A study on Matrix Domain of Riesz-Euler Totient Matrix in the Space of p-Absolutely Summable Sequences

Merve İlkhan Kara ${ }^{1 *}$, Mehmet Akif Bayrakdar ${ }^{2}$

Abstract

In this study, a special lower triangular matrix derived by combining Riesz matrix and Euler totient matrix is used to construct new Banach spaces. $\alpha-, \beta-, \gamma$-duals of the resulting spaces are obtained and some matrix operators are characterized. Finally by the aid of measure of non-compactness, the conditions for which a matrix operator on these spaces is compact are determined.

Keywords: Compact operators, Hausdorff measure of non-compactness, Matrix mappings, Sequence space, $\alpha-, \beta-, \gamma$-duals.
2010 AMS: 46B45, 47B07, 47H08
${ }^{1}$ Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey, ORCID: 0000-0002-0831-1474 ${ }^{2}$ Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
*Corresponding author: merveilkhan@gmail.com
Received: 22 December 2020, Accepted: 12 March 2021, Available online: 29 March 2021

1. Introduction and background

A sequence space is a vector subspace of the space ω of all sequences with real entries. Well known classical sequence spaces are ℓ_{p} (the space of p-absolutely summable sequences, $1 \leq p<\infty$), ℓ_{∞} (the space of bounded sequences), c_{0} (the space of null sequences), c (the space of convergent sequences). On the other hand, $b s, c s_{0}$ and $c s$ are the most frequently encountered spaces consisting of sequences generating bounded, null and convergent series, respectively. Further ψ is the space of all finite sequences. A Banach sequence space having continuous coordinates is called a $B K$ space. Examples of $B K$ spaces are c_{0} and c endowed with the supremum norm $\|x\|_{\infty}=\sup _{n \in \mathbb{N}}\left|x_{n}\right|$, where $\mathbb{N}=\{1,2,3, \ldots\}$.

By virtue of the fact that the matrix mappings between $B K$-spaces are continuous, the theory of matrix mappings plays an important role in the study of sequence spaces. Let X and Y be two sequence spaces, $\mathscr{A}=\left(a_{n k}\right)$ be an infinite matrix with real entries and \mathscr{A}_{n} indicate the $n^{\text {th }}$ row of \mathscr{A}. If each term of the sequence $\mathscr{A} x=\left\{(\mathscr{A} x)_{n}\right\}=\left\{\sum_{k=1}^{\infty} a_{n k} x_{k}\right\}$ is convergent, this sequence is called \mathscr{A}-transform of $x=\left(x_{n}\right)$. Further, if $\mathscr{A} x \in \mathrm{Y}$ for every sequence $x \in \mathrm{X}$, then the matrix \mathscr{A} defines a matrix mapping from X into Y . (X, Y) represents the collection of all matrices defined from X into Y . Additionally, $B(\mathrm{X}, \mathrm{Y})$ is the set of all bounded (continuous) linear operators from X to Y . A matrix $\mathscr{A}=\left(a_{n k}\right)$ is called a triangle if $a_{n n} \neq 0$ and $a_{n k}=0$ for $k>n$.

The matrix domain $\mathrm{X}_{\mathscr{A}}$ of the matrix \mathscr{A} in the space X is defined by

$$
\mathrm{X}_{\mathscr{A}}=\{x \in \omega: \mathscr{A} x \in \mathrm{X}\} .
$$

Since this space is also a sequnce space, the matrix domain has a crucial role to construct new sequence spaces. Moreover given
any triangle \mathscr{A} and a $B K$-space X , the sequence space $\mathrm{X}_{\mathscr{A}}$ gives a new $B K$-space equipped with the norm $\|x\|_{\mathrm{X}_{\mathscr{A}}}=\|\mathscr{A} x\|_{\mathrm{X}}$. Several authors applied this technique to construct new Banach spaces with the help of special triangles. For relevant literature, the papers $[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]$ can be referred.

The spaces

$$
\begin{aligned}
& \mathrm{X}^{\alpha}=\left\{t=\left(t_{k}\right) \in \omega: \sum_{k=1}^{\infty}\left|t_{k} x_{k}\right|<\infty \text { for all } x=\left(x_{k}\right) \in \mathrm{X}\right\}, \\
& \mathrm{X}^{\beta}=\left\{t=\left(t_{k}\right) \in \omega: \sum_{k=1}^{\infty} t_{k} x_{k} \text { converges for all } x=\left(x_{k}\right) \in \mathrm{X}\right\}, \\
& \mathrm{X}^{\gamma}=\left\{t=\left(t_{k}\right) \in \omega: \sup _{n}\left|\sum_{k=1}^{n} t_{k} x_{k}\right|<\infty \text { for all } x=\left(x_{k}\right) \in \mathrm{X}\right\},
\end{aligned}
$$

are called the α-, β-, γ-duals of a sequence space X, respectively.
Let $\left(\mathrm{X},\|\cdot\|_{\mathrm{X}}\right)$ be a normed space and $B_{\mathrm{X}}=\left\{x \in \omega:\|x\|_{\mathrm{X}}=1\right\}$. Given any $B K$-space $\mathrm{X} \supset \psi$ and $t=\left(t_{n}\right) \in \omega$,

$$
\|t\|_{\mathrm{X}}^{*}=\sup _{x \in B_{\mathrm{X}}}\left|\sum_{k} t_{k} x_{k}\right|
$$

implies that $t \in \mathrm{X}^{\beta}$.
Lemma 1.1. [16, Theorem 1.29] $\ell_{1}^{\beta}=\ell_{\infty}$ and $\ell_{p}^{\beta}=\ell_{q}$, where $1<p<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$. The equality $\|t\|_{\ell_{p}}^{*}=\|t\|_{\ell_{p}^{\beta}}$ holds for all $t \in \ell_{p}^{\beta}$, where $1 \leq p<\infty$.

Lemma 1.2. [16, Theorem 1.23 (a)] Given any $B K$-spaces X, Y and $\mathscr{A} \in(\mathrm{X}, \mathrm{Y})$, there exists a linear operator $\mathscr{L}_{\mathscr{A}} \in B(\mathrm{X}, \mathrm{Y})$ such that $\mathscr{L}_{\mathscr{A}}(x)=\mathscr{A} x$ for all $x \in \mathrm{X}$.

Lemma 1.3. [16] Let $\mathrm{X} \supset \psi$ be a $B K$-space and $\mathrm{Y} \in\left\{c_{0}, c, \ell_{\infty}\right\}$. If $\mathscr{A} \in(\mathrm{X}, \mathrm{Y})$, then

$$
\left\|\mathscr{L}_{\mathscr{A}}\right\|=\|\mathscr{A}\|_{(\mathrm{X}, \mathrm{Y})}=\sup _{n \in \mathbb{N}}\left\|\mathscr{A}_{n}\right\|_{\mathrm{X}}^{*}<\infty .
$$

