ell_q \setminus \ell_p$. By defining a sequence $x = (x_n)$ as

$$x_n = \sum_{k|n} \frac{\mu(\frac{n}{k})}{\varphi(n)} \frac{Q_k}{q_n} z_k$$

for all $n \in \mathbb{N}$, we conclude that $x \in \ell_q(R_{\Phi}) \setminus \ell_p(R_{\Phi})$. Hence, the desired inclusion is strict.

Before presenting the next result, we define the sequence space $\ell_{\infty}(R_{\Phi})$ by

$$\ell_{\infty}(R_{\Phi}) = \{ x \in \boldsymbol{\omega} : R_{\Phi}x \in \ell_{\infty} \}.$$

Theorem 2.7. The inclusion $\ell_p(R_{\Phi}) \subset \ell_{\infty}(R_{\Phi})$ strictly holds for $1 \leq p < \infty$.

Proof. The inclusion is obvious since $\ell_p \subset \ell_\infty$ holds for $1 \le p < \infty$. Let $x = (x_n)$ be a sequence such that $x_n = \sum_{k|n} (-1)^k \frac{\mu(\frac{k}{k})}{\varphi(n)} \frac{Q_k}{q_n}$ for all $n \in \mathbb{N}$. We obtain that $R_{\Phi}x = \left(\frac{1}{Q_n} \sum_{k|n} q_k \varphi(k) \sum_{j|k} (-1)^j \frac{\mu(\frac{k}{j})}{\varphi(k)} \frac{Q_j}{q_k}\right) = ((-1)^n) \in \ell_\infty \setminus \ell_p$ which implies that $x \in \ell_\infty(R_{\Phi}) \setminus \ell_p(R_{\Phi})$ for $1 \le p < \infty$.

3. The α -, β - and γ -duals of the space $\ell_p(R_{\Phi})$

In this section, we determine the α -, β - and γ -duals of the sequence space $\ell_p(R_{\Phi})$, where $1 \le p < \infty$. The following lemmas are required to prove our main results in this section. Here and in what follows \mathscr{K} denotes the family of all finite subsets of \mathbb{N} .

Lemma 3.1. [35] The following statements hold: $\mathscr{A} = (a_{nk}) \in (\ell_p, \ell_1)$ if and only if

$$\sup_{F \in \mathscr{K}} \sum_{k} \left| \sum_{n \in F} a_{nk} \right|^{q} < \infty$$
(3.1)

holds, where 1*.*

 $\mathscr{A} = (a_{nk}) \in (\ell_{\infty}, \ell_1)$ if and only if (3.1) holds with q = 1. $\mathscr{A} = (a_{nk}) \in (\ell_1, \ell_1)$ if and only if

$$\sup_{k} \sum_{n} |a_{nk}| < \infty \tag{3.2}$$

holds.

 $\mathscr{A} = (a_{nk}) \in (\ell_p, c)$ if and only if

$$\lim_{n \to \infty} a_{nk} \text{ exists for each } k \in \mathbb{N}$$
(3.3)

and

$$\sup_{n} \sum_{k} |a_{nk}|^q < \infty \tag{3.4}$$

holds, where 1 . $<math>\mathscr{A} = (a_{nk}) \in (\ell_{\infty}, c)$ if and only if (3.3) and

$$\lim_{n\to\infty}\sum_{k}|a_{nk}|=\sum_{k}\left|\lim_{n\to\infty}a_{nk}\right|$$

hold.

 $\mathscr{A} = (a_{nk}) \in (\ell_1, c)$ if and only if (3.3) and

$$\sup_{n,k} |a_{nk}| < \infty \tag{3.5}$$

hold.

 $\mathscr{A} = (a_{nk}) \in (\ell_p, c_0)$ if and only if

$$\lim_{n \to \infty} a_{nk} = 0 \text{ for each } k \in \mathbb{N}$$
(3.6)

and (3.4) holds, where 1 . $<math>\mathscr{A} = (a_{nk}) \in (\ell_{\infty}, c_0)$ if and only if (3.6) and

$$\lim_{n\to\infty}\sum_k |a_{nk}| = 0$$

hold.

 $\begin{aligned} \mathscr{A} &= (a_{nk}) \in (\ell_1, c_0) \text{ if and only if } (3.5) \text{ and } (3.6) \text{ hold.} \\ \mathscr{A} &= (a_{nk}) \in (\ell_p, \ell_\infty) \text{ if and only if } (3.4) \text{ holds, where } 1$

In the following theorem, we determine the α -duals of the spaces $\ell_p(R_{\Phi})$ $(1 and <math>\ell_1(R_{\Phi})$.

