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Abstract 

In this paper, we are interested in a consensus generator which combine two belief functions obtained from 
equally reliable and independent sources of information. The independence mentioned here is between 
occurrences of the sources of information. We propose a new consensus generator called “Analytic Fusion 
Process” which satisfy the idempotent and commutative law. Furthermore, this method also produces a measure 
of conflict shows whether the original beliefs were in harmony or in conflict. Another advantage is that the 
measure of conflict produced by this method reflects both qualitative and quantitative conflict. 

Keywords: Mathematical theory of evidence; Dempster-Shafer theory; Belief function; Data fusion; Consensus 
generator; Analytic fusion process; Integer programming. 

 
Özet  

Kanıt kuramında yeni bir birleştirme yöntemi “Analitik Birleştirme Süreci” 

Bu çalışmada, eşit derecede güvenilir ve bağımsız bilgi kaynaklarından elde edilen iki kanaat fonksiyonunu 
birleştiren bir uzlaşma oluşturucu ile ilgileniyoruz. Burada bahsedilen bağımsızlık, bilgi kaynaklarının 
oluşumları arasındadır. Eş kuvvetlilik ve değişme özelliklerini sağlayan "Analitik Birleştirme Süreci" adlı yeni 
bir uzlaşma oluşturucu öneriyoruz. Bu yöntem aynı zamanda orijinal kanaatlerin uyum içinde mi yoksa çelişki 
halinde mi olduğunu gösteren bir çelişki ölçüsü üretir. Diğer bir avantaj, bu yöntemle üretilen çelişki 
ölçüsünün hem nitel hem de nicel çelişkiyi yansıtmasıdır. 

Keywords: Kanıt kuramı, Dempter-Shafer kuramı, Kanaat fonksiyonu, Veri birleştirme, Uzlaşı üretici, Analitik 
birleştirme süreci, Tam sayılı programlama. 

1. Introduction 

The mathematical theory of evidence (MTE), also known as Dempster-Shafer (DS) theory of evidence, 
has gained relatively wide acceptance as a reasonable tool for the representation, and combination such as 
revision, updating and conditioning of uncertain knowledge, evidence or information. The seminal work 
[1] on this subject is carried out by G. Shafer in 1976. This work was an expansion of A. Dempster’s study 
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[2] about upper and lower probabilities dated 1967. In a finite discrete space, MTE can be interpreted as a 
generalization of probability theory where probabilities are assigned to sets as opposed to mutually 
exclusive singletons [3]. On the other hand, there are also some theoritical contributions which can be 
considered as an extension of the classical MTE but includes fundamental differences [4, 5, 6, 7]. 

Aggregation or fusion of information are basic concerns for all kinds of knowledge-based systems from 
image processing to decision making, from pattern recognition to machine learning [8]. The basic rule of 
combination to aggregate or fusion of information from distinct bodies of evidence in the framework of 
MTE is Dempster’s rule of combination (DRC). However, after L. A. Zadeh presented an example for 
which this method gives counter-intuitive results especially in the case of existence of high conflict 
between bodies of evidence [9, 10], the success story of DS theory was abruptly slowed down [11]. In 
literature, also other examples claiming that DRC gives counter-intuitive results can be found [12, 13, 14, 
15, 16]. Although R. Haenni and many others state that the counter-intuitive results are not a problem of 
DRC, but rather a problem of misunderstandings and misapplications [17, 11]; many alternative 
combination rules have been proposed in the framework of the MTE [18, 19, 20, 21, 13, 14, 22, 23, 24, 
25, 26] for situations where DRC is not applicable, where its assumptions are not satisfied. D. Dubois and 
H. Prade have stated that many alternative rules can potentially occupy a continuum between conjunction 
(AND-based on set intersection) and disjunction (OR-based on set union) [27]. DRC is a conjunctive 
operation, because in the pairwise combination phase, the intersections of focal elements from distinct 
bodies of evidence are used. In this phase of some combination rules, the union of focal elements are used. 
These rules are called disjunctive operation. There is also a third type of combination rules called tradeoff 
operation in which task is carried out by using both intersection and union operators [27].  

There are some alternative combination rules that have different assumptions from MTE on dependency 
of the sources of information or on reliability of the sources. R. Haenni and S. Hartmann’s paper 
approaches the problem of independent and partially reliable information source from a very general 
perspective by using the theory of probabilistic argumentation [6] as modeling and DS theory of evidence 
as the underlying mathematical mechanism [28]. If the independency of the sources of information 
assumption is questionable, M. E. G. V. Cattaneo suggests using the least specific combination 
minimizing the conflict among the ones allowed by a simple generalization of Dempster’s rule [29], does 
not propose a new method. In MTE, if the requirement of independence between sources of information is 
not satisfied, it is prevented a direct application of Dempster’s rule. So, in [30] P. A. Monney and M. Chan 
proposed a method for dealing with this situation. The method relies on the ability of the theory of hints 
[5] to explicitly represent variables for which probabilistic information is avalibale. The fundamental 
limitation of DRC lies in the assumption that the belief functions combined be based on distinct bodies of 
evidence. So, in the case of nondistinct bodies of evidence, T. Denœux proposed two new commutative, 
associative and idempotent operators for belief functions; the cautious conjunctive rule, and the bold 
disjunctive rule [31]. These operators rely on the transferable belief model [4]. Beside the distinctness 
assumption, the choice of one operator between two depends on assumptions regarding reliability of the 
sources. If all are reliable then the cautious conjunctive rule, or if at least one is reliable then the bold 
disjunctive rule was recommended. In the recently paper, K. Yamada proposed a new model of 
combination and a new rule of combination called combination by compromise as a consensus generator 
[32]. This combination model for consensus generation is based on the assumptions that the information 
sources are independent in the sense of occurrance but may collide with each other over their contents, 
and that the information sources may not be totally reliable.  

Experts and researchers in the fields today have no agreement on the superiority on one combination 
method over the others [33, 17, 34, 15]. To prevent this confusion about the belief combination, it should 
be clear what it means to combine belief functions; conditioning, revisioning, updating, consensus 
generating or anything else. Then, it should be stated expressly what kind of dependence or independence 
assumed. There are many concepts of dependence. In [30], P. A. Monney and M. Chan discriminate 
between dependence at the sources level, namely at the level of the assumption variables and dependence 
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at the   level, namely distinctness [15] of bodies of evidence. In two papers [35, 36], B. B. Yaghlane et 
al. introduce the concept of doxastic independency. This concept of independence is once again 
represented at the   level [30]. K. Yamada asserts that the problem comes from confusion of 
independence between occurences of bodies of evidence with consistency between contents of the 
information [32]. It also should be stated expressly how reliable the sources of information are; partially or 
totally? Are the reliabilities of the sources of information equally or not? 