Let \mathscr{Q} be a bounded set in a metric space X and $B(x, \boldsymbol{\delta})$ be the open ball. The value

$$
\chi(\mathscr{Q})=\inf \left\{\varepsilon>0: \mathscr{Q} \subset \cup_{i=1}^{n} B\left(x_{i}, \delta_{i}\right), x_{i} \in \mathrm{X}, \delta_{i}<\varepsilon, n \in \mathbb{N}\right\}
$$

is called the Hausdorff measure of noncompactness of \mathscr{Q}.
To compute the Hausdorff measure of noncompactness of a set in ℓ_{p} for $1 \leq p<\infty$, the following result is essential.
Theorem 1.4. [17] Let \mathscr{Q} be a bounded subset in ℓ_{p} for $1 \leq p<\infty$ and $P_{r}: \ell_{p} \rightarrow \ell_{p}$ be the operator defined by $P_{r}(x)=$ $\left(x_{0}, x_{1}, x_{2}, \ldots, x_{r}, 0,0, \ldots\right)$ for all $x=\left(x_{k}\right) \in \ell_{p}$ and each $r \in \mathbb{N}$. Then, we have

$$
\chi(\mathscr{Q})=\lim _{r}\left(\sup _{x \in \mathscr{Q}}\left\|\left(I-P_{r}\right)(x)\right\|_{\ell_{p}}\right)
$$

where I is the identity operator on ℓ_{p}.
A linear operator $\mathscr{L}: \mathrm{X} \rightarrow \mathrm{Y}$ is a compact operator if the domain of \mathscr{L} is all of X and for every bounded sequence $x=\left(x_{n}\right)$ in X , the sequence $\left(\mathscr{L}\left(x_{n}\right)\right)$ has a convergent subsequence in Y . The idea of compact operators between Banach spaces is closely related to the Hausdorff measure of noncompactness. The Hausdorff measure of noncompactness of an operator $\mathscr{L} \in B(\mathrm{X}, \mathrm{Y}),\|\mathscr{L}\|_{\chi}=\chi\left(\mathscr{L}\left(B_{\mathrm{X}}\right)\right)=0$ if and only if \mathscr{L} is compact.

In the theory of sequence spaces, the Hausdorff measure of noncompactness of a linear operator plays a role to characterize the compactness of an operator between $B K$ spaces. For the relevant literature, see [18, 19, 20, 21, 22, 23, 24].

The Euler totient matrix $\Phi=\left(\phi_{n k}\right)$ is defined as in [25]

$$
\phi_{n k}=\left\{\begin{array}{cl}
\frac{\varphi(k)}{n} & , \quad \text { if } k \mid n \\
0, & \text { if } k \nmid n,
\end{array}\right.
$$

where φ is the Euler totient function. In the recent time, by using this matrix, many new sequence and series spaces are defined and studied in the papers [26, 27, 28, 29, 30, 31, 32, 33].

For $p \in \mathbb{N}$ with $p \neq 1, \varphi(p)$ gives the number of positive integers less than p which are coprime with p and $\varphi(1)=1$. Also, the equality

$$
p=\sum_{k \mid p} \varphi(k)
$$

holds for every $p \in \mathbb{N}$. For $p \in \mathbb{N}$ with $p \neq 1$, the Möbius function μ is defined as

$$
\mu(p)=\left\{\begin{array}{cl}
(-1)^{r} & \begin{array}{l}
\text { if } p=p_{1} p_{2} \ldots p_{r}, \text { where } p_{1}, p_{2}, \ldots, p_{r} \text { are } \\
\\
0
\end{array} \\
\text { non-equivalent prime numbers } \\
\text { if } \tilde{p}^{2} \mid p \text { for some prime number } \tilde{p}
\end{array}\right.
$$

and $\mu(1)=1$. The equality

$$
\begin{equation*}
\sum_{k \mid p} \mu(k)=0 \tag{1.1}
\end{equation*}
$$

holds except for $p=1$.
The Riesz matrix $E=\left(e_{n k}\right)$ is defined as

$$
e_{n k}=\left\{\begin{array}{cl}
\frac{q_{k}}{Q_{n}} & , \quad \text { if } 0 \leq k \leq n \\
0, & \text { if } k>n
\end{array}\right.
$$

where $\left(q_{k}\right)$ is a sequence of positive numbers and $Q_{n}=\sum_{k=0}^{n} q_{k}$ for all $n \in \mathbb{N}$. By using these matrix, the authors of [34] introduced the Riesz sequence spaces of non-absolute type.

The main purpose of this study is to construct new $B K$ spaces $\ell_{p}\left(R_{\Phi}\right)$ for $1 \leq p<\infty$. The matrix R_{Φ} is obtained by combining Euler totient matrix and Riesz matrix. After studying certain properties of the resulting spaces, α-, β - and γ-duals are computed. Finally some matrix mappings from the spaces $\ell_{p}\left(R_{\Phi}\right)$ to the classical spaces are characterized and compact operators are studied.

2. The sequence space $\ell_{p}\left(R_{\Phi}\right)$

In the present section, we introduce the sequence space $\ell_{p}\left(R_{\Phi}\right)$ by using the matrix R_{Φ}, where $1 \leq p<\infty$. Also, we present some theorems which give inclusion relations concerning this space.

The matrix $R_{\Phi}=\left(r_{n k}\right)$ is defined as

$$
r_{n k}=\left\{\begin{array}{cll}
\frac{q_{k} \varphi(k)}{Q_{n}} & , & \text { if } k \mid n \\
0, & \text { if } k \nmid n
\end{array}\right.
$$

where $Q_{n}=q_{1}+q_{2}+\ldots+q_{n}$. We call this matrix as Riesz Euler Totient matrix operator.
The inverse $R_{\Phi}^{-1}=\left(r_{n k}^{-1}\right)$ of the matrix R_{Φ} is computed as

$$
r_{n k}^{-1}=\left\{\begin{array}{ccc}
\frac{\mu\left(\frac{n}{k}\right)}{\varphi(n)} \frac{Q_{k}}{q_{n}} & , & \text { if } k \mid n \\
0, & \text { if } k \nmid n
\end{array}\right.
$$

for all $k, n \in \mathbb{N}$.
Now, we introduce the sequence space $\ell_{p}\left(R_{\Phi}\right)$ by

$$
\ell_{p}\left(R_{\Phi}\right)=\left\{x=\left(x_{n}\right) \in \omega: \sum_{n}\left|\frac{1}{Q_{n}} \sum_{k \mid n} q_{k} \varphi(k) x_{k}\right|^{p}<\infty\right\} \quad(1 \leq p<\infty)
$$

Unless otherwise stated, $y=\left(y_{n}\right)$ will be the R_{Φ}-transform of a sequence $x=\left(x_{n}\right)$, that is, $y_{n}=\left(R_{\Phi} x\right)_{n}=\frac{1}{Q_{n}} \sum_{k \mid n} q_{k} \varphi(k) x_{k}$ for all $n \in \mathbb{N}$.

Theorem 2.1. The space $\ell_{p}\left(R_{\Phi}\right)$ is a Banach space with the norm given by $\|x\|_{\ell_{p}\left(R_{\Phi}\right)}=\left(\sum_{n}\left|\frac{1}{Q_{n}} \sum_{k \mid n} q_{k} \varphi(k) x_{k}\right|^{p}\right)^{1 / p}$, where $1 \leq p<\infty$.