Theorem 3.2. The α -duals of the spaces $\ell_p(R_{\Phi})$ $(1 and <math>\ell_1(R_{\Phi})$ are as follows:

$$(\ell_p(R_{\Phi}))^{\alpha} = \left\{ t = (t_n) \in \omega : \sup_{F \in \mathscr{K}} \sum_k \left| \sum_{n \in F, k \mid n} \frac{\mu(\frac{n}{k})}{\varphi(k)} \frac{Q_k}{q_n} t_n \right|^q < \infty \right\},\$$

and

$$(\ell_1(R_{\Phi}))^{\alpha} = \left\{ t = (t_n) \in \boldsymbol{\omega} : \sup_k \sum_{n \in \mathbb{N}, k|n} \left| \frac{\boldsymbol{\mu}(\frac{n}{k})}{\boldsymbol{\varphi}(k)} \frac{Q_k}{q_n} t_n \right| < \infty \right\}.$$

Proof. Consider the matrix $C = (c_{nk})$ defined by

$$c_{nk} = \begin{cases} \frac{\mu(\frac{n}{k})}{\varphi(k)} \frac{Q_k}{q_n} t_n & , \quad k \mid n \\ 0 & , \quad k \nmid n \end{cases}$$

for any sequence $t = (t_n) \in \omega$. Hence, given any $x = (x_n) \in \ell_p(R_{\Phi})$ for $1 \le p < \infty$, we have $t_n x_n = (Cy)_n$ for all $n \in \mathbb{N}$. This implies that $tx \in \ell_1$ with $x \in \ell_p(R_{\Phi})$ if and only if $Cy \in \ell_1$ with $y \in \ell_p$. It follows that $t \in (\ell_p(R_{\Phi}))^{\alpha}$ if and only if $C \in (\ell_p, \ell_1)$ which completes the proof in view of Lemma 3.1.

Theorem 3.3. Let us define the following sets:

$$A_{1} = \left\{ t = (t_{k}) \in \boldsymbol{\omega} : \lim_{n \to \infty} \sum_{j=k,k|j}^{n} \frac{\mu(\frac{j}{k})}{\varphi(j)} \frac{Q_{k}}{q_{j}} t_{j} \text{ exists for each } k \in \mathbb{N} \right\},$$
$$A_{2} = \left\{ t = (t_{k}) \in \boldsymbol{\omega} : \sup_{n} \sum_{k} \left| \sum_{j=k,k|j}^{n} \frac{\mu(\frac{j}{k})}{\varphi(j)} \frac{Q_{k}}{q_{j}} t_{j} \right|^{q} < \infty \right\},$$

and

$$A_3 = \left\{ t = (t_k) \in \boldsymbol{\omega} : \sup_{n,k} \left| \sum_{j=k,k|j}^n \frac{\boldsymbol{\mu}(\frac{j}{k})}{\boldsymbol{\varphi}(j)} \frac{Q_k}{q_j} t_j \right| < \infty \right\}.$$

The β *and* γ *-duals of the spaces* $\ell_p(R_{\Phi})$ (1*and* $<math>\ell_1(R_{\Phi})$ *are as follows:*

$$(\ell_p(R_{\Phi}))^{\beta} = A_1 \cap A_2 \text{ and } (\ell_1(R_{\Phi}))^{\beta} = A_1 \cap A_3, \ (\ell_p(R_{\Phi}))^{\gamma} = A_2 \text{ and } (\ell_1(R_{\Phi}))^{\gamma} = A_3.$$

Proof. Let $t = (t_k) \in \omega$ and $B = (b_{nk})$ be an infinite matrix with terms

$$b_{nk} = \begin{cases} \sum_{j=k,k|j}^{n} t_j \frac{\mu(\frac{l}{k})}{\varphi(j)} \frac{Q_k}{q_j} &, & \text{if } 1 \le k \le n \\ 0 &, & \text{if } k > n. \end{cases}$$

Hence it follows that

$$\sum_{k=1}^{n} t_k x_k = \sum_{k=1}^{n} t_k \left(\sum_{j|k} \frac{\mu(\frac{k}{j})}{\varphi(k)} \frac{Q_j}{q_k} y_j \right) = \sum_{k=1}^{n} \left(\sum_{j=k,k|j}^{n} t_j \frac{\mu(\frac{j}{k})}{\varphi(j)} \frac{Q_k}{q_j} \right) y_k = (By)_n$$

for any $x = (x_n) \in \ell_p(R_{\Phi})$. This equality yields that $tx \in cs$ for $x \in \ell_p(R_{\Phi})$ if and only if $By \in c$ for $y \in \ell_p$. That is, $t \in (\ell_p(R_{\Phi}))^{\beta}$ if and only if $B \in (\ell_p, c)$ for $1 \leq p < \infty$. Hence, by Lemma 3.1, it is concluded that $(\ell_p(R_{\Phi}))^{\beta} = A_1 \cap A_2$ and $(\ell_1(R_{\Phi}))^{\beta} = A_1 \cap A_3$.