A set of experts or other sources of information can provide more information than a single expert. 
Although it is sometimes reasonable to provide a decision maker with only the individual experts’ 
opinions seperately, it is often necessary to combine the opinions into a single one [37]. In many cases, a 
single belief function is needed for input into a decision model. Even if this is not the case, it can also be 
informative and effective to generate  a combined belief function as a summary of the available 
information. So, a consensus generator in the framework of the MTE is needed. A consensus generator is 
expected to be idempotent and commutative, but associativity is dispensable such as in the case of simple 
aritmethic mean operator. Also, a measure of conflict is useful to show whether the original beliefs were in 
harmony or in conflict. A consensus generator and measure of conflict are more informative if they are 
given together as in the case mean and variance. Recently, K. Yamada’s rule of combination called 
combination by compromise as a consensus generator is commutative; however, it does not satisfy the 
idempotent law nor the associative law [32]. The weighted average operator [38] also can be tought as a 
consensus generator. The weighted average operator also does not satisfy the idempotent law nor the 
associative law. Furthermore, neither of both does not generate any measure of conflict.  

In MTE, there are some rules which also produce a measure of conflict. However, there are no 
mechanisms to measure the degree of conflict other than using the mass of the combined belief assigned to 
the emptyset before normalization [39]. Is the mass of the combined belief to the emptyset before 
normalization real conflict? Under this consideration W. Liu has proposed a method to measure the 
conflict among beliefs using a pair of values, and then investigated the effect of these measures on 
deciding when Dempster’s rule can be applied [39]. Still, there is not any real single measure of conflict 
which measures how the original beliefs were in conflict.  

In this paper, we are interested in a consensus generator which combines two belief functions obtained 
from equally reliable and independent sources of information. The independence mentioned here is 
between occurrences of the sources of information. We propose a new consensus generator called Analytic 
Fusion Process (AFP) which satisfies the idempotent and commutative law. Furthermore, this method also 
produces a measure of conflict which shows how the original beliefs were in conflict. Another advantage 
of the AFP is that the measure of conflict produced by AFP reflects both qualitative and quantitative 
conflict. Section 2 presents a background on MTE and DRC. Some definitions and principles of the AFP 
are given in Section 3, and Section 4 introduces the three stages of the AFP: definition, matching, and 
combination stages. Section 5 gives two examples, one of them is for a general case example and the other 
for a special case example. A comparison among the combination by compromise, the weighted average 
operator and the AFP is provided in Section 6, and the conclusion is provided at Section 7. 

2. Mathematical Theory of Evidence  

In MTE, knowledge is represented by basic belief assignment (bba) or belief function. These two 
functions have one-to-one correspondence [1]. The set called sample space in the traditional probability 
theory is called frame of discernment in the MTE. The frame of discernment is a finite set of mutually 
exclusive elements, denoted by   hereafter. The set of all subsets of   is called the power set of  and 

is denoted by 2 . The bba is defined as follows: 
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Definition 1. Let’s assume   is a frame of discernment, then a function  1,02: m  is called a bba 

whenever it satisfies the following conditions: 

(1) 0)( m  

(2) 



A

Am 1)( . 

The quantity of )(Am  is called basic belief mass (bbm), and it is meant to be the measure of the belief that 

is committed exactly to A (exactly in A  in nothing smaller). Each subset A  with 0)( Am  is called a 
focal element of m  and their set is represented by  . In this case body of evidence is represented by 

),( mE  . If the true state of interest is denoted by   and the set of its possible values by  , then the 

propositions of interest are precisely those of the form “the true value of   is exactly in A ” where A  is a 
subset of   [1]. In this paper we will use the word “proposition” to refer not only to set A  but also to its 
bbm )(Am . In this case, if we denote the true state (or value) of interest by   and the set of its possible 
values by  , any focal element A  of m and its bbm )(Am  can also thought as a proposition which asserts 
that “the true state of   is exactly in A  with a quantity of belief )(Am ”. Thus, a proposition is composed 
of two parts: a focal element, which we call the qualitative part of the proposition because it gives the 
content of the proposition, and a bbm, which we call the quantitative part of the proposition because it 
gives the quantity of the proposition. 

The belief function measures how much the information from a body of evidence supports the belief in a 
set specified elements as the right answer [18]. A definition of the belief function which can be 
equivalently represented by m  is given as follows: 

Definition 2. A function  1,02: Bel  is called a belief function over   if it is given for some bba 

 1,02: m  as follows: 





AB

BmABel )()( . 

The quantity )(ABel  is called A’s degree of belief, and it is meant to be the measure of the total belief that 

is committed to A. If all the focal elements are singletons than this is the Bayesian belief function [1]. 

Let 1Bel  and 2Bel  be two belief functions from two distinct bodies of evidence ),( 111 mE   and 
),( 222 mE  over the same frame of discernment  . If 1Bel ’s focal elements are denoted by },...,{ 11 nAA  

and 2Bel ’s focal elements by },...,{ 12 mBB , then the combination result (denoted here by index D) is 

given by the following equation. 

 












XandX

BmAm

BmAm

Xm

ji

ji

BA
ji

ji

XBA
ji

ji

D ,
)()(1

)()(

)(

,
21

,
21

  

)(XmD  is a proper bba, for all non-empty X , if and only if the denominator in above equation is 

non-zero. The degree of conflict between the bodies of evidence ),( 111 mE   and ),( 222 mE   is defined by 



M. Büyükyazıcı, M. Sucu / İstatistikçiler Dergisi: İstatistik&Aktüerya, 2020, 2, 78-100 
 

 
 
 

82

 




ji BA
ji

jiD BmAm
,

21 )()( . 

Shafer explained in [1] at pg. 66 what the combination means if it is obtained by DRC as follows:  

“Dempster’s rule of combination permits a simple description of how the assimilation of new 
evidence should change our beliefs: if our initial beliefs are expressed by a belief function  1Bel  
over  , and the new evidence alone determines a belief function 2Bel  over  , then after 

assimilating the new evidence we should have the beliefs given by 21 BelBel  . This description 

avoids the doctrine that a body of evidence can always be cast in the form of a single proposition 
known with certainty.” 

Shafer revealed that if the effect of the new evidence on the frame of discernment  is to establish any 
particular subset with certainty then the result of DRC is similar to the result of Bayes’ rule of 
conditioning. When the new evidence occurs in the form of a certainty, he called this special case of DRC 
as Dempster’s rule of conditioning [1]. So it is obvious to say that DRC is a conditioning operation which 
generalize Bayes’ rule of conditioning to the case where it is not necessary for the new evidence to occur 
in the form of certainty.  