Proof. We omit the proof which is straightforward.
Corollary 2.2. The space $\ell_{p}\left(R_{\Phi}\right)$ is a $B K$-space, where $1 \leq p<\infty$.
Theorem 2.3. The space $\ell_{p}\left(R_{\Phi}\right)$ is linearly isomorphic to ℓ_{p}, where $1 \leq p<\infty$.
Proof. Let f be a mapping defined from $\ell_{p}\left(R_{\Phi}\right)$ to ℓ_{p} such that $f(x)=R_{\Phi} x$ for all $x \in \ell_{p}\left(R_{\Phi}\right)$. It is clear that f is linear. Also it is injective since the kernel of f consists of only zero. To prove that f is surjective, consider the sequence $x=\left(x_{n}\right)$ whose terms are

$$
x_{n}=\sum_{k \mid n} \frac{\mu\left(\frac{n}{k}\right)}{\varphi(n)} \frac{Q_{k}}{q_{n}} y_{k}
$$

for all $n \in \mathbb{N}$, where $y=\left(y_{k}\right)$ is any sequence in ℓ_{p}. It follows from (1.1) that

$$
\begin{aligned}
\left(R_{\Phi} x\right)_{n} & =\frac{1}{Q_{n}} \sum_{k \mid n} q_{k} \varphi(k) x_{k}=\frac{1}{Q_{n}} \sum_{k \mid n} q_{k} \varphi(k) \sum_{j \mid k} \frac{\mu\left(\frac{k}{j}\right)}{\varphi(k)} \frac{Q_{j}}{q_{k}} y_{j} \\
& =\frac{1}{Q_{n}} \sum_{k \mid n} \sum_{j \mid k} \mu\left(\frac{k}{j}\right) Q_{j} y_{j}=\frac{1}{Q_{n}} \sum_{k \mid n}\left(\sum_{j \mid k} \mu(j)\right) Q_{\frac{n}{k}} y_{\frac{n}{k}}=\frac{1}{Q_{n}} \mu(1) Q_{n} y_{n}=y_{n}
\end{aligned}
$$

and so $x=\left(x_{n}\right) \in \ell_{p}\left(R_{\Phi}\right) . f$ preserves norms since the equality $\|x\|_{\ell_{p}\left(R_{\Phi}\right)}=\|f(x)\|_{\ell_{p}}$ holds.
Remark 2.4. The space $\ell_{2}\left(R_{\Phi}\right)$ is an inner product space with the inner product defined as $\langle x, \tilde{x}\rangle_{\ell_{2}\left(R_{\Phi}\right)}=\left\langle R_{\Phi} x, R_{\Phi} \tilde{x}\right\rangle_{\ell_{2}}$, where $\langle., .\rangle_{\ell_{2}}$ is the inner product on ℓ_{2} which induces $\|.\|_{\ell_{2}}$.
Theorem 2.5. The space $\ell_{p}\left(R_{\Phi}\right)$ is not an inner product space for $p \neq 2$.
Proof. Consider the sequences $x=\left(x_{n}\right)$ and $\tilde{x}=\left(\tilde{x}_{n}\right)$, where

$$
x_{n}=\left\{\begin{array}{cll}
\frac{\mu(n)}{\varphi(n)} \frac{Q_{1}}{q_{n}}+\frac{\mu\left(\frac{n}{2}\right)}{\varphi(n)} \frac{Q_{2}}{q_{n}} & , & \text { if } n \text { is even } \\
\frac{\mu(n)}{\varphi(n)} \frac{Q_{1}}{q_{n}} & , & \text { if } n \text { is odd }
\end{array}\right.
$$

and

$$
\tilde{x}_{n}=\left\{\begin{array}{cll}
\frac{\mu(n)}{\varphi(n)} \frac{Q_{1}}{q_{n}}-\frac{\mu\left(\frac{n}{2}\right)}{\varphi(n)} \frac{Q_{2}}{q_{n}} & , & \text { if } n \text { is even } \\
\frac{\mu(n)}{\varphi(n)} \frac{Q_{1}}{q_{n}} & , & \text { if } n \text { is odd }
\end{array}\right.
$$

for all $n \in \mathbb{N}$. Then, we have $R_{\Phi} x=(1,1,0, \ldots, 0, \ldots) \in \ell_{p}$ and $R_{\Phi} \tilde{x}=(1,-1,0, \ldots, 0, \ldots) \in \ell_{p}$. Hence, one can easily observe that

$$
\|x+\tilde{x}\|_{\ell_{p}\left(R_{\Phi}\right)}+\|x-\tilde{x}\|_{\ell_{p}\left(R_{\Phi}\right)} \neq 2\left(\|x\|_{\ell_{p}\left(R_{\Phi}\right)}+\|\tilde{x}\|_{\ell_{p}\left(R_{\Phi}\right)}\right)
$$

Theorem 2.6. The inclusion $\ell_{p}\left(R_{\Phi}\right) \subset \ell_{q}\left(R_{\Phi}\right)$ strictly holds for $1 \leq p<q<\infty$.
Proof. It is clear that the inclusion $\ell_{p}\left(R_{\Phi}\right) \subset \ell_{q}\left(R_{\Phi}\right)$ holds since $\ell_{p} \subset \ell_{q}$ for $1 \leq p<q<\infty$. Also, $\ell_{p} \subset \ell_{q}$ is strict and so there exists a sequence $z=\left(z_{n}\right)$ in $\ell_{q} \backslash \ell_{p}$. By defining a sequence $x=\left(x_{n}\right)$ as

$$
x_{n}=\sum_{k \mid n} \frac{\mu\left(\frac{n}{k}\right)}{\varphi(n)} \frac{Q_{k}}{q_{n}} z_{k}
$$

for all $n \in \mathbb{N}$, we conclude that $x \in \ell_{q}\left(R_{\Phi}\right) \backslash \ell_{p}\left(R_{\Phi}\right)$. Hence, the desired inclusion is strict.
Before presenting the next result, we define the sequence space $\ell_{\infty}\left(R_{\Phi}\right)$ by

$$
\ell_{\infty}\left(R_{\Phi}\right)=\left\{x \in \omega: R_{\Phi} x \in \ell_{\infty}\right\} .
$$

Theorem 2.7. The inclusion $\ell_{p}\left(R_{\Phi}\right) \subset \ell_{\infty}\left(R_{\Phi}\right)$ strictly holds for $1 \leq p<\infty$.
Proof. The inclusion is obvious since $\ell_{p} \subset \ell_{\infty}$ holds for $1 \leq p<\infty$. Let $x=\left(x_{n}\right)$ be a sequence such that $x_{n}=\sum_{k \mid n}(-1)^{k} \frac{\mu\left(\frac{n}{k}\right)}{\varphi(n)} \frac{Q_{k}}{q_{n}}$ for all $n \in \mathbb{N}$. We obtain that $R_{\Phi} x=\left(\frac{1}{Q_{n}} \sum_{k \mid n} q_{k} \varphi(k) \sum_{j \mid k}(-1)^{j} \frac{\mu\left(\frac{k}{j}\right)}{\varphi(k)} \frac{Q_{j}}{q_{k}}\right)=\left((-1)^{n}\right) \in \ell_{\infty} \backslash \ell_{p}$ which implies that $x \in \ell_{\infty}\left(R_{\Phi}\right) \backslash \ell_{p}\left(R_{\Phi}\right)$ for $1 \leq p<\infty$.

3. The α-, β - and γ-duals of the space $\ell_{p}\left(R_{\Phi}\right)$

In this section, we determine the α-, β - and γ-duals of the sequence space $\ell_{p}\left(R_{\Phi}\right)$, where $1 \leq p<\infty$. The following lemmas are required to prove our main results in this section. Here and in what follows \mathscr{K} denotes the family of all finite subsets of \mathbb{N}.