This equality also yields that $tx \in bs$ for $x \in \ell_p(R_{\Phi})$ if and only if $By \in \ell_{\infty}$ for $y \in \ell_p$. That is, $t \in (\ell_p(R_{\Phi}))^{\gamma}$ if and only if $B \in (\ell_p, \ell_{\infty})$ for $1 \le p < \infty$. Hence, by Lemma 3.1, it is concluded that $(\ell_p(R_{\Phi}))^{\gamma} = A_2$ and $(\ell_1(R_{\Phi}))^{\gamma} = A_3$.

4. Some matrix transformations related to the sequence space $\ell_p(R_{\Phi})$

In this section, we give the characterization of the classes $(\ell_p(R_{\Phi}), \mathsf{Y})$, where $1 \le p < \infty$ and $\mathsf{Y} \in \{\ell_{\infty}, c, c_0, \ell_1\}$. Throughout this section, we write $d(n,k) = \sum_{j=0}^{n} d_{jk}$ for an infinite matrix $D = (d_{nk})$ and all $n, k \in \mathbb{N}$.

Theorem 4.1. Let $1 \le p < \infty$ and Y be any sequence space. Then, we have $\mathscr{A} = (a_{nk}) \in (\ell_p(R_{\Phi}), \mathsf{Y})$ if and only if

$$D^{(n)} = \left(d_{mk}^{(n)}\right) \in (\ell_p, c) \text{ for each } n \in \mathbb{N},$$

$$D = (d_{nk}) \in (\ell_p, \mathsf{Y}),$$

where $d_{mk}^{(n)} = \begin{cases} 0 & , \quad k > m \\ \sum_{j=k,k|j}^{m} a_{nj} \frac{\mu(\frac{j}{k})}{\varphi(k)} \frac{Q_k}{q_j} & , \quad 0 \le k \le m \end{cases}$ and $d_{nk} = \sum_{j=k,k|j}^{\infty} a_{nj} \frac{\mu(\frac{j}{k})}{\varphi(k)} \frac{Q_k}{q_j}$ for all $k, m, n \in \mathbb{N}$.

Proof. We omit the proof since it follows with the same technique in [6, Theorem 4.1].

The following results are obtained by combining Theorem 4.1 with Lemma 3.1.

Theorem 4.2.

$$(a) \mathscr{A} = (a_{nk}) \in (\ell_1(R_{\Phi}), \ell_{\infty}) \text{ if and only if}$$

$$\lim_{m \to \infty} d_{mk}^{(n)} \text{ exists for each } n, k \in \mathbb{N},$$

$$(4.1)$$

$$\sup_{m,k} \left| d_{mk}^{(n)} \right| < \infty \text{ for each } n \in \mathbb{N}$$

$$(4.2)$$

and (3.5) holds with d_{nk} instead of a_{nk} .

(b) $\mathscr{A} = (a_{nk}) \in (\ell_1(R_{\Phi}), c)$ if and only if (4.1) and (4.2) hold, and (3.3) and (3.5) also hold with d_{nk} instead of a_{nk} . (c) $\mathscr{A} = (a_{nk}) \in (\ell_1(R_{\Phi}), c_0)$ if and only if (4.1) and (4.2) hold, and (3.5) and (3.6) also hold with d_{nk} instead of a_{nk} . (d) $\mathscr{A} = (a_{nk}) \in (\ell_1(R_{\Phi}), \ell_1)$ if and only if (4.1) and (4.2) hold, and (3.2) also holds with d_{nk} instead of a_{nk} .

Theorem 4.3. Let 1 . $(a) <math>\mathscr{A} = (a_{nk}) \in (\ell_p(R_{\Phi}), \ell_{\infty})$ if and only if (4.1) and

$$\sup_{m} \sum_{k=0}^{m} \left| d_{mk}^{(n)} \right|^{q} < \infty \text{ for each } n \in \mathbb{N}$$

$$\tag{4.3}$$

hold, and (3.4) also holds with d_{nk} instead of a_{nk} .

(b) $\mathscr{A} = (a_{nk}) \in (\ell_p(\mathbb{R}_{\Phi}), c)$ if and only if (4.1) and (4.3) hold, and (3.3) and (3.4) also hold with d_{nk} instead of a_{nk} . (c) $\mathscr{A} = (a_{nk}) \in (\ell_p(\mathbb{R}_{\Phi}), c_0)$ if and only if (4.1) and (4.3) hold, and (3.6) and (3.4) also hold with d_{nk} instead of a_{nk} . (d) $\mathscr{A} = (a_{nk}) \in (\ell_p(\mathbb{R}_{\Phi}), \ell_1)$ if and only if (4.1) and (4.3) hold, and (3.1) also holds with d_{nk} instead of a_{nk} .

