
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Z. N. Dayıoğlu et al., Vol.3, No.1

Secure Database in Cloud Computing:
CryptDB Revisited

Ziynet Nesibe Dayıoğlu1,2, Mehmet Sabir Kiraz1, Fatih Birinci1, and İhsan Haluk Akın2

e-mail: {ziynet.dayioglu, mehmet.kiraz, fatih.birinci}@tubitak.gov.tr, ihakin@fatih.edu.tr

1TUBITAK BILGEM UEKAE. Gebze, Kocaeli, Turkey.
2Fatih University, Istanbul, Turkey

Abstract—Databases contain most valuable personal, economic, and government information. They are most desirable to the

malicious adversaries and therefore, it is very critical to protect against all possible adversarial behavior. With the recent rapid

growth in the availability and popularity of cloud services, many personal and business and government information are now

moving to the Cloud. Therefore, databases are more difficult to protect because of new security and privacy issues. Various

techniques have been proposed to solve the outsourcing database scenarios which preserve a certain degree of confidentiality

while still allowing to execute some SQL queries efficiently. CryptDB is a new database management system for protecting data

confidentiality while preserving confidentiality and performing a standard set of SQL queries in an efficient way. CryptDB seems

to be practical compared to other attempts at solving the problem of computing with encrypted data and the database can be

fully moved to the Cloud with no security concern because all the data are already encrypted and never revealed to the database

administrator. In this paper, CryptDB is revisited from cryptographic point of view. First of all, CryptDB is described in more details

for ease of understanding and then the drawbacks of CryptDB are highlighted from security and efficiency points of view.

Keywords—Secure Database, Encrypted Search, Cryptographic Protocol, Proxy Server

1. Introduction

Cloud computing is getting more important day by
day. In our work, we simply define cloud computing
as the delivery of on-demand computing resources
located on the remote servers. Its detailed definition
exists at NIST’s website [6]. Through the evalu-
ation of tools and broadband connectivity, cloud
computing is getting more feasible from a user’s
perspective[7], since it reduces cost and increases
mobility[10].

A preliminary version of this paper appeared in [29] in 2013.

With the increasing popularity of cloud com-
puting, the security issues also rise[8], [9]. Or-
ganizations considering migration to cloud based
services must also consider and understand security,
privacy, reliability, and regulatory issues. Important
research agencies are aware of these risks and have
produced reports [11], [12], [13], [14]. According to
Gartner, cloud computing security risks can be sum-
marized by seven categories: “Privileged User Ac-
cess, Regulatory Compliance, Data Location, Data
Segregation, Recovery, Investigative Support, Long-
term Viability” [11]. Security issues are investigated
more deeply under two main subjects namely, ”loss

129

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Z. N. Dayıoğlu et al., Vol.3, No.1

of control over data” and ”dependence on the Cloud
Computing provider” [15].

Outsourcing databases into cloud can increase
levels of availability, robustness, elasticity and ef-
ficiency as well as minimize administrative reasons.
However the data in the cloud can be accessed
by the cloud provider. So, the cloud provider, its
employees or even subcontractors can deliberately
or inadvertently access customers’ data. In order
to technically ensure data confidentiality, the data
can be encrypted before being outsourced. However,
executing queries as computationally perfect secrecy
on an encrypted data cannot be generated efficiently.
Performing non-trivial computations with the data
on cloud such as searches, transformations, selec-
tions, and access control decisions is useful. Con-
ventional encryption prevents processing this data
on the cloud. Gentry solved a thirty year awaited
problem in Cryptography [5]. He proposed a novel
encryption scheme which can allow processing on
encrypted data. Nevertheless this encryption scheme
is far away from being practical. DARPA separate
$20 million to search for cryptography’s this prob-
lem as a practical solution [16]. Popa and friends
from MIT bring practical solution to processing
encrypted database [1]. This paper focused on their
work in more details and concentrated on their
work’s weaknesses.

1.1. Related Work

Researchers are trying to find solutions to keep
data on the cloud confidential. Processing data se-
curely on the cloud is complicated. In this section,
we will give some well-known approaches for solv-
ing secure computing on the cloud.

Fully homomorphic encryption. As mentioned in the
previous section, the data can be encrypted before
uploading to the cloud. However, using conventional
encryption schemes, the data cannot be processed on

the cloud. In this case, the cloud can only be used
for storage purposes. Homomorphic encryption may
overcome this limitation up to a certain level, which
allows logical operations on ciphertexts without
decryption. Homomorphic encryption schemes like
Paillier or ElGamal allow just one operation, namely
either addition or multiplication [25], [26]. Fully
homomorphic encryption schemes allow addition
and multiplication on ciphertexts, which allows an
untrusted server to carry out arbitrary computation
on encrypted data on behalf of a client without
decryption. Namely, using fully homomorphic en-
cryption schemes the cloud provider can run any
program client wishes without obtaining any in-
formation about the plaintexts. Fully homomorphic
encryption schemes are first invented by Gentry in
2009 [5]. Unfortunately, there is no practical scheme
using fully homomorphic encryption today but a lot
of work is being done in this field, some of them
may be promising for cloud computing [20].

CryptDB: a weaker attacker model. CryptDB [1]
is an implementation that allows query processing
over encrypted databases. The database managed by
the cloud provider, but database items are encrypted
with keys that are only known by the data owner.
SQL queries run over the encrypted database using
a collection of operations such as equality checks
and order comparisons. CryptDB uses encryption
schemes that allow such comparisons to be made
on ciphertexts. CryptDB represents a weak attacker
model because it assumes the existence of a trusted
cloud-based application server and proxy. Neverthe-
less, CryptDB represents an interesting position on
the trade-off between functionality and confidential-
ity from cloud providers. In this paper, we will go
into details of CryptDB.