Lemma 3.1. [35] The following statements hold:

$$
\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{p}, \ell_{1}\right) \text { if and only if }
$$

$$
\begin{equation*}
\sup _{F \in \mathscr{K}} \sum_{k}\left|\sum_{n \in F} a_{n k}\right|^{q}<\infty \tag{3.1}
\end{equation*}
$$

holds, where $1<p<\infty$.
$\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{\infty}, \ell_{1}\right)$ if and only if (3.1) holds with $q=1$.
$\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{1}, \ell_{1}\right)$ if and only if

$$
\begin{equation*}
\sup _{k} \sum_{n}\left|a_{n k}\right|<\infty \tag{3.2}
\end{equation*}
$$

holds.

$$
\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{p}, c\right) \text { if and only if }
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n k} \text { exists for each } k \in \mathbb{N} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{n} \sum_{k}\left|a_{n k}\right|^{q}<\infty \tag{3.4}
\end{equation*}
$$

holds, where $1<p<\infty$.
$\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{\infty}, c\right)$ if and only if (3.3) and

$$
\lim _{n \rightarrow \infty} \sum_{k}\left|a_{n k}\right|=\sum_{k}\left|\lim _{n \rightarrow \infty} a_{n k}\right|
$$

hold.
$\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{1}, c\right)$ if and only if (3.3) and

$$
\begin{equation*}
\sup _{n, k}\left|a_{n k}\right|<\infty \tag{3.5}
\end{equation*}
$$

hold.
$\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{p}, c_{0}\right)$ if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n k}=0 \text { for each } k \in \mathbb{N} \tag{3.6}
\end{equation*}
$$

and (3.4) holds, where $1<p<\infty$.
$\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{\infty}, c_{0}\right)$ if and only if (3.6) and

$$
\lim _{n \rightarrow \infty} \sum_{k}\left|a_{n k}\right|=0
$$

hold.
$\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{1}, c_{0}\right)$ if and only if (3.5) and (3.6) hold.
$\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{p}, \ell_{\infty}\right)$ if and only if (3.4) holds, where $1<p<\infty$.
$\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{\infty}, \ell_{\infty}\right)$ if and only if (3.4) holds with $q=1$.
$\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{1}, \ell_{\infty}\right)$ if and only if (3.5) holds.
In the following theorem, we determine the α-duals of the spaces $\ell_{p}\left(R_{\Phi}\right)(1<p<\infty)$ and $\ell_{1}\left(R_{\Phi}\right)$.

Theorem 3.2. The α-duals of the spaces $\ell_{p}\left(R_{\Phi}\right)(1<p<\infty)$ and $\ell_{1}\left(R_{\Phi}\right)$ are as follows:

$$
\left(\ell_{p}\left(R_{\Phi}\right)\right)^{\alpha}=\left\{t=\left(t_{n}\right) \in \omega: \sup _{F \in \mathscr{K}} \sum_{k}\left|\sum_{n \in F, k \mid n} \frac{\mu\left(\frac{n}{k}\right)}{\varphi(k)} \frac{Q_{k}}{q_{n}} t_{n}\right|^{q}<\infty\right\},
$$

and

$$
\left(\ell_{1}\left(R_{\Phi}\right)\right)^{\alpha}=\left\{t=\left(t_{n}\right) \in \omega: \sup _{k} \sum_{n \in \mathbb{N}, k \mid n}\left|\frac{\mu\left(\frac{n}{k}\right)}{\varphi(k)} \frac{Q_{k}}{q_{n}} t_{n}\right|<\infty\right\} .
$$

Proof. Consider the matrix $C=\left(c_{n k}\right)$ defined by

$$
c_{n k}=\left\{\begin{array}{ccc}
\frac{\mu\left(\frac{n}{k}\right)}{\varphi(k)} \frac{Q_{k}}{q_{n}} t_{n} & , & k \mid n \\
0 & , & k \nmid n
\end{array}\right.
$$

for any sequence $t=\left(t_{n}\right) \in \omega$. Hence, given any $x=\left(x_{n}\right) \in \ell_{p}\left(R_{\Phi}\right)$ for $1 \leq p<\infty$, we have $t_{n} x_{n}=(C y)_{n}$ for all $n \in \mathbb{N}$. This implies that $t x \in \ell_{1}$ with $x \in \ell_{p}\left(R_{\Phi}\right)$ if and only if $C y \in \ell_{1}$ with $y \in \ell_{p}$. It follows that $t \in\left(\ell_{p}\left(R_{\Phi}\right)\right)^{\alpha}$ if and only if $C \in\left(\ell_{p}, \ell_{1}\right)$ which completes the proof in view of Lemma 3.1.

Theorem 3.3. Let us define the following sets:

$$
\begin{aligned}
& A_{1}=\left\{t=\left(t_{k}\right) \in \omega: \lim _{n \rightarrow \infty} \sum_{j=k, k \mid j}^{n} \frac{\mu\left(\frac{j}{k}\right)}{\varphi(j)} \frac{Q_{k}}{q_{j}} t_{j} \text { exists for each } k \in \mathbb{N}\right\}, \\
& A_{2}=\left\{t=\left(t_{k}\right) \in \omega: \sup _{n} \sum_{k}\left|\sum_{j=k, k \mid j}^{n} \frac{\mu\left(\frac{j}{k}\right)}{\varphi(j)} \frac{Q_{k}}{q_{j}} t_{j}\right|^{q}<\infty\right\},
\end{aligned}
$$

and

$$
A_{3}=\left\{t=\left(t_{k}\right) \in \omega: \sup _{n, k}\left|\sum_{j=k, k \mid j}^{n} \frac{\mu\left(\frac{j}{k}\right)}{\varphi(j)} \frac{Q_{k}}{q_{j}} t_{j}\right|<\infty\right\} .
$$

The β and γ-duals of the spaces $\ell_{p}\left(R_{\Phi}\right)(1<p<\infty)$ and $\ell_{1}\left(R_{\Phi}\right)$ are as follows:

$$
\begin{aligned}
& \left(\ell_{p}\left(R_{\Phi}\right)\right)^{\beta}=A_{1} \cap A_{2} \text { and }\left(\ell_{1}\left(R_{\Phi}\right)\right)^{\beta}=A_{1} \cap A_{3}, \\
& \left(\ell_{p}\left(R_{\Phi}\right)\right)^{\gamma}=A_{2} \text { and }\left(\ell_{1}\left(R_{\Phi}\right)\right)^{\gamma}=A_{3} .
\end{aligned}
$$

Proof. Let $t=\left(t_{k}\right) \in \omega$ and $B=\left(b_{n k}\right)$ be an infinite matrix with terms

$$
b_{n k}=\left\{\begin{array}{cl}
\sum_{j=k, k \mid j}^{n} t_{j} \frac{\mu\left(\frac{j}{k}\right)}{\varphi(j)} \frac{Q_{k}}{q_{j}} & , \\
0, & \text { if } 1 \leq k \leq n \\
0 & \text { if } k>n
\end{array}\right.
$$

Hence it follows that

$$
\sum_{k=1}^{n} t_{k} x_{k}=\sum_{k=1}^{n} t_{k}\left(\sum_{j \mid k} \frac{\mu\left(\frac{k}{j}\right)}{\varphi(k)} \frac{Q_{j}}{q_{k}} y_{j}\right)=\sum_{k=1}^{n}\left(\sum_{j=k, k \mid j}^{n} t_{j} \frac{\mu\left(\frac{j}{k}\right)}{\varphi(j)} \frac{Q_{k}}{q_{j}}\right) y_{k}=(B y)_{n}
$$

for any $x=\left(x_{n}\right) \in \ell_{p}\left(R_{\Phi}\right)$. This equality yields that $t x \in c s$ for $x \in \ell_{p}\left(R_{\Phi}\right)$ if and only if $B y \in c$ for $y \in \ell_{p}$. That is, $t \in\left(\ell_{p}\left(R_{\Phi}\right)\right)^{\beta}$ if and only if $B \in\left(\ell_{p}, c\right)$ for $1 \leq p<\infty$. Hence, by Lemma 3.1, it is concluded that $\left(\ell_{p}\left(R_{\Phi}\right)\right)^{\beta}=A_{1} \cap A_{2}$ and $\left(\ell_{1}\left(R_{\Phi}\right)\right)^{\beta}=A_{1} \cap A_{3}$.