The following results are derived by using Theorems 4.2-4.3.

Corollary 4.4. The following statements hold:

(a) $\mathscr{A} = (a_{nk}) \in (\ell_1(R_{\Phi}), bs)$ if and only if (4.1), (4.2) hold and (3.5) holds with d(n,k) instead of a_{nk} . (b) $\mathscr{A} = (a_{nk}) \in (\ell_1(R_{\Phi}), cs)$ if and only if (4.1), (4.2) hold and (3.3),(3.5) hold with d(n,k) instead of a_{nk} . (c) $\mathscr{A} = (a_{nk}) \in (\ell_1(R_{\Phi}), cs_0)$ if and only if (4.1), (4.2) hold and (3.5),(3.6) hold with d(n,k) instead of a_{nk} .

Corollary 4.5. Let 1 . Then, the following statements hold:

(a) $\mathscr{A} = (a_{nk}) \in (\ell_p(\mathbb{R}_{\Phi}), bs)$ if and only if (4.1), (4.3) hold and (3.4) holds with d(n,k) instead of a_{nk} . (b) $\mathscr{A} = (a_{nk}) \in (\ell_p(\mathbb{R}_{\Phi}), cs)$ if and only if (4.1), (4.3) hold and (3.3),(3.4) hold with d(n,k) instead of a_{nk} . (c) $\mathscr{A} = (a_{nk}) \in (\ell_p(\mathbb{R}_{\Phi}), cs_0)$ if and only if (4.1), (4.3) hold and (3.4),(3.6) hold with d(n,k) instead of a_{nk} .

5. Compact operators on the space $\ell_p(R_{\Phi})$

Let the matrix $\tilde{\mathscr{A}} = (\tilde{a}_{nk})$ defined by an infinite matrix $\mathscr{A} = (a_{nk})$ as

$$\tilde{a}_{nk} = \sum_{j=k,k|j}^{\infty} \frac{\mu(\frac{j}{k})}{\varphi(j)} \frac{Q_k}{q_j} a_{nj}$$

for all $n, k \in \mathbb{N}$.

For a sequence $t = (t_k) \in \omega$, define a sequence $\tilde{t} = (\tilde{t}_k)$ as $\tilde{t}_k = \sum_{j=k,k|j}^{\infty} \frac{\mu(\frac{l}{k})}{\varphi(j)} \frac{Q_k}{q_j} t_j$ for all $k \in \mathbb{N}$.

Lemma 5.1. Let $t = (t_k) \in (\ell_p(R_{\Phi}))^{\beta}$, where $1 \le p < \infty$. Then $\tilde{t} = (\tilde{t}_k) \in \ell_q$ and

$$\sum_{k} t_k x_k = \sum_{k} \tilde{t}_k y_k$$

for all $x = (x_k) \in \ell_p(R_{\Phi})$.

Lemma 5.2. *The following statements hold.*

(a)
$$||t||^*_{\ell_1(R_{\Phi})} = \sup_k |\tilde{t}_k| < \infty$$
 for all $t = (t_k) \in (\ell_1(R_{\Phi}))^{\beta}$.
(b) $||t||^*_{\ell_p(R_{\Phi})} = (\sum_k |\tilde{t}_k|^q)^{1/q} < \infty$ for all $t = (t_k) \in (\ell_p(R_{\Phi}))^{\beta}$, where $1 .$

Lemma 5.3. Let X be any sequence space and $\mathscr{A} = (a_{nk})$ be an infinite matrix. If $\mathscr{A} \in (\ell_p(R_{\Phi}), X)$, then $\tilde{\mathscr{A}} \in (\ell_p, X)$ and $\mathscr{A} x = \tilde{\mathscr{A}} y$ for all $x \in \ell_p(R_{\Phi})$, where $1 \le p < \infty$.

Proof. It follows from Lemma 5.1.

Lemma 5.4. If $\mathscr{A} \in (\ell_1(R_{\Phi}), \ell_p)$, then we have

$$\|\mathscr{L}_{\mathscr{A}}\| = \|\mathscr{A}\|_{(\ell_1(R_{\Phi}),\ell_p)} = \sup_k \left(\sum_n |\tilde{a}_{nk}|^p\right)^{1/p} < \infty,$$

where $1 \leq p < \infty$.