3. Foundations of the Analytic Fusion Process 

Mathematical aggregation methods range from simple summary measures such as arithmetic or geometric 
means of probabilities to procedures based on axiomatic approaches or on various models of the 
information aggregation process requiring inputs regarding characteristics such as the quality of and 
dependence among the experts’ probabilities [37]. C. Genest and J. V. Zidek declared that the 
“logarithmic opinion pool” involves many advantages over the “linear opinion pool” when finding the 
consensus distribution of the subjective probability distributions. For details, you can see [40]. If all the 
weights are equal, as in the case of equally reliable sources of information, the consensus distribution is 
proportional to the geometric mean of the individual distributions. So, as a consensus generation process, 
AFP is a geometric mean based analytical method that operates on the individual belief functions to 
produce a single combined belief function when the individual belief functions comes from equally 
reliable and occurrence independent sources of information. 

It is now appropriate to give some definitions of AFP before it is explained in detail. In any context in this 
paper even it is not denoted, belief functions which will be combined are from equally reliable and 
occurrence independent sources of information. 

3.1. Pairwise combination  

Let ),( 111 meE  and ),( 222 meE  be two occurrence independent bodies of evidence defined over the same 

frame of discernment  . In this way, a belief function 1Bel  with a focal element set 1e  and bba 1m  and 

another belief function 2Bel  with a focal element set 2e  and bba 2m   are given. If the number of focal 

elements of the 1Bel  is taken as n , each focal element of this function is shown by nie i ,...,1,1  . 

Similarly, if the number of focal elements of the 2Bel  is taken as m , each focal element of this function 

is shown by mje j ,...,1,2  . In other words, there is n  propositions for 1Bel  and m  for 2Bel . So, it is 

obvious that reciprocal propositions of two bbas defined above can produce mn  pairs. In a consensus 
generation process, since we are looking the answer of how can we generate a new compromised 
proposition which embody the joint effect of the two propositions, one needs a kind of summarizing 
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process for each one of the mn  pairs. The summarizing process of a pair of propositions is called 
pairwise combination. A pairwise combination process is expected to generate a compromised proposition 
which has its own qualitative parts and quantitative parts. In Section 3.1.1 generating qualitative parts and 
in Section 3.1.3 calculating quantitative parts of the compromised proposition will be given. 

3.1.1. Compromised focal element 

We called the qualitative parts of compromised proposition as compromised focal element (cfe). 
According to the concept of reliability of the information sources, three ideas might be possible to 
generate cfes if information sources are equally reliable. If information sources are completely reliable 

ji ee 21   should be chosen as in DRC [1], if at least an unknown one of the sources reliable ji ee 21   

should be chosen as in Dubois and Prade’s combination rule [20]. K. Yamada proposes a third approach, 
combination by compromise, as a natural consensus [32]. In this paper we use this third approach to 
generate a cfe. According to this approach cfe composed of three subsets of ji ee 21  : 2\1

\21 , jiji eee  , and 
1\2

\ jie . It is obvious to see that the first subset ji ee 21   is just an intersection set. The second subset 2\1
\ jie  is 

the set of all elements which are members of ie1 , but not members of je2 . Similarly, the third subset 1\2
\ jie  

is the set of all elements which are members of je2 , but not members of ie1 . The reason why 1\2 is used 

as a superscript is that so as to exterminate the confusion which may occur under the condition that i and j 
focal element numbers given in subscript are the same. In AFP additionally, we called the ji ee 21   as 

agreement set, 2\1
\ jie  as conflict set one, and 1\2

\ jie  as conflict set two. Consequently, the cfe can be 

represented as follows:  

)())(()( 1\2
\21

2\1
\ jijiji eeee  .         (1) 

3.1.2. Region sharing of compromised focal element 

The focal elements, namely qualitative parts of two propositions, ie1 , je2  and the bbms of the focal 

elements, namely quantitative parts of the same propositions, )( 11 iem , )( 22 jem  are given. A pairwise 

combination of two propositions includes two issues: how to make qualitative summarizing, and how to 
make quantitative summarizing. Producing the cfe releases the first issue. The second issue can be 
rewritten as how to share the region of )()( 2211 ji emem  , namely the size of pairwise combination region, 

among subsets 2\1
\21 , jiji eee  , and 1\2

\ jie . The justification of using the word “region” is simple: When the 

bbms of 1m  and 2m  are depicted graphically on line segments on y-axis and x-axis respectively with both 

sizes one, the size of )()( 2211 ji emem   of any pairwise combination is equal to a region in the total area 

equal to one (See Fig. 2 in Section 3.2). In each pairwise combination region, we called the parts as 
agreement region belonging to agreement set elements ji ee 21   and the remaining parts as conflict region 

one and conflict region two belonging to conflict set elements 2\1
\ jie  and 1\2

\ jie , respectively. The region 

sharing can be made proportionally with respect to both their bbas assigned by the information sources 
and the cardinalities of the subsets. Thus, if the size of agreement region is given as a

ijr  whereas the size of 

conflict regions is given as b
ijr , and d

ijr  respectively, the pairwise combination region sharing can be made 

as in Fig. 1. 
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Fig. 1. Illustration of region sharing. 

In Fig. 1, four small rectangles represent how a pairwise combination region can be allocated to the 
subsets of cfe proportionally with respect to both their bbas and the cardinalities of the subsets. Firstly, In 
Fig.1, the vertical line shares the biggest rectangle two parts proportionally with respect to their bbas. 
Secondly, the two horizontal lines share the two separated parts proportionally with respect to their 
subset’s cardinalities. So, the region sharing can be made by the following equations: 

)()(
)()(
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)()(
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
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
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ij emem

eee

e
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



 , 

 )()(
)()(

)(
22111\2

\21

1\2
\

2211

11
ji

jiji

ji

ji

id
ij emem

eee

e

emem

em
r 





 . 

3.1.3. Mass sharing of compromised focal element 

It is important in the case of consensus generation to emphasize that the geometric mean of bbms should 
be used for quantitative summarizing not just the area of the pairwise combination region as in the case of 
conditioning with DRC. In conditioning case, multiplying of two bbms is reasonable, but in the case of 
consensus generation averaging is expected. So, after sharing out of the region )()( 2211 ji emem   between 

the agreement region, the conflict region one and the conflict region two, it is need to take square roots of 
distributed region as in the case of two probabilities’ geometric mean. We called the parts as mass of 
agreement belonging to agreement set elements ji ee 21  , mass of conflict one belonging to conflict set 

2\1
\ jie , and mass of conflict two belonging to conflict set 1\2

\ jie . If the mass of agreement is given by 

)( 21 jiij eea   or shortly ija , the mass of conflict one and two are given by )( 2\1
\ jiij eb  or shortly ijb , and 

)( 1\2
\ jiij ed  or shortly ijd  respectively, the mass sharing can be made by the following equations: 

  ,           (2) 
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 ,          (3) 

 ,          (4) 

 
Sum of the mass of conflict one and the mass of conflict two, that is ijij db  , is called mass of conflict. 