This equality also yields that $t x \in b s$ for $x \in \ell_{p}\left(R_{\Phi}\right)$ if and only if $B y \in \ell_{\infty}$ for $y \in \ell_{p}$. That is, $t \in\left(\ell_{p}\left(R_{\Phi}\right)\right)^{\gamma}$ if and only if $B \in\left(\ell_{p}, \ell_{\infty}\right)$ for $1 \leq p<\infty$. Hence, by Lemma 3.1, it is concluded that $\left(\ell_{p}\left(R_{\Phi}\right)\right)^{\gamma}=A_{2}$ and $\left(\ell_{1}\left(R_{\Phi}\right)\right)^{\gamma}=A_{3}$.

4. Some matrix transformations related to the sequence space $\ell_{p}\left(R_{\Phi}\right)$

In this section, we give the characterization of the classes $\left(\ell_{p}\left(R_{\Phi}\right), \mathrm{Y}\right)$, where $1 \leq p<\infty$ and $\mathrm{Y} \in\left\{\ell_{\infty}, c, c_{0}, \ell_{1}\right\}$. Throughout this section, we write $d(n, k)=\sum_{j=0}^{n} d_{j k}$ for an infinite matrix $D=\left(d_{n k}\right)$ and all $n, k \in \mathbb{N}$.

Theorem 4.1. Let $1 \leq p<\infty$ and Y be any sequence space. Then, we have $\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{p}\left(R_{\Phi}\right), \mathrm{Y}\right)$ if and only if

$$
\begin{aligned}
& D^{(n)}=\left(d_{m k}^{(n)}\right) \in\left(\ell_{p}, c\right) \text { for each } n \in \mathbb{N}, \\
& D=\left(d_{n k}\right) \in\left(\ell_{p}, Y\right)
\end{aligned}
$$

where $\quad d_{m k}^{(n)}=\left\{\begin{array}{cl}0 & k>m \\ \sum_{j=k, k \mid j}^{m} a_{n j} \frac{\mu\left(\frac{j}{k}\right)}{\varphi(k)} \frac{Q_{k}}{q_{j}} & , \quad 0 \leq k \leq m\end{array}\right.$ and $d_{n k}=\sum_{j=k, k \mid j}^{\infty} a_{n j} \frac{\mu\left(\frac{j}{k}\right)}{\varphi(k)} \frac{Q_{k}}{q_{j}}$ for all $k, m, n \in \mathbb{N}$.
Proof. We omit the proof since it follows with the same technique in [6, Theorem 4.1].
The following results are obtained by combining Theorem 4.1 with Lemma 3.1.

Theorem 4.2.

(a) $\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{1}\left(R_{\Phi}\right), \ell_{\infty}\right)$ if and only if

$$
\begin{equation*}
\lim _{m \rightarrow \infty} d_{m k}^{(n)} \text { exists for each } n, k \in \mathbb{N} \tag{4.1}
\end{equation*}
$$

$$
\begin{equation*}
\sup _{m, k}\left|d_{m k}^{(n)}\right|<\infty \text { for each } n \in \mathbb{N} \tag{4.2}
\end{equation*}
$$

and (3.5) holds with $d_{n k}$ instead of $a_{n k}$.
(b) $\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{1}\left(R_{\Phi}\right), c\right)$ if and only if (4.1) and (4.2) hold, and (3.3) and (3.5) also hold with $d_{n k}$ instead of $a_{n k}$.
(c) $\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{1}\left(R_{\Phi}\right), c_{0}\right)$ if and only if (4.1) and (4.2) hold, and (3.5) and (3.6) also hold with $d_{n k}$ instead of $a_{n k}$.
(d) $\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{1}\left(R_{\Phi}\right), \ell_{1}\right)$ if and only if (4.1) and (4.2) hold, and (3.2) also holds with $d_{n k}$ instead of $a_{n k}$.

Theorem 4.3. Let $1<p<\infty$.
(a) $\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{p}\left(R_{\Phi}\right), \ell_{\infty}\right)$ if and only if (4.1) and

$$
\begin{equation*}
\sup _{m} \sum_{k=0}^{m}\left|d_{m k}^{(n)}\right|^{q}<\infty \text { for each } n \in \mathbb{N} \tag{4.3}
\end{equation*}
$$

hold, and (3.4) also holds with $d_{n k}$ instead of $a_{n k}$.
(b) $\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{p}\left(R_{\Phi}\right), c\right)$ if and only if (4.1) and (4.3) hold, and (3.3) and (3.4) also hold with $d_{n k}$ instead of $a_{n k}$.
(c) $\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{p}\left(R_{\Phi}\right), c_{0}\right)$ if and only if (4.1) and (4.3) hold, and (3.6) and (3.4) also hold with $d_{n k}$ instead of $a_{n k}$.
(d) $\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{p}\left(R_{\Phi}\right), \ell_{1}\right)$ if and only if (4.1) and (4.3) hold, and (3.1) also holds with $d_{n k}$ instead of $a_{n k}$.

The following results are derived by using Theorems 4.2-4.3.

Corollary 4.4. The following statements hold:

(a) $\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{1}\left(R_{\Phi}\right)\right.$, bs) if and only if (4.1), (4.2) hold and (3.5) holds with $d(n, k)$ instead of $a_{n k}$.
(b) $\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{1}\left(R_{\Phi}\right)\right.$, cs) if and only if (4.1), (4.2) hold and (3.3),(3.5) hold with d (n, k) instead of $a_{n k}$.
(c) $\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{1}\left(R_{\Phi}\right), c s_{0}\right)$ if and only if (4.1), (4.2) hold and (3.5),(3.6) hold with $d(n, k)$ instead of $a_{n k}$.

Corollary 4.5. Let $1<p<\infty$. Then, the following statements hold:
(a) $\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{p}\left(R_{\Phi}\right)\right.$, bs) if and only if (4.1), (4.3) hold and (3.4) holds with $d(n, k)$ instead of $a_{n k}$.
(b) $\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{p}\left(R_{\Phi}\right)\right.$, cs) if and only if (4.1), (4.3) hold and (3.3), (3.4) hold with d $\left.n, k\right)$ instead of $a_{n k}$.
(c) $\mathscr{A}=\left(a_{n k}\right) \in\left(\ell_{p}\left(R_{\Phi}\right), c s_{0}\right)$ if and only if (4.1), (4.3) hold and (3.4),(3.6) hold with $d(n, k)$ instead of $a_{n k}$.

5. Compact operators on the space $\ell_{p}\left(R_{\Phi}\right)$

Let the matrix $\tilde{\mathscr{A}}=\left(\tilde{a}_{n k}\right)$ defined by an infinite matrix $\mathscr{A}=\left(a_{n k}\right)$ as

$$
\tilde{a}_{n k}=\sum_{j=k, k \mid j}^{\infty} \frac{\mu\left(\frac{j}{k}\right)}{\varphi(j)} \frac{Q_{k}}{q_{j}} a_{n j}
$$

for all $n, k \in \mathbb{N}$.
For a sequence $t=\left(t_{k}\right) \in \omega$, define a sequence $\tilde{t}=\left(\tilde{t}_{k}\right)$ as $\tilde{t}_{k}=\sum_{j=k, k \mid j}^{\infty} \frac{\mu\left(\frac{j}{k}\right)}{\varphi(j)} \frac{Q_{k}}{q_{j}} t_{j}$ for all $k \in \mathbb{N}$.
Lemma 5.1. Let $t=\left(t_{k}\right) \in\left(\ell_{p}\left(R_{\Phi}\right)\right)^{\beta}$, where $1 \leq p<\infty$. Then $\tilde{t}=\left(\tilde{t}_{k}\right) \in \ell_{q}$ and

$$
\sum_{k} t_{k} x_{k}=\sum_{k} \tilde{t}_{k} y_{k}
$$

for all $x=\left(x_{k}\right) \in \ell_{p}\left(R_{\Phi}\right)$.
Lemma 5.2. The following statements hold.
(a) $\|t\|_{\ell_{1}\left(R_{\Phi}\right)}^{*}=\sup _{k}\left|\tilde{t}_{k}\right|<\infty$ for all $t=\left(t_{k}\right) \in\left(\ell_{1}\left(R_{\Phi}\right)\right)^{\beta}$.
(b) $\|t\|_{\ell_{p}\left(R_{\Phi}\right)}^{*}=\left(\sum_{k}\left|\tilde{t}_{k}\right|^{q}\right)^{1 / q}<\infty$ for all $t=\left(t_{k}\right) \in\left(\ell_{p}\left(R_{\Phi}\right)\right)^{\beta}$, where $1<p<\infty$.