Lemma 5.5. [22, Theorem 3.7] Let $X \supset \psi$ be a BK-space. Then, the following statements hold. (a) $\mathscr{A} \in (X, \ell_{\infty})$, then $0 \leq ||\mathscr{L}_{\mathscr{A}}||_{\chi} \leq \limsup_{n} ||\mathscr{A}_{n}||_{X}^{*}$. (b) $\mathscr{A} \in (X, c_{0})$, then $||\mathscr{L}_{\mathscr{A}}||_{\chi} = \limsup_{n} ||\mathscr{A}_{n}||_{X}^{*}$. (c) If X has AK or $X = \ell_{\infty}$ and $\mathscr{A} \in (X, c)$, then

$$\frac{1}{2}\limsup_{n} \|\mathscr{A}_{n}-a\|_{\mathsf{X}}^{*} \leq \|\mathscr{L}_{\mathscr{A}}\|_{\mathsf{X}} \leq \limsup_{n} \|\mathscr{A}_{n}-a\|_{\mathsf{X}}^{*},$$

where $a = (a_k)$ and $a_k = \lim_{n \to \infty} a_{nk}$ for each $k \in \mathbb{N}$.

Lemma 5.6. [22, Theorem 3.11] Let $X \supset \psi$ be a BK-space. If $\mathscr{A} \in (X, \ell_1)$, then

$$\lim_{r} \left(\sup_{N \in \mathscr{K}_{r}} \left\| \sum_{n \in N} \mathscr{A}_{n} \right\|_{\mathsf{X}}^{*} \right) \leq \|\mathscr{L}_{\mathscr{A}}\|_{\mathsf{X}} \leq 4 \lim_{r} \left(\sup_{N \in \mathscr{K}_{r}} \left\| \sum_{n \in N} \mathscr{A}_{n} \right\|_{\mathsf{X}}^{*} \right)$$

and $\mathscr{L}_{\mathscr{A}}$ is compact if and only if $\lim_{r} (\sup_{N \in \mathscr{K}_{r}} \|\sum_{n \in N} \mathscr{A}_{n}\|_{\mathsf{X}}^{*}) = 0$, where \mathscr{K}_{r} is the subcollection of \mathscr{K} consisting of subsets of \mathbb{N} with elements that are greater than r.

Theorem 5.7. *Let* 1*.*

1. For $\mathscr{A} \in (\ell_p(R_{\Phi}), \ell_{\infty})$,

$$0 \le \|\mathscr{L}_{\mathscr{A}}\|_{\chi} \le \limsup_{n} \left(\sum_{k} |\tilde{a}_{nk}|^{q}\right)^{1/q}$$

holds.

2. For $\mathscr{A} \in (\ell_p(R_{\Phi}), c)$,

$$\frac{1}{2}\limsup_{n}\left(\sum_{k}|\tilde{a}_{nk}-\tilde{a}_{k}|^{q}\right)^{1/q} \leq \|\mathscr{L}_{\mathscr{A}}\|_{\chi} \leq \limsup_{n}\left(\sum_{k}|\tilde{a}_{nk}-\tilde{a}_{k}|^{q}\right)^{1/q}$$

holds, where $\tilde{a} = (\tilde{a}_k)$ *and* $\tilde{a}_k = \lim_n \tilde{a}_{nk}$ *for each* $k \in \mathbb{N}$ *.*

3. For $\mathscr{A} \in (\ell_p(R_{\Phi}), c_0)$,

$$\|\mathscr{L}_{\mathscr{A}}\|_{\chi} = \limsup_{n} \left(\sum_{k} |\tilde{a}_{nk}|^{q}\right)^{1/q}$$

holds.

4. For $\mathscr{A} \in (\ell_p(R_{\Phi}), \ell_1)$,

$$\lim_{r} \|\mathscr{A}\|_{(\ell_{p}(R_{\Phi}),\ell_{1})}^{(r)} \leq \|\mathscr{L}_{\mathscr{A}}\|_{\chi} \leq 4\lim_{r} \|\mathscr{A}\|_{(\ell_{p}(R_{\Phi}),\ell_{1})}^{(r)}$$

holds, where $\|\mathscr{A}\|_{(\ell_p(\mathcal{R}_{\Phi}),\ell_1)}^{(r)} = \sup_{N \in \mathscr{K}_r} (\sum_k |\sum_{n \in N} \tilde{a}_{nk}|^q)^{1/q} \ (r \in \mathbb{N}).$

Proof.