3.1.4. Qualitative and quantitative conflicts  

In the phase of pairwise combination, the elements which are involved in one of the focal elements which 
will be combined but not involved in the other one cause a qualitative conflict. As a measure of qualitative 
conflict, we use the proportion of the mass of conflict in sum of the mass of agreement and the mass of 
conflict for each pairwise combination. Since this is a proportion, it takes value on  1,0 . So, if the size of 

qualitative conflict is given by ijc ,  it can be formulated as follows: 

   ijijijijijij dbadbc           (5) 

Whether there is a qualitative conflict or not, there can be a quantitative conflict. Quantitative conflict is a 
conflict which stems from inequality of )( 11 iem  and )( 22 jem  bbms. It has been stated that mass of 

agreement and mass of conflicts are geometric means of parts of )( 11 iem  and )( 22 jem  bbms which belong 

to agreement set elements and conflict sets elements. As a measure of quantitative conflict we use the 
measure of deviation from geometric mean ijg  of )( 11 iem  and )( 22 jem  bbms, namely geometric variance 

ijv . When 2n , geometric mean and geometric variance values can be obtained as in Eq. (6) and Eq. 

(7). 

 )()( 2211 jjiiij ememg          (6) 

  
 )(),(min

)(),(max

)(
,

)(
max

1

2211

2211

11

11

jjii

jjii

ii

ij

ij

ii

ij

emem

emem

em

g

g

em

v












         (7) 

In Eq. (7) geometric variance is developed for AFP as being defined on  1,0 . It represents the size of 
quantitative conflict. This value is closer to 0 in situations where the difference between bbms is low and it 
is closer to 1 in situations where the difference between bbms is high.  

3.2. Matching the most suitable propositions 

In this section, to determine the matching the most suitable propositions principle of the AFP, we will start 
making analogy between the simple case of averaging two Bayesian belief functions and the general case 
of averaging two belief functions.  

Example 1. Given two Bayesian belief functions, 1Bel  and 2Bel , over the same frame of discernment 

},,{ cba  from two bodies of evidence ),( 111 mE  and ),( 222 mE   as follows: 

 ),( 111 mE  = { 1.0)(1 am ; 2.0)(1 bm ; 7.0)(1 cm } 
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),( 222 mE  = { 2.0)(2 am ; 3.0)(2 bm ; 5.0)(2 cm }. 

In this simple case, to obtain a single combined belief function from given these two Bayesian belief 
functions, we simply match the propositions which have the same focal elements reciprocally and average 
the bbms of matched propositions. Since we use the geometric mean as an averaging operator, it is needed 
normalization. Normalization is carried out by calculating the portions of these geometric means in their 
sum. The combined belief function obtained with matching, averaging and normalization process is as 
follows: 1446.0)( amgeo , 2505.0)( bmgeo , 6049.0)( cmgeo .  

 

 

 

 

 

 

 
Fig. 2. Illustration of pairwise combinations of propositions. 

The matching situations can be seen graphically in Fig. 2. The propositions 1.0)(1 am , 2.0)(1 bm , and 
7.0)(1 cm  of 1Bel  were matched and pairwise combined with the propositions 2.0)(2 am , 3.0)(2 bm , 

and 5.0)(2 cm  of 2Bel , respectively. In the figure, when the shaded regions correspond to matched 

pairwise combinations, the clear regions correspond to the unmatched pairwise combinations. 

It is important in the case of consensus generation to emphasize that the clear regions in this example 
neither represent the conflict mass nor have any other sense. So, the right way of matching a proposition 
from a body of evidence would be to match it with only one proposition in the other body of evidence. In 
other words, proposition 1.0)(1 am  of 1Bel  has to be matched with most suitable one 2.0)(2 am  of 

2Bel . The propositions 1.0)(1 am  and 2.0)(2 am  must not be pairwise combined with others. Therefore, 
in Fig. 2, only one matching must be made in each row and column. So, a proposition from a body of 
evidence must be matched and pairwise combined with the most suitable proposition from the other body 
of evidence. The size of qualitative conflict, and the size of quantitative conflict lead determination of the 
most agreeable matching among propositions. This will be explained in Section 4.2. 

4. Stages of the Analytic Fusion Process 

AFP is composed of three stages. These three stages are called definition, matching, and combination 
stages respectively. In the definition stage, a general combination table which lays outs the outputs 
produced by pairwise combinations the propositions of the bbas which will be combined. In the matching 
stage, the propositions are matched so as to minimize the conflict by an integer programming problem for 
conflict minimization. In the combination stage, the combined bba is obtained based on the matches of the 
previous stage.  

 

0 
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4.1. Definition stage 

A bba having n  focal elements and a bba having m focal elements are to be combined. In the definition 
stage of the process, the pairwise combinations are performed mn   times; then cfe, mass of agreement 

ija , mass of conflicts ijb  and ijd , the size of qualitative conflict ijc , and the size of quantitative conflict 

ijv  are obtained in the result of each combination as explained in Section 3.1. So, all results are achieved 

for each of mn   combinations. The table in which the results obtained through mn   numbered 
pairwise combinations of propositions which belong to two bbas is called general combination table (See 
Table 1 in Section 5.1). In the i th row and the j th column of this table, pairwise combinations results of 

the the i th proposition of the first bba and the j th proposition of the second bba are given.  

4.2. Matching stage 

A linear programming [41] problem is an optimization problem for which we attempt to maximize or 
minimize a linear function of the decision variables. The function that is to be maximized or minimized is 
called the objective function. The values of the decision variables must satisfy a set of constraints. Each 
constraint must be a linear equation or linear inequality. In any linear programming model, the decision 
variables should completely describe the decisions to be made [41]. As a special case of the linear 
programming problem, if all decision variables are restricted to be integers the problem is called integer 
programming, if all decision variables are restricted to 0 or 1 values the problem is called 0-1 integer 
programming [41, 42]. 

In Section 3.2 with Example 1 we explained why it is needed to match the most suitable propositions of 
the bbas. So, the propositions of two bbas which are closest to each other in the sense of quality and 
quantity aspects should be matched. The combined bba should be calculated based on the results of these 
matching. In matching stage, we propose to make the matching with the assistance of a 0-1 integer 
programming problem, shortly we said matching problem. Decision variables, constraints and objective 
function of matching problem will be given in Section 4.2.1, Section 4.2.2, and Section 4.2.3, respectively. 
In Section 4.2.4 the matching problem will be given as a whole. 