Lemma 5.3. Let X be any sequence space and $\mathscr{A}=\left(a_{n k}\right)$ be an infinite matrix. If $\mathscr{A} \in\left(\ell_{p}\left(R_{\Phi}\right), \mathrm{X}\right)$, then $\tilde{\mathscr{A}} \in\left(\ell_{p}, \mathrm{X}\right)$ and $\mathscr{A} x=\tilde{\mathscr{A}}$ y for all $x \in \ell_{p}\left(R_{\Phi}\right)$, where $1 \leq p<\infty$.

Proof. It follows from Lemma 5.1.
Lemma 5.4. If $\mathscr{A} \in\left(\ell_{1}\left(R_{\Phi}\right), \ell_{p}\right)$, then we have

$$
\left\|\mathscr{L}_{\mathscr{A}}\right\|=\|\mathscr{A}\|_{\left(\ell_{1}\left(R_{\Phi}\right), \ell_{p}\right)}=\sup _{k}\left(\sum_{n}\left|\tilde{a}_{n k}\right|^{p}\right)^{1 / p}<\infty
$$

where $1 \leq p<\infty$.
Lemma 5.5. [22, Theorem 3.7] Let $\mathrm{X} \supset \psi$ be a BK-space. Then, the following statements hold.
(a) $\mathscr{A} \in\left(\mathrm{X}, \ell_{\infty}\right)$, then $0 \leq\left\|\mathscr{L}_{\mathscr{A}}\right\|_{\chi} \leq \limsup { }_{n}\left\|\mathscr{A}_{n}\right\|_{\mathrm{X}}^{*}$.
(b) $\mathscr{A} \in\left(\mathrm{X}, c_{0}\right)$, then $\left\|\mathscr{L}_{\mathscr{A}}\right\|_{\chi}=\lim \sup _{n}\left\|\mathscr{A}_{n}\right\|_{\mathrm{X}}^{*}$.
(c) If X has A K or $\mathrm{X}=\ell_{\infty}$ and $\mathscr{A} \in(\mathrm{X}, c)$, then

$$
\frac{1}{2} \limsup _{n}\left\|\mathscr{A}_{n}-a\right\|_{\mathrm{X}}^{*} \leq\left\|\mathscr{L}_{\mathscr{A}}\right\|_{\chi} \leq \limsup _{n}\left\|\mathscr{A}_{n}-a\right\|_{\mathrm{X}}^{*}
$$

where $a=\left(a_{k}\right)$ and $a_{k}=\lim _{n} a_{n k}$ for each $k \in \mathbb{N}$.
Lemma 5.6. [22, Theorem 3.11] Let $\mathrm{X} \supset \psi$ be a $B K$-space. If $\mathscr{A} \in\left(\mathrm{X}, \ell_{1}\right)$, then

$$
\lim _{r}\left(\sup _{N \in \mathscr{K}_{r}}\left\|\sum_{n \in N} \mathscr{A}_{n}\right\|_{\mathrm{X}}^{*}\right) \leq\left\|\mathscr{L}_{\mathscr{A}}\right\|_{\chi} \leq 4 \lim _{r}\left(\sup _{N \in \mathscr{K}_{r}}\left\|\sum_{n \in N} \mathscr{A}_{n}\right\|_{\mathrm{X}}^{*}\right)
$$

and $\mathscr{L}_{\mathscr{A}}$ is compact if and only if $\lim _{r}\left(\sup _{N \in \mathscr{K}_{r}}\left\|\sum_{n \in N} \mathscr{A}_{n}\right\|_{\mathrm{X}}^{*}\right)=0$, where \mathscr{K}_{r} is the subcollection of \mathscr{K} consisting of subsets of \mathbb{N} with elements that are greater than r.

Theorem 5.7. Let $1<p<\infty$.

1. For $\mathscr{A} \in\left(\ell_{p}\left(R_{\Phi}\right), \ell_{\infty}\right)$,

$$
0 \leq\left\|\mathscr{L}_{\mathscr{A}}\right\|_{\chi} \leq \limsup _{n}\left(\sum_{k}\left|\tilde{a}_{n k}\right|^{q}\right)^{1 / q}
$$

holds.
2. For $\mathscr{A} \in\left(\ell_{p}\left(R_{\Phi}\right), c\right)$,

$$
\frac{1}{2} \limsup _{n}\left(\sum_{k}\left|\tilde{a}_{n k}-\tilde{a}_{k}\right|^{q}\right)^{1 / q} \leq\left\|\mathscr{L}_{\mathscr{A}}\right\|_{\chi} \leq \limsup _{n}\left(\sum_{k}\left|\tilde{a}_{n k}-\tilde{a}_{k}\right|^{q}\right)^{1 / q}
$$

holds, where $\tilde{a}=\left(\tilde{a}_{k}\right)$ and $\tilde{a}_{k}=\lim _{n} \tilde{a}_{n k}$ for each $k \in \mathbb{N}$.
3. For $\mathscr{A} \in\left(\ell_{p}\left(R_{\Phi}\right), c_{0}\right)$,

$$
\left\|\mathscr{L}_{\mathscr{A}}\right\|_{\chi}=\limsup _{n}\left(\sum_{k}\left|\tilde{a}_{n k}\right|^{q}\right)^{1 / q}
$$

holds.
4. For $\mathscr{A} \in\left(\ell_{p}\left(R_{\Phi}\right), \ell_{1}\right)$,

$$
\lim _{r}\|\mathscr{A}\|_{\left(\ell_{p}\left(R_{\Phi}\right), \ell_{1}\right)}^{(r)} \leq\left\|\mathscr{L}_{\mathscr{A}}\right\|_{\chi} \leq 4 \lim _{r}\|\mathscr{A}\|_{\left(\ell_{p}\left(R_{\Phi}\right), \ell_{1}\right)}^{(r)}
$$

holds, where $\|\mathscr{A}\|_{\left(\ell_{p}\left(R_{\Phi}\right), \ell_{1}\right)}^{(r)}=\sup _{N \in \mathscr{H}_{r}}\left(\sum_{k}\left|\sum_{n \in N} \tilde{a}_{n k}\right|^{q}\right)^{1 / q}(r \in \mathbb{N})$.
Proof.