1. Let $\mathscr{A} \in (\ell_p(R_{\Phi}), \ell_{\infty})$. Since the series $\sum_{k=1}^{\infty} a_{nk} x_k$ converges for each $n \in \mathbb{N}$, we have $\mathscr{A}_n \in (\ell_p(R_{\Phi}))^{\beta}$. From Lemma 5.2 (b), we write $\|\mathscr{A}_n\|_{\ell_p(R_{\Phi})}^* = \|\widetilde{\mathscr{A}_n}\|_{\ell_p}^* = \|\widetilde{\mathscr{A}_n}\|_{\ell_q}^* = (\sum_k |\widetilde{a}_{nk}|^q)^{1/q}$ for each $n \in \mathbb{N}$. By using Lemma 5.5 (a), we conclude that

$$0 \leq \|\mathscr{L}_{\mathscr{A}}\|_{\chi} \leq \limsup_{n} \left(\sum_{k} |\tilde{a}_{nk}|^{q}\right)^{1/q}.$$

2. Let $\mathscr{A} \in (\ell_p(R_{\Phi}), c)$. By Lemma 5.3, we have $\tilde{\mathscr{A}} \in (\ell_p, c)$. Hence, from Lemma 5.5 (c), we write

$$\frac{1}{2}\limsup_{n} \|\tilde{\mathscr{A}_{n}} - \tilde{a}\|_{\ell_{p}}^{*} \le \|\mathscr{L}_{\mathscr{A}}\|_{\chi} \le \limsup_{n} \|\tilde{\mathscr{A}_{n}} - \tilde{a}\|_{\ell_{p}}^{*}$$

where $\tilde{a} = (\tilde{a}_k)$ and $\tilde{a}_k = \lim_n \tilde{a}_{nk}$ for each $k \in \mathbb{N}$. Moreover, Lemma 1.1 implies that $\|\tilde{\mathscr{A}}_n - \tilde{a}\|_{\ell_p}^* = \|\tilde{\mathscr{A}}_n - \tilde{a}\|_{\ell_q} = (\sum_k |\tilde{a}_{nk} - \tilde{a}_k|^q)^{1/q}$ for each $n \in \mathbb{N}$. This completes the proof.

3. Let $\mathscr{A} \in (\ell_p(R_{\Phi}), c_0)$. Since we have $\|\mathscr{A}_n\|_{\ell_p(R_{\Phi})}^* = \|\widetilde{\mathscr{A}_n}\|_{\ell_p}^* = \|\widetilde{\mathscr{A}_n}\|_{\ell_q} = (\sum_k |\widetilde{a}_{nk}|^q)^{1/q}$ for each $n \in \mathbb{N}$, we conclude from Lemma 5.5 (b) that

$$\|\mathscr{L}_{\mathscr{A}}\|_{\chi} = \limsup_{n} \left(\sum_{k} |\tilde{a}_{nk}|^{q}\right)^{1/q}$$

4. Let $\mathscr{A} \in (\ell_p(R_{\Phi}), \ell_1)$. By Lemma 5.3, we have $\mathscr{\tilde{A}} \in (\ell_p, \ell_1)$. It follows from Lemma 5.6 that

$$\lim_{r} \left(\sup_{N \in \mathscr{K}_{r}} \left\| \sum_{n \in N} \widetilde{\mathscr{A}_{n}} \right\|_{\ell_{p}}^{*} \right) \leq \|\mathscr{L}_{\mathscr{A}}\|_{\chi} \leq 4 \lim_{r} \left(\sup_{N \in \mathscr{K}_{r}} \left\| \sum_{n \in N} \widetilde{\mathscr{A}_{n}} \right\|_{\ell_{p}}^{*} \right).$$

Moreover, Lemma 1.1 implies that $\|\sum_{n\in N} \tilde{\mathscr{A}_n}\|_{\ell_p}^* = \|\sum_{n\in N} \tilde{\mathscr{A}_n}\|_{\ell_q} = (\sum_k |\sum_{n\in N} \tilde{a}_{nk}|^q)^{1/q}$ which completes the proof.

Corollary 5.8. Let 1 .

1. $\mathscr{L}_{\mathscr{A}}$ is compact for $\mathscr{A} \in (\ell_p(R_{\Phi}), \ell_{\infty})$ if

$$\lim_{n} \left(\sum_{k} |\tilde{a}_{nk}|^{q}\right)^{1/q} = 0.$$

2. $\mathscr{L}_{\mathscr{A}}$ is compact for $\mathscr{A} \in (\ell_p(R_{\Phi}), c)$ if and only if

$$\lim_{n} \left(\sum_{k} |\tilde{a}_{nk} - \tilde{a}_{k}|^{q} \right)^{1/q} = 0.$$

3. $\mathscr{L}_{\mathscr{A}}$ is compact for $\mathscr{A} \in (\ell_p(R_{\Phi}), c_0)$ if and only if

$$\lim_{n} \left(\sum_{k} |\tilde{a}_{nk}|^q \right)^{1/q} = 0.$$

4. $\mathscr{L}_{\mathscr{A}}$ is compact for $\mathscr{A} \in (\ell_p(R_{\Phi}), \ell_1)$ if and only if

$$\lim_{r} \|\mathscr{A}\|_{(\ell_{p}(R_{\Phi}),\ell_{1})}^{(r)} = 0,$$

where
$$\|\mathscr{A}\|_{(\ell_p(R_{\Phi}),\ell_1)}^{(r)} = \sup_{N \in \mathscr{K}_r} (\sum_k |\sum_{n \in N} \tilde{a}_{nk}|^q)^{1/q}$$
.