4.2.1. Decision variables 

Taking the general combination table with n row and m column into consideration, the matching of the 
propositions is made by valuing the matching decision variable of the cells as 1 where the matching is 
agreed, and valuing the matching decision variable of the cells as 0 where the matching is not agreed. 
Thus, xij the matching decision variable is defined as:  

 

            (8) 

 

After the definition of the decision variables about the matching of the propositions, the constraints and 
the objective function should be determined using the decision variables. 

4.2.2. Constraints 

In the case that the numbers of propositions of the two bbas to be combined, n and m, are equal, each 
proposition bba should have been matched with a proposition of the other bba or vice versa. However, in 
the case that the numbers of propositions, n and m are not equal, it is natural that some of the propositions 
will be out of matching. When a generalization is made by considering this situation, the sum of matching 

if the i th focal element of the first bba is matched  
with the j th focal element of the second bba  

otherwise
.   






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


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decision variables in each row and also each column of the general combination table can be at most 1. So, 
the constraints related to each row cells are as follows, 

   



m

j
ijx

1

1   ni ...,,1 .       (9) 

The constraints related to each column cells are as follows, 





n

i
ijx

1

1   mj ...,,1 .       (10) 

The sum of matching decision variables in each row and each column does not exceed 1 and this has been 
acquired with the constraints given in Eq. (9) and Eq. (10).  

However, in such a case, all the matching decision variables would be 0 in a conflict minimization 
problem. By adding the constraint that the total of all the matching decision variables will be m}n,min{ , 
the smallest value of the numbers of row or column is matched.  To this end, the constraint 

 },min{
1 1

mnx
n

i

m

j
ij 

 

         (11) 

is added to the problem. Lastly, the constraints showing that the matching decision variables can be only 0 
or 1,  

 }1,0{ijx     ni ...,,1 , mj ...,,1        (12) 

are added to the problem. These constraints have the generalized forms for the situations that the numbers 
of propositions, n and m, are equal or not.  

 

4.2.3. Objective function 

As the matching decision variables and the related constraints have been determined, the fact that under 
which circumstances the matching decision variables will take the value 0 or 1 based on constraints Eq. 
(9), Eq. (10), Eq. (11) and Eq. (12) should be determined. Following the pairwise combination phase aij 

mass of agreement, cij size of qualitative conflict and vij size of quantitative conflict for each of the 
pairwise combinations have been calculated and all of these results have been shown in the general 
combination table.  

Taking only the size of qualitative conflict or the size of quantitative conflict in the objective function into 
account would be not enough. So, the objective function should be a form of minimizing a function of 
both. Such an objective function can be given as shown in Eq. (13) in order to minimize the total of the 
generalized means [37] of the size of qualitative conflict cij, and the size of quantitative conflict vij. 
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Either the arithmetic or the geometric mean of the cij and vij could have been used in Eq. (13). However, 
the generalized mean has been preferred here as it always yields in a bigger value than the arithmetic and 
geometric mean. So, it has been made harder to make matching between propositions have bigger 
qualitative and/or quantitative conflict.  

4.2.4. Matching problem 

The problem as how to match the },min{ mn  pair from mn   probable pairwise combinations under 
constraints given in Eq. (9), Eq. (10), Eq. (11) and Eq. (12) with objective function given in Eq. (13) can 
be overcome through optimal solution of 0-1 integer programming problem. Thus; matching problem of 
the AFP given as follows in Eq. (14): 

 

 

 

 

 

 

 

 

The mn   cells of the general combination table had mn   matching decision variables xij, in a matching 
problem. In linear programming, a feasible solution is a choice of values for decision variables that 
satisfies all constraints. For a minimization problem as in the case matching problem, the optimal solution 
is a feasible solution that gives the smallest objective function value. If an optimization problem has more 
than one optimal solution, it is said that it has alternative optimal solutions [41]. In an optimal solution of 
a model of Eq. (14) created in matching stage; },min{ mn  of them get 1 and the rest get 0. As stated in 
Section 4.2.1, matching decision variables which have value 1 in optimal solution determine the matched 
pairwise combinations. The optimal solution method of Eq. (14) is not subject of this paper. Detailed 
information about solving this mathematical model can be found at [41, 42]. There are also many 
computer programs solving this kind of optimization problem.  

4.3. Combination stage 

In the calculation of combined bba; the matched pairwise combinations will be used as base and if 
necessary, the other non-base pairwise combinations will be considered with a lower weight than the 
weight of the matched pairwise combinations. A pairwise combination of matched propositions is called 
base of pairwise combination. The cell corresponding to this pairwise combination in the general 
combination table will be called base cell of pairwise combination. In other words, the cells corresponding 
to the matching decision variables which get 1 in the general combination table are called base cells of 
pairwise combination. The weights of the cells of pairwise combination on the general combination result 
are shown with wij at the first row of every cell of pairwise combination in the general combination table. 
The weight of base cell of pairwise combination will be shown with b

ijw , the size of qualitative conflict 

with b
ijc  and the size of quantitative conflict with b

ijv . The general combination table in which the weights 
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  1,0ijx     ni ...,,1 , mj ...,,1 . 
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are also shown is called weighted general combination table. Table 2 in Section 5.1 gives a weighted 
general combination table for Example 2. 

The weights of the base cells of pairwise combination on the general combination result are calculated as 
shown in Eq. (15). 

2/122

2

)()(
1 












 


b
ij

b
ijb

ij

vc
w         (15) 

Then, firstly the one with the biggest weight of the base cells of pairwise combination is considered. The 
weight of the non-base cells of pairwise combination that is positioned in the same row or column with the 
base cell of pairwise combination with the biggest weight is calculated as shown in Eq. (16). 

b
ijij ww  1             (16) 

If there is neither qualitative nor quantitative conflict ( 0b
ijc , 0b

ijv ) between two bbas of the base cell of 

pairwise combination; Eq. (15) and Eq. (16) provide that the combination weight of the base cell of 
pairwise combination is 1b

ijw . Thus, the combination weight of the other cells of pairwise combination 

that are in the same row or column as this base cell of pairwise combination are zero as in the case of 
Example 1. If there is any measure of qualitative or quantitative conflict, Eq. (15) and Eq. (16) provide 
that the weight of the base cell of pairwise combination on the combination is measured by subtracting the 
generalized mean of this qualitative or quantitative measure from 1. In such a case, the combination 
weight of other pairwise combinations that are in the same row or column with this base cell of pairwise 
combination equals to the generalized mean of conflicts in the base cell of pairwise combination.  