1. Let $\mathscr{A} \in\left(\ell_{p}\left(R_{\Phi}\right), \ell_{\infty}\right)$. Since the series $\sum_{k=1}^{\infty} a_{n k} x_{k}$ converges for each $n \in \mathbb{N}$, we have $\mathscr{A}_{n} \in\left(\ell_{p}\left(R_{\Phi}\right)\right)^{\beta}$. From Lemma 5.2 (b), we write $\left\|\mathscr{A}_{n}\right\|_{\ell_{p}\left(R_{\Phi}\right)}^{*}=\left\|\tilde{\mathscr{A}}_{n}\right\|_{\ell_{p}}^{*}=\left\|\tilde{\mathscr{A}}_{n}\right\|_{\ell_{q}}=\left(\sum_{k}\left|\tilde{a}_{n k}\right|^{q}\right)^{1 / q}$ for each $n \in \mathbb{N}$. By using Lemma 5.5 (a), we conclude that

$$
0 \leq\left\|\mathscr{L}_{\mathscr{A}}\right\|_{X} \leq \limsup _{n}\left(\sum_{k}\left|\tilde{a}_{n k}\right|^{q}\right)^{1 / q}
$$

2. Let $\mathscr{A} \in\left(\ell_{p}\left(R_{\Phi}\right), c\right)$. By Lemma 5.3, we have $\tilde{\mathscr{A}} \in\left(\ell_{p}, c\right)$. Hence, from Lemma 5.5 (c), we write

$$
\frac{1}{2} \limsup _{n}\left\|\tilde{\mathscr{A}}_{n}-\tilde{a}\right\|_{\ell_{p}}^{*} \leq\left\|\mathscr{L}_{\mathscr{A}}\right\|_{\chi} \leq \underset{n}{\limsup }\left\|\tilde{\mathscr{A}}_{n}-\tilde{a}\right\|_{\ell_{p}}^{*},
$$

where $\tilde{a}=\left(\tilde{a}_{k}\right)$ and $\tilde{a}_{k}=\lim _{n} \tilde{a}_{n k}$ for each $k \in \mathbb{N}$. Moreover, Lemma 1.1 implies that $\left\|\tilde{\mathscr{A}}_{n}-\tilde{a}\right\|_{\ell_{p}}^{*}=\left\|\tilde{\mathscr{A}_{n}}-\tilde{a}\right\|_{\ell_{q}}=$ $\left(\sum_{k}\left|\tilde{a}_{n k}-\tilde{a}_{k}\right|^{q}\right)^{1 / q}$ for each $n \in \mathbb{N}$. This completes the proof.
3. Let $\mathscr{A} \in\left(\ell_{p}\left(R_{\Phi}\right), c_{0}\right)$. Since we have $\left\|\mathscr{A}_{n}\right\|_{\ell_{p}\left(R_{\Phi}\right)}^{*}=\left\|\tilde{\mathscr{A}}_{n}\right\|_{\ell_{p}}^{*}=\left\|\tilde{\mathscr{A}}_{n}\right\|_{\ell_{q}}=\left(\sum_{k}\left|\tilde{n}_{n k}\right|^{q}\right)^{1 / q}$ for each $n \in \mathbb{N}$, we conclude from Lemma 5.5 (b) that

$$
\left\|\mathscr{L}_{\mathscr{A}}\right\|_{\chi}=\limsup _{n}\left(\sum_{k}\left|\tilde{a}_{n k}\right|^{q}\right)^{1 / q} .
$$

4. Let $\mathscr{A} \in\left(\ell_{p}\left(R_{\Phi}\right), \ell_{1}\right)$. By Lemma 5.3, we have $\tilde{\mathscr{A}} \in\left(\ell_{p}, \ell_{1}\right)$. It follows from Lemma 5.6 that

$$
\lim _{r}\left(\sup _{N \in \mathscr{M}_{r}}\left\|\sum_{n \in N} \tilde{\mathscr{A}}_{n}\right\|_{\ell_{p}}^{*}\right) \leq\left\|\mathscr{L}_{\mathscr{A}}\right\|_{\chi} \leq 4 \lim _{r}\left(\sup _{N \in \mathscr{\mathscr { C }}_{r}}\left\|\sum_{n \in N} \tilde{\mathscr{A}}_{n}\right\|_{\ell_{p}}^{*}\right) .
$$

Moreover, Lemma 1.1 implies that $\left\|\sum_{n \in N} \tilde{\mathscr{A}_{n}}\right\|_{\ell_{p}}^{*}=\left\|\sum_{n \in N} \tilde{\mathscr{A}_{n}}\right\|_{\ell_{q}}=\left(\sum_{k}\left|\sum_{n \in N} \tilde{a}_{n k}\right|^{q}\right)^{1 / q}$ which completes the proof.

Corollary 5.8. Let $1<p<\infty$.

1. $\mathscr{L}_{\mathscr{A}}$ is compact for $\mathscr{A} \in\left(\ell_{p}\left(R_{\Phi}\right), \ell_{\infty}\right)$ if

$$
\lim _{n}\left(\sum_{k}\left|\tilde{a}_{n k}\right|^{q}\right)^{1 / q}=0
$$

2. $\mathscr{L}_{\mathscr{A}}$ is compact for $\mathscr{A} \in\left(\ell_{p}\left(R_{\Phi}\right), c\right)$ if and only if

$$
\lim _{n}\left(\sum_{k}\left|\tilde{a}_{n k}-\tilde{a}_{k}\right|^{q}\right)^{1 / q}=0
$$

3. $\mathscr{L}_{\mathscr{A}}$ is compact for $\mathscr{A} \in\left(\ell_{p}\left(R_{\Phi}\right), c_{0}\right)$ if and only if

$$
\lim _{n}\left(\sum_{k}\left|\tilde{a}_{n k}\right|^{q}\right)^{1 / q}=0
$$

4. $\mathscr{L}_{\mathscr{A}}$ is compact for $\mathscr{A} \in\left(\ell_{p}\left(R_{\Phi}\right), \ell_{1}\right)$ if and only if

$$
\lim _{r}\|\mathscr{A}\|_{\left(\ell_{p}\left(R_{\Phi}\right), \ell_{1}\right)}^{(r)}=0
$$

where $\|\mathscr{A}\|_{\left(\ell_{p}\left(R_{\Phi}\right), \ell_{1}\right)}^{(r)}=\sup _{N \in \mathscr{K}_{r}}\left(\sum_{k}\left|\sum_{n \in N} \tilde{a}_{n k}\right|^{q}\right)^{1 / q}$.

Theorem 5.9.

1. For $\mathscr{A} \in\left(\ell_{1}\left(R_{\Phi}\right), \ell_{\infty}\right)$,

$$
0 \leq\left\|\mathscr{L}_{\mathscr{A}}\right\|_{\chi} \leq \limsup _{n}\left(\sup _{k}\left|\tilde{a}_{n k}\right|\right)
$$

holds.
2. For $\mathscr{A} \in\left(\ell_{1}\left(R_{\Phi}\right), c\right)$,

$$
\frac{1}{2} \limsup _{n}\left(\sup _{k}\left|\tilde{a}_{n k}-\tilde{a}_{k}\right|\right) \leq\left\|\mathscr{L}_{\mathscr{A}}\right\|_{\chi} \leq \limsup _{n}\left(\sup _{k}\left|\tilde{a}_{n k}-\tilde{a}_{k}\right|\right)
$$

holds.
3. For $\mathscr{A} \in\left(\ell_{1}\left(R_{\Phi}\right), c_{0}\right)$,

$$
\left\|\mathscr{L}_{\mathscr{A}}\right\|_{\chi}=\limsup _{n}\left(\sup _{k}\left|\tilde{a}_{n k}\right|\right)
$$

holds.
4. For $\mathscr{A} \in\left(\ell_{1}\left(R_{\Phi}\right), \ell_{1}\right)$,

$$
\left\|\mathscr{L}_{\mathscr{A}}\right\|_{\chi}=\lim _{r}\left(\sup _{k} \sum_{n=r}^{\infty}\left|\tilde{a}_{n k}\right|\right)
$$

holds.
Proof. It follows with the same technique in Theorem 5.7.

Corollary 5.10.