Theorem 5.9.

1. For
$$\mathscr{A} \in (\ell_1(R_{\Phi}), \ell_{\infty}),$$

$$0 \le \|\mathscr{L}_{\mathscr{A}}\|_{\chi} \le \limsup_n \left(\sup_k |\tilde{a}_{nk}|\right)$$

holds.

2. For $\mathscr{A} \in (\ell_1(R_{\Phi}), c)$,

$$\frac{1}{2}\limsup_{n}\left(\sup_{k}|\tilde{a}_{nk}-\tilde{a}_{k}|\right) \leq \|\mathscr{L}_{\mathscr{A}}\|_{\chi} \leq \limsup_{n}\left(\sup_{k}|\tilde{a}_{nk}-\tilde{a}_{k}|\right)$$

holds.

3. For $\mathscr{A} \in (\ell_1(R_{\Phi}), c_0)$,

$$\|\mathscr{L}_{\mathscr{A}}\|_{\chi} = \limsup_{n} \left(\sup_{k} |\tilde{a}_{nk}| \right)$$

holds.

4.

For
$$\mathscr{A} \in (\ell_1(R_{\Phi}), \ell_1)$$
,
 $\|\mathscr{L}_{\mathscr{A}}\|_{\chi} = \lim_r \left(\sup_k \sum_{n=r}^{\infty} |\tilde{a}_{nk}|\right)$

holds.

Proof. It follows with the same technique in Theorem 5.7.

Corollary 5.10.

1.
$$\mathscr{L}_{\mathscr{A}}$$
 is compact for $\mathscr{A} \in (\ell_1(R_{\Phi}), \ell_{\infty})$ if
$$\lim_n \left(\sup_k |\tilde{a}_{nk}| \right) = 0.$$

2. $\mathscr{L}_{\mathscr{A}}$ is compact for $\mathscr{A} \in (\ell_1(R_{\Phi}), c)$ if and only if

$$\lim_{n} \left(\sup_{k} |\tilde{a}_{nk} - \tilde{a}_{k}| \right) = 0$$

3. $\mathscr{L}_{\mathscr{A}}$ is compact for $\mathscr{A} \in (\ell_1(R_{\Phi}), c_0)$ if and only if

$$\lim_{n}\left(\sup_{k}|\tilde{a}_{nk}|\right)=0.$$

4. $\mathscr{L}_{\mathscr{A}}$ is compact for $\mathscr{A} \in (\ell_1(R_{\Phi}), \ell_1)$ if and only if