A non-base cell of pairwise combination can be in the same row with a base cell of pairwise combination 
and in the same column with another base cell of pairwise combination. If this is the case, how can the 
combination weight for a non-base cell of pairwise combination be achieved? Which one of the base cells 
of pairwise combination is affecting the non-base cell of pairwise combination? It will be wise firstly to 
calculate combination weights of the non-base cells of pairwise combination, which are in the same row or 
column with the base cell of pairwise combination with the biggest combination weight of all base cells of 
pairwise combination. Once the weight of a non-base cell of pairwise combination is determined, it will 
not change then. 

In the general combination table, after the weights for all the cells of pairwise combination are calculated 
the general combination results are calculated as in Eq. (17), 
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,   X   (17) 

and then the combined bba and so the combined belief function is achieved. Eq. (17) shows the combined 
bba )(XmAFP , which is given for any of the subsets  2X  products of agreement or conflict sets 
achieved through pairwise combination phases. It can be seen in the numerator of Eq. (17) that the mass of 
agreement or conflict (aij, bij, dij) committed to the sets with X agreement or conflict sets ( Xe ji  , 

Xe ji 2\1
\ , or Xe ji 1\2

\ ) of all the cells of pairwise combination are added by multiplying with their weights 

( ijw ). In the denominator the mass of agreement and conflict committed to all the agreement and conflict 
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sets (  2A ) are added by multiplying with their weights. Indeed, this is normalization. So, the value N in 
Eq. (18) is called normalization constant. 
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     (18) 

Then, given Eq. (18), Eq. (17) can be rewritten as Eq. (19).  
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The normalization term N given in Eq. (18) of the combined bba is composed of three terms. In the first 
term the mass of agreement committed to all of the agreement sets are added by multiplying with their 
weights. In the second and third terms the mass of conflict committed to all of the conflict sets are added 
by multiplying with their weights.  In the Eq. (18) if the first term is shown by aN , and the total of the 

second term and the third term is shown by cN  Eq. (18) can be rewritten as Eq. (20). The total measure of 

conflict   as an indicator of the effect of the conflict sets over the general combination results is achieved 
by the Eq. (21). 

 ca NNN            (20) 

NNNNN ccac  )(         (21) 

It is said that as the total measure of conflict approaches 1 the conflict between the bbas which will be 
combined is high and as it approaches 0 the conflict between the bbas which will be combined is low. The 
fact that the conflict is high does not make the result meaningless but it stresses the existence of the high 
conflict between the data from two evidence sources.  

5. Numerical examples  

In this section we give two numerical examples. In these examples, we are interested in two individual 
belief functions to produce a single combined belief function when the individual belief functions come 
from equally reliable and occurrence independent sources of information. In Section 5.1, an example is 
illustrated to show the use of the AFP for general case. On the other hand, in Section 5.2, we chosen a 
special case example which have alternative optimal solution for its matching problem.  

5.1. General case example  

Example 2 has an optimal solution in the matching stage, so it serves showing the use of the AFP for 
general case.  

Example 2. Given two belief functions, 1Bel  and 2Bel , over the same frame of discernment },,{ cba  

from two bodies of evidence ),( 111 mE  and ),( 222 mE   as follows: 

 ),( 111 mE  = { 3.0),,(1 cbam ; 1.0)(1 cm ; 2.0),(1 dcm ; 4.0),,,(1 dcbam } 

),( 222 mE  = { 4.0),(2 bam ; 6.0),(2 dcm }. 
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Definition stage 

The focal element set of the first bba is 1e  and the number of focal elements is  41  en . The focal 

element set of the second bba is 2e  and the number of focal elements is  22  em .  

The agreement set of the cfe set to be obtained as a result of pairwise combination of the first focal 
element (i=1) of the first bba, namely ),,(11 cbae   and the first focal element (j=1) of the second bba, 

namely ),(21 bae  ; is  

},{},{},,{211111 babacbaeee  . 

The conflict sets of the cfe, are obtained as;  

{c}b}{a,-},,{e- 2111
2\1
1\1  cbaee  

 }{c}b,{a,-},{e- 1121
1\2

1\1  baee  

So with respect to the conflict set one is {c} , the agreement set is },{ ba , and the conflict set two is }{ ; 
by using the Eq. (1), the cfe of the first pairwise combination can be represented in the first cell of Table 1 
as follows:  

 )())(()( abc . 

By using the Eq. (2), Eq. (3), and Eq. (4) for mass sharing, the mass of agreement, mass of conflict one 
and mass of conflict two are calculated as follows:  

321.0103.0),( 111111  arbaaa , 131.0017.0)( 111111  brcbb , and 

0)( 111111  drdd . 

By using the Eq. (5) the size of qualitative conflict is calculated as,   

 290.0
0131.0321.0
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By using the Eq. (6) and Eq. (7) the size of quantitative conflict is calculated as,   

346.012.04.0*3.011 g , 

 
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Up to here, only the results of the first pairwise combination have been obtained but the rest of the 4*2-
1=7 pairwise combinations will not be given here in detail. The results of all pairwise combinations are 
given in Table 1.  
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Table 1. General combination table for Example 2 

 

 

 

 

 

 

 

 

 

 

 

Matching stage  

In the matching stage for this example, the matching problem formulation by utilizing Eq. (14) is obtained 
as:  

  4241323122211211 269.0259.0299.0737.0532.0791.0479.0226.0min xxxxxxxx   

11211  xx , 12221  xx , 13231  xx , 14241  xx  

  141312111  xxxx ,  142322212  xxxx  

  24241323122211211  xxxxxxxx  

  1,0ijx  , 4,...,1i  2,1j  

In the optimal solution of the matching problem stated above, the values of the two matching decision 

variables are obtained as 1*
11 x , 1*

42 x  and the others are obtained as 0. Thus, the 1st proposition of the 
first bba and the 1st proposition of the second bba are matched and also the 4th proposition of the first bba 
and the 2nd proposition of the second bba are matched.  