1. $\mathscr{L}_{\mathscr{A}}$ is compact for $\mathscr{A} \in\left(\ell_{1}\left(R_{\Phi}\right), \ell_{\infty}\right)$ if

$$
\lim _{n}\left(\sup _{k}\left|\tilde{a}_{n k}\right|\right)=0
$$

2. $\mathscr{L}_{\mathscr{A}}$ is compact for $\mathscr{A} \in\left(\ell_{1}\left(R_{\Phi}\right), c\right)$ if and only if

$$
\lim _{n}\left(\sup _{k}\left|\tilde{a}_{n k}-\tilde{a}_{k}\right|\right)=0
$$

3. $\mathscr{L}_{\mathscr{A}}$ is compact for $\mathscr{A} \in\left(\ell_{1}\left(R_{\Phi}\right), c_{0}\right)$ if and only if

$$
\lim _{n}\left(\sup _{k}\left|\tilde{a}_{n k}\right|\right)=0
$$

4. $\mathscr{L}_{\mathscr{A}}$ is compact for $\mathscr{A} \in\left(\ell_{1}\left(R_{\Phi}\right), \ell_{1}\right)$ if and only if

$$
\lim _{r}\left(\sup _{k} \sum_{n=r}^{\infty}\left|\tilde{a}_{n k}\right|\right)=0
$$

References

${ }^{[1]}$ B. Altay, F. Başar, M. Mursaleen, On the Euler sequence spaces which include the spaces ℓ_{p} and $\ell_{\infty} I$, Inform. Sci., 176(10) (2006), 1450-1462.
${ }^{\text {[2] F. Başar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., }}$ 55(1) (2003), 136-147.
${ }^{[3]}$ F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, İstanbul, 2012.
${ }^{\text {[4] M. İlkhan, Certain geometric properties and matrix transformations on a newly introduced Banach space, Fundam. J. }}$ Math. Appl., 3(1) (2020), 45-51.
${ }^{[5]}$ E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl., 2013(38) (2013), 15 pages.
[6] M. Kirişçi, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., 60 (2010), 1299-1309.
${ }^{[7]}$ M. Kirişçi, Riesz type integrated and differentiated sequence spaces, Bull. Math. Anal. Appl., 7(2) (2015), 14-27.
${ }^{[8]}$ S.A. Mohiuddine, A. Alotaibi, Weighted almost convergence and related infinite matrices, J. Inequal. Appl., 2018(15) (2018), 10 pages.
[9] M. Mursaleen, A.K. Noman, On some new difference sequence spaces of non-absolute type, Math. Comput. Modelling, 52(3-4) (2010), 603-617.
${ }^{[10]}$ T. Yaying, B. Hazarika, On sequence spaces defined by the domain of a regular Tribonacci matrix, Math. Slovaca, 70(3) (2020), 697-706.
${ }^{\text {[11] }}$ P. Zengin Alp, A new paranormed sequence space defined by Catalan conservative matrix, Math. Methods Appl. Sci., doi: https://doi.org/10.1002/mma.6530.
${ }^{[12]}$ T. Yaying, B. Hazarika, On sequence spaces generated by binomial difference operator of fractional order, Math. Slovaca, 69(4) (2019), 901-918.
${ }^{[13]}$ T. Yaying, B. Hazarika, M. Mursaleen, On sequence space derived by the domain of q-Cesaro matrix in ℓ_{p} space and the associated operator ideal, J. Math. Anal. Appl., 493(1) (2021), 124453.
${ }^{[14]}$ T. Yaying, B. Hazarika, S.A. Mohiuddine, M. Mursaleen, K.J. Ansari, Sequence spaces derived by the triple band generalized Fibonacci difference operator, Adv. Diff. Equ., 2020 (2020), 639.
${ }^{[15]}$ T. Yaying, Paranormed Riesz difference sequence spaces of fractional order, Kragujevac J. Math., 46(2) (2022), 175-191.
${ }^{[16]}$ E. Malkowsky, V. Rakocevic, An introduction into the theory of sequence spaces and measure of noncompactness, Zb . Rad. (Beogr.), 17 (2000), 143-234.
${ }^{[17]}$ V. Rakocevic, Measures of noncompactness and some applications, Filomat, 12 (1998), 87-120.
${ }^{[18]}$ M. Başarır, E. E. Kara, On some difference sequence spaces of weighted means and compact operators, Ann. Funct. Anal. 2 (2011), 114-129.
${ }^{[19]}$ M. Başarır, E. E. Kara, On the B-difference sequence space derived by generalized weighted mean and compact operators, J. Math. Anal. Appl. 391 (2012), 67-81.
${ }^{[20]}$ M. Başarır, E. E. Kara, On compact operators on the Riesz B^{m}-difference sequence spaces II, Iran. J. Sci. Technol. Trans. A Sci., 36 (2012), 371-376.
${ }^{[21]}$ E. E. Kara, M. Başarır, On compact operators and some Euler $B^{(m)}$-difference sequence spaces, J. Math. Anal. Appl., 379(2) (2011), 499-511.
${ }^{\text {[22] }}$ M. Mursaleen, A. K. Noman, Compactness by the Hausdorff measure of noncompactness, Nonlinear Anal., 73(8) (2010), 2541-2557.
${ }^{[23]}$ M. Mursaleen, A. K. Noman, The Hausdorff measure of noncompactness of matrix operators on some BK spaces, Oper. Matrices, 5 (2011), 473-486.
${ }^{[24]}$ T. Yaying, A. Das, B. Hazarika, P. Baliarsingh, Compactness of binomial difference operator of fractional order and sequence spaces, Rend. Circ. Mat. Palermo (II) Ser., 68 (2019), 459-476.
${ }^{[25]}$ M. İlkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13(2) (2019), 527-544.
${ }^{[26]}$ S. Demiriz, S. Erdem, Domain of Euler-totient matrix operator in the space \mathscr{L}_{p}, Korean J. Math., 28(2) (2020), 361-378.
${ }^{[27]}$ S. Demiriz, M. İlkhan, E. E. Kara, Almost convergence and Euler totient matrix, Ann. Funct. Anal., 11(3) (2020), 604-616.
${ }^{[28]}$ S. Erdem, S. Demiriz, 4-dimensional Euler-totient matrix operator and some double sequence spaces, Math. Sci. Appl. E-Notes, 8(2) (2020), 110-122.
${ }^{[29]}$ G. C. Hazar Güleç, Merve İlkhan, A new paranormed series space using Euler totient means and some matrix transformations, Korean J. Math., 28(2) (2020), 205-221.
${ }^{[30]}$ G. C. Hazar Güleç, Merve İlkhan, A new characterization of absolute summability factors, Commun. Optim. Theory, 2020 (2020), Article ID 15, 1-11.
${ }^{\text {[31] }}$ M. İlkhan, Matrix domain of a regular matrix derived by Euler totient function in the spaces c_{0} and c, Mediterr. J. Math., 17 (2020), Article number 27.
${ }^{[32]}$ M. İlkhan, G. C. Hazar Güleç, A study on absolute Euler totient series space and certain matrix transformations, Mugla J. Sci. Technol., 6(1) (2020), 112-119.
${ }^{\text {[33] }}$ M. İlkhan, S. Demiriz, E. E. Kara, A new paranormed sequence space defined by Euler totient matrix, Karaelmas Sci. Eng. J., 9(2) (2019), 277-282.
${ }^{[34]}$ B. Altay, F. Başar, Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 30(4) (2006), 591-608.
${ }^{[35]}$ M. Stieglitz, H. Tietz, Matrix transformationen von folgenraumen eine ergebnisübersicht, Math. Z., 154 (1977), 1-16.