$$\lim_{r} \left(\sup_{k} \sum_{n=r}^{\infty} |\tilde{a}_{nk}| \right) = 0$$

References

- ^[1] B. Altay, F. Başar, M. Mursaleen, On the Euler sequence spaces which include the spaces ℓ_p and $\ell_{\infty} I$, Inform. Sci., **176**(10) (2006), 1450-1462.
- F. Başar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., 55(1) (2003), 136-147.
- ^[3] F. Başar, *Summability Theory and Its Applications*, Bentham Science Publishers, İstanbul, 2012.
- [4] M. İlkhan, Certain geometric properties and matrix transformations on a newly introduced Banach space, Fundam. J. Math. Appl., 3(1) (2020), 45-51.
- [5] E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl., 2013(38) (2013), 15 pages.
- ^[6] M. Kirişçi, F. Başar, *Some new sequence spaces derived by the domain of generalized difference matrix*, Comput. Math. Appl., **60** (2010), 1299-1309.
- ^[7] M. Kirişçi, *Riesz type integrated and differentiated sequence spaces*, Bull. Math. Anal. Appl., **7**(2) (2015), 14-27.
- [8] S.A. Mohiuddine, A. Alotaibi, Weighted almost convergence and related infinite matrices, J. Inequal. Appl., 2018(15) (2018), 10 pages.
- M. Mursaleen, A.K. Noman, On some new difference sequence spaces of non-absolute type, Math. Comput. Modelling, 52(3-4) (2010), 603-617.
- ^[10] T. Yaying, B. Hazarika, *On sequence spaces defined by the domain of a regular Tribonacci matrix*, Math. Slovaca, **70**(3) (2020), 697-706.
- [11] P. Zengin Alp, A new paranormed sequence space defined by Catalan conservative matrix, Math. Methods Appl. Sci., doi: https://doi.org/10.1002/mma.6530.
- T. Yaying, B. Hazarika, On sequence spaces generated by binomial difference operator of fractional order, Math. Slovaca, 69(4) (2019), 901-918.
- ^[13] T. Yaying, B. Hazarika, M. Mursaleen, On sequence space derived by the domain of q-Cesaro matrix in ℓ_p space and the associated operator ideal, J. Math. Anal. Appl., **493**(1) (2021), 124453.
- [14] T. Yaying, B. Hazarika, S.A. Mohiuddine, M. Mursaleen, K.J. Ansari, Sequence spaces derived by the triple band generalized Fibonacci difference operator, Adv. Diff. Equ., 2020 (2020), 639.
- ^[15] T. Yaying, Paranormed Riesz difference sequence spaces of fractional order, Kragujevac J. Math., 46(2) (2022), 175-191.
- [16] E. Malkowsky, V. Rakocevic, An introduction into the theory of sequence spaces and measure of noncompactness, Zb. Rad. (Beogr.), 17 (2000), 143-234.
- ^[17] V. Rakocevic, *Measures of noncompactness and some applications*, Filomat, **12** (1998), 87-120.
- [18] M. Başarır, E. E. Kara, On some difference sequence spaces of weighted means and compact operators, Ann. Funct. Anal. 2 (2011), 114-129.

- [19] M. Başarır, E. E. Kara, On the B-difference sequence space derived by generalized weighted mean and compact operators, J. Math. Anal. Appl. 391 (2012), 67-81.
- [20] M. Başarır, E. E. Kara, On compact operators on the Riesz B^m-difference sequence spaces II, Iran. J. Sci. Technol. Trans. A Sci., 36 (2012), 371-376.
- [21] E. E. Kara, M. Başarır, On compact operators and some Euler B^(m)-difference sequence spaces, J. Math. Anal. Appl., 379(2) (2011), 499-511.
- ^[22] M. Mursaleen, A. K. Noman, *Compactness by the Hausdorff measure of noncompactness*, Nonlinear Anal., **73**(8) (2010), 2541-2557.
- [23] M. Mursaleen, A. K. Noman, *The Hausdorff measure of noncompactness of matrix operators on some BK spaces*, Oper. Matrices, 5 (2011), 473-486.
- [24] T. Yaying, A. Das, B. Hazarika, P. Baliarsingh, Compactness of binomial difference operator of fractional order and sequence spaces, Rend. Circ. Mat. Palermo (II) Ser., 68 (2019), 459-476.
- ^[25] M. İlkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13(2) (2019), 527-544.
- ^[26] S. Demiriz, S. Erdem, Domain of Euler-totient matrix operator in the space \mathcal{L}_p , Korean J. Math., 28(2) (2020), 361-378.
- ^[27] S. Demiriz, M. İlkhan, E. E. Kara, Almost convergence and Euler totient matrix, Ann. Funct. Anal., 11(3) (2020), 604-616.
- [28] S. Erdem, S. Demiriz, 4-dimensional Euler-totient matrix operator and some double sequence spaces, Math. Sci. Appl. E-Notes, 8(2) (2020), 110-122.
- ^[29] G. C. Hazar Güleç, Merve İlkhan, A new paranormed series space using Euler totient means and some matrix transformations, Korean J. Math., **28**(2) (2020), 205-221.
- ^[30] G. C. Hazar Güleç, Merve İlkhan, *A new characterization of absolute summability factors*, Commun. Optim. Theory, **2020** (2020), Article ID 15, 1-11.
- ^[31] M. İlkhan, *Matrix domain of a regular matrix derived by Euler totient function in the spaces* c_0 *and* c, Mediterr. J. Math., 17 (2020), Article number 27.
- [32] M. İlkhan, G. C. Hazar Güleç, A study on absolute Euler totient series space and certain matrix transformations, Mugla J. Sci. Technol., 6(1) (2020), 112-119.
- [33] M. İlkhan, S. Demiriz, E. E. Kara, A new paranormed sequence space defined by Euler totient matrix, Karaelmas Sci. Eng. J., 9(2) (2019), 277-282.
- B. Altay, F. Başar, Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 30(4) (2006), 591-608.
- ^[35] M. Stieglitz, H. Tietz, Matrix transformationen von folgenraumen eine ergebnisübersicht, Math. Z., 154 (1977), 1-16.