Combination stage 

In conformity with the above stated matching, the cells (1,1) and (4,2) of the general combination table 
become base cells of pairwise combination. Thus, the weights of the base cells of pairwise combination 
from the Eq: (15) are:  

           774.0226.0111 bw , 731.0269.0142 bw  

As the largest weight between the base cells of pairwise combination is 774.011 
bw , the weights of the 

cells (1,2) existing in the same row with the base cell (1,1) and the weights of the cells (2,1), (3,1) and 
(4,1) existing in the same column with the base cell (1,1) are calculated by the Eq (16) as: 

           |     m2(ab)=0.400     |     m2(cd)=0.600     | 
----------- ---------------------- ---------------------- 
    m1     |     (c)((ab))()      |     (ab)((c))(d)     | 
   (abc)   |    b11  a11  d11     |    b12  a12  d12     | 
   0.300   | 0.131  0.321  0.000  | 0.200  0.283  0.245  | 
           | c11=0.290  v11=0.134 | c12=0.611  v12=0.293 | 
----------- ---------------------- ---------------------- 
    m1     |     (c)(())(ab)      |      ()((c))(d)      | 
    (c)    |    b21  a21  d21     |    b22  a22  d22     | 
   0.100   | 0.089  0.000  0.179  | 0.000  0.185  0.160  | 
           | c21=1.000  v21=0.500 | c22=0.464  v22=0.592 | 
----------- ---------------------- ---------------------- 
    m1     |     (cd)(())(ab)     |      ()((cd))()      | 
   (cd)    |    b31  a31  d31     |    b32  a32  d32     | 
   0.200   | 0.163  0.000  0.231  | 0.000  0.346  0.000  | 
           | c31=1.000  v31=0.293 | c32=0.000  v32=0.423 | 
----------- ---------------------- ---------------------- 
    m1     |     (cd)((ab))()     |     (ab)((cd))()     | 
  (abcd)   |    b41  a41  d41     |    b42  a42  d42     | 
   0.400   | 0.200  0.346  0.000  | 0.219  0.438  0.000  | 
           | c41=0.366  v41=0.000 | c42=0.333  v42=0.184 | 
----------- ---------------------- ---------------------- 
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226.0423121  www  

As the second largest weight between the base cells of pairwise combination is 731.042 
bw  the weights of 

the cells (2,2) and (3,2), existing in the same column with the base cell (4,2) are (using the Eq (16)) 
obtained as: 

269.03222  ww  

If these obtained weight values are placed in the general combination table, the weighted general 
combination table will be obtained as given in Table 2. 

Table 2. Weighted general combination table for Example 2 

 

 

 

 

 

 

 

 

 

 

 

 

By using the Table 2, Eq. (18), and Eq. (20) the normalization coefficient N is obtained as:  

854.0aN , 600.0cN , 454.1600.0854.0 N . 

By using the Table 2 and the Eq. (19) the combined bba is obtained as:  

  162.0)( 2121111122221212  NbwbwawawcmAFP  

   068.0)( 22221212  NdwdwdmAFP  

  429.0),( 313121214242121241411111  Ndwdwbwbwawawbam AFP

   341.0),( 4141313142423232  Nbwbwawawdcm AFP . 

 The total measure of conflict from the Eq. (21) is obtained as, 

 413.0330.1510.0  . 

 

           |     m2(ab)=0.400     |     m2(cd)=0.600     | 
----------- ---------------------- ---------------------- 
           |      w11=0.774       |      w12=0.226       | 
    m1     |     (c)((ab))()      |     (ab)((c))(d)     | 
   (abc)   |    b11  a11  d11     |    b12  a12  d12     | 
   0.300   | 0.131  0.321  0.000  | 0.200  0.283  0.245  | 
           | c11=0.290  v11=0.134 | c12=0.611  v12=0.293 | 
----------- ---------------------- ---------------------- 
           |      w21=0.226       |      w22=0.269       | 
    m1     |     (c)(())(ab)      |      ()((c))(d)      | 
    (c)    |    b21  a21  d21     |    b22  a22  d22     | 
   0.100   | 0.089  0.000  0.179  | 0.000  0.185  0.160  | 
           | c21=1.000  v21=0.500 | c22=0.464  v22=0.592 | 
----------- ---------------------- ---------------------- 
           |      w31=0.226       |      w32=0.269       | 
    m1     |     (cd)(())(ab)     |      ()((cd))()      | 
   (cd)    |    b31  a31  d31     |    b32  a32  d32     | 
   0.200   | 0.163  0.000  0.231  | 0.000  0.346  0.000  | 
           | c31=1.000  v31=0.293 | c32=0.000  v32=0.423 | 
----------- ---------------------- ---------------------- 
           |      w41=0.226       |      w42=0.731       | 
    m1     |     (cd)((ab))()     |     (ab)((cd))()     | 
  (abcd)   |    b41  a41  d41     |    b42  a42  d42     | 
   0.400   | 0.200  0.346  0.000  | 0.219  0.438  0.000  | 
           | c41=0.366  v41=0.000 | c42=0.333  v42=0.184 | 
----------- ---------------------- ---------------------- 
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5.2. Special case example  

As a special case, some of the matching problems may have alternative optimal solutions. Example 3 has 
alternative optimal solutions in the matching stage, so it serves showing how can be obtained a final 
combined bba from alternative combined bbas.  

Example 3. Given two belief functions, 1Bel  and 2Bel , over the same frame of discernment },,{ cba  

from two bodies of evidence ),( 111 mE  and ),( 222 mE   as follows: 

 ),( 111 mE  = { 1),,(1 cbam } 

),( 222 mE  = { 5.0),(2 bam ; 5.0),(2 cbm }. 

Definition stage 

The general combination table in which the results obtained through 221   numbered pairwise 
combinations of propositions which belong to two bbas is given in Table 3. 

Table 3. General combination table for Example 3 

 

 

 

 

Matching stage  

In the matching stage for this example, the matching problem formulation by utilizing Eq. (14) is obtained 
as:  

  1211 308.0308.0min xx   

11211  xx , 111 x , 112 x  

  11211  xx  

  1,01 jx  , 2,1j  

The matching problem stated above has alternative optimal solutions. One of the alternative solutions is 
1*

11 x , 0*
12 x , and the other is 0*

11 x , 1*
12 x .  

Combination stage 

The weighted general combination tables according to the two alternative optimal solutions are given in 
Table 4a and Table 4b, respectively. 

 

 

           |     m2(ab)=0.500     |     m2(bc)=0.500     | 
----------- ---------------------- ---------------------- 
    m1     |     (c)((ab))()      |     (a)((bc))()      | 
   (abc)   |    b11  a11  d11     |    b12  a12  d12     | 
   1.000   | 0.333  0.624  0.000  | 0.333  0.624  0.000  | 
           | c11=0.348  v11=0.293 | c12=0.348  v12=0.293 | 
----------- ---------------------- ---------------------- 
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Table 4a. Weighted general combination table for first alternative optimal solution of Example 3 

 

 

 

 

Table 4b. Weighted general combination table for second alternative optimal solution of Example 3 

 

 

 

 

 

So according to two weighted general combination tables given in Table 4a and 4b, two alternatives 
combined bba are obtained. Then, as doing in Example 1 in Section 3.2, the geometric mean of these two 
alternatives combined bba can be used as the final combined bba. The results are given as follows: 

 

 

 

 

 

 

 

6. Comparison of three methods  

This section describes four examples that compare weighted average operator (WAO), combination by 
compromise (CBC) and the AFP. The definitions of the WAO and the CBC can be seen in [38] and [32], 
respectively.  

Example 4: Zadeh’s example 

In the literature, Zadeh’s example appears in different but essentially equivalent versions of disagreeing 
experts. We will present Zadeh’s example by the story of that a patient examined by two doctors [9, 10]. 
Assume that the first doctor diagnosis is that patient has either meningitis, with probability 0.99, or brain 
tumor, with probability 0.01. The second doctor agrees with the first one that the probability of brain 
tumor is 0.01, but believes that it is the probability of concussion rather than meningitis that is 0.99. So, 
they provide the following diagnosis: 

 99.0)(1 mm  01.0)(1 tm  and 99.0)(2 cm  01.0)(2 tm . 

           |     m2(ab)=0.500     |     m2(bc)=0.500     | 
----------- ---------------------- ---------------------- 
           |      w11=0.678       |      w12=0.322       | 
    m1     |     (c)((ab))()      |     (a)((bc))()      | 
   (abc)   |    b11  a11  d11     |    b12  a12  d12     | 
   1.000   | 0.333  0.624  0.000  | 0.333  0.624  0.000  | 
           | c11=0.348  v11=0.293 | c12=0.348  v12=0.293 | 
----------- ---------------------- ---------------------- 

           |     m2(ab)=0.500     |     m2(bc)=0.500     | 
----------- ---------------------- ---------------------- 
           |      w11=0.322       |      w12=0.678       | 
    m1     |     (c)((ab))()      |     (a)((bc))()      | 
   (abc)   |    b11  a11  d11     |    b12  a12  d12     | 
   1.000   | 0.333  0.624  0.000  | 0.333  0.624  0.000  | 
           | c11=0.348  v11=0.293 | c12=0.348  v12=0.293 | 
----------- ---------------------- ---------------------- 

The first alternative 
combined bba 
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with geometric mean 
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The combination results are given in Table 5. In the columns for the WAO and AFP, it is observed that the 
bbm of the agreed t increases and the bbm of conflicted m and c decreases. However, with CBC, the bbm 
of the agreed t decreases. According to the AFP, the measure of conflict for Zadeh’s example is 0.976. 
The other methods did not give a measure of conflict. 

Table 5. Comparison of methods in Zadeh’s example 

 m1 m2 WAO CBC AFP 
m 0.99 0.00 0.494951 0.499851 0.488097 
t 0.01 0.01 0.010099 0.000298 0.023805 
c 0.00 0.99 0.494951 0.499851 0.488097 
conflict,    - - 0.976000 

 

Example 5: Zadeh’s modified example  

When introducing a small amount of uncertainty in the doctor’s opinions, the bbms and the results of 
applying the methods are given in Table 6. In this case, only in the column for the AFP, it is observed that 
the bbm of the agreed t and the bbm of the agreed   increases. According to the AFP, the measure of 
conflict for Zadeh’s modified example is 0.953. When comparing with the measure of conflict of Zadeh’s 
example, there is a decrease in the measure of conflict. This decrease is also a consistent result.   

Table 6. Comparison of methods in Zadeh’s modified example 

 m1 m2 WAO CBC AFP 
m 0.98 0.00 0.490000 0.494801 0.476522 
t 0.01 0.01 0.010100 0.000398 0.023478 
c 0.00 0.98 0.490000 0.494801 0.476522 
m,t 0.00 0.00 0.000000 0.004900 0.000000 
m,c 0.00 0.00 0.000000 0.000100 0.000000 
t,c 0.00 0.00 0.000000 0.004900 0.000000 
  0.01 0.01 0.009900 0.000100 0.023478 
conflict,    - - 0.953000 

 

Example 6: Bayesian belief functions  

Let 1m  and 2m  belong to two Bayesian belief functions over the  cba ,, . The bbms and the results of 
applying the methods are given in Table 7. In this example, the results are expected to be between 
 20.0,10.0  for singleton a ,  30.0,20.0  for singleton b , and  70.0,50.0  for singleton c . The results 
produced by CBC are not corresponding to these expectations. The WAO produce results in expected 
intervals, however the results are very close to the borders. In the columns for the AFP the results are 
consistent with expectations. Furthermore, the results are consistent with geometric means between 1m ’s 
and 2m ’s bbms of same singletons. According to the AFP, the measure of conflict for this example is 

0.242. It is reasonable since the existence of the quantitative conflict between bbms.  

Table 7. Comparison of methods in Bayesian belief functions 

 m1 m2 WAO CBC AFP 
a 0.10 0.20 0.105500 0.086944 0.152085 
b 0.20 0.30 0.202500 0.194071 0.264078 
c 0.70 0.50 0.692000 0.718984 0.583837 
conflict,    - - 0.242000 
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Example 7: Identical Bayesian belief functions  

Let 1m  and 2m  belong to two identical Bayesian belief functions over the  cba ,, . The bbms and the 
results of applying the methods are given in Table 8. In this case, according to the idempotency rule, the 
results are expected to be the same with these identical bbas. Only the AFP produced the expected results. 
According to the AFP, the measure of conflict for this example is zero. It is reasonable since there is no 
conflict between two bbas with respect both qualitative and quantitative.  

Table 8. Comparison of methods in identical Bayesian belief functions 

 m1 m2 WAO CBC AFP 
a 0.10 0.10 0.056000 0.040833 0.100000 
b 0.20 0.20 0.132000 0.128889 0.200000 
c 0.70 0.70 0.812000 0.830278 0.700000 
conflict,    - - 0.000000 

7. Conclusions 

We propose a new consensus generator called “Analytic Fusion Process” in the framework of 
mathematical theory of evidence. The proposed method is a geometric mean based analytical method that 
operate on the individual belief functions to produce a single combined belief function when the 
individual belief functions comes from equally reliable and occurrence independent sources of 
information. This method satisfies the idempotent and commutative law. Furthermore, this method also 
produces a measure of conflict shows whether the original beliefs were in harmony or in conflict. Another 
advantage is that the measure of conflict produced by this method reflects both qualitative and quantitative 
conflict. Unfortunately, Analytic Fusion Process is not associative. However, an n-ary version of the 
method can be developed, and combining n basic belief assignments simultaneously can be a practical 
substitute for associativity in many real world application. The other disadvantage of the proposed method 
is it needs many calculation process. However, using a computer program to accomplish the whole 
calculation process of the methods simplifies the task. We have written such a program that accomplish 
the whole calculation process of the Analytic Fusion Process. 

The proposed method, the weighted average operator, and the combination by compromise method are 
compared with each other using four examples. The results show that the Analytic Fusion Process produce 
results that are much more convincing than the others. Furthermore, it is seen that measure of conflict 
produced by Analytic Fusion Process is really reasonable. To our knowledge it is the only real single 
measure of conflict which measures how the original beliefs were in conflict in the framework of 
mathematical theory of evidence. 
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