MONOMI. Monomi is the first system that can
execute analytical workloads over encrypted data
efficiently in a secure way [28]. It is based on

130

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Z. N. Dayıoğlu et al., Vol.3, No.1

CryptDB’s design of encryption schemes. CryptDB
can handle four out of 22 TPC-H queries, but
Monomi executes 19 out of 22 TPC-H queries. In
CryptDB, query execution is done on the server, but
in Monomi, query execution of complex queries is
splitted between client and server. Also Monomi im-
proves performance with some techniques: per-row
precomputation, space-efficient encryption, grouped
homomorphic addition, and prefiltering. Additional
designer and planner exists in Monomi to design
the physical layout and to split the query execution
according to the physical design. It can be discussed
how the designer chooses physical design optimally
and how the planner partition the query execution
between client and server, and this issue can be
improved, however, Monomi is more useable while
compared to Popa’s CryptDB’s scheme [1].

Private Information Retrieval. To enable search on
remote database Secure Multi-party Computation
can also be used [19], [21], [24]. These schemes
are already used in practice and therefore, may
be promising for cloud computing issues in the
near future [22], [23]. Private Information Retrieval
schemes solves the problem with absolute privacy
(e.g., [17]). Curtmola et al. proposed two schemes
against non-adaptive and adaptive adversaries with
a good performance [18].

1.2. Contributions

The main contribution of this paper is to provide
the ease of understanding of CryptDB. First of all,
CryptDB is described with more detailed explana-
tions and with a simple example to cover the design.
Next, the layered and adjustable encryption scheme
is explained, and the User-Defined Functions(UDF)
are described. Then, the server structure of CryptDB
is described and the overhead of Proxy Server is
analyzed. Unfortunately, the original paper does not
explain the search algorithm, therefore the search

algorithm of the CryptDB which uses Song’s search
algorithm has been extended. It is demonstrated that
the current search algorithm is not enough to meet
all the search queries. The security and efficiency
points of CryptDB are highlighted. Finally, some
remarks and open research areas for CryptDB are
presented.

2. CryptDB Architecture

There are some descriptions and structures in the
CryptDB architecture. These parts of the CryptDB
are explained in this section. First of all, lay-
ered encryption and adjustable encryption schemes
of the CryptDB are described. CryptDB uses
standard Database Management System, and adds
UDFs(User-defined Function) at server-side. There-
fore, UDF is described shortly in the following
part. Next, server structure of CryptDB is explained.
The architecture of CryptDB is completed for better
understanding of the example in the section 3.

2.1. Layered Encryption

The encryption of a data in the database is com-
puted in a layered way. There are four different main
goals to achieve, and for each goal there exists a
different layered particle, which is called as onion
[2]: EQ, ORD, SEARCH and ADD onion. EQ
onion aims to adjust layers for equality queries,
while ORD onion aims to adjust the order leakage
for the queries including comparison. SEARCH
onion is used to search a text in the database without
leaking any information. This onion is not allowed
to execute integer values. Finally, ADD onion aims
to add encrypted values which only supports integer
values. These onions have different layers each en-
crypted by using different algorithms. Furthermore,
these algorithms have different security levels where
the outer layer of an onion is more secure than

131

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Z. N. Dayıoğlu et al., Vol.3, No.1

the inner ones. Furthermore, a value has only one
current layer in each onion. Once the database has
been created, all the onions will be at the most
secure layer.

Queries are processed as columns in a database,
therefore, CryptDB is also column-oriented. If one
value needs to be decrypted to weaker layer, then the
whole column is going to be decrypted. However,
it causes more information leakage than requested.
If a value need to be at the weakest layer, the
whole column will be at this layer and leak the
information. And also note that the inner layer
is the weakest layer, but it also does not reveal
any plaintext to DBMS Server. The inner layer
of the onions which are Equi-JOIN, OPE-JOIN,
SEARCH and HOM layers are never stripped off.

EQ onion.

At the most secure layer of EQ onion is RND
layer. This RND layer encrypts each value with
AES (Rjindaels algorithm) in CBC mode. For in-
teger, Blowfish in CBC mode is preferred because
of its 64-bit block size instead of 128-bit to decrease
the length of the ciphertexts. The initialization value
for both encryption type is randomly chosen value.
Each value goes to the different ciphertext with high
probable even if the plaintexts are the same. For
this reason, RND layer is indistinguishable under
an adaptive chosen plaintext attack. However, this
scheme does not provide an efficient functionality.

When the equality check of the values is needed,
the RND layer should be stripped off. The next
inner layer of EQ onion is DET layer. This layer
is deterministic layer. After encryption is done, if
two values are the same, then their corresponding
ciphertexts will be the same.

For the values inside the same column, these two
layers, RND and DET, are sufficient to process
queries. However, some queries need to check either

Fig. 1. EQ Onion to check the equality of
encrypted data

the equality of two different columns or two differ-
ent columns of different tables. For these situations,
the current layer should be updated Equi-JOIN
layer. In this layer, JOIN-ADJ is concatenated to
the encryption of DET layer.

JOIN = JOIN-ADJ‖DET

JOIN-ADJ allows DBMS server to adjust the key
of each column at run time. It is somehow a keyed
hash with additional property that hashes can be
adjusted to change their key without access to the
plaintext. JOIN-ADJ is a deterministic function,
also collision resistant (192-bit), non-invertible, and
transitive. JOIN-ADJ function is defined below:

JOIN-ADJK(value) = PK.PRFk0(value)

Elliptic Curve Cryptography (ECC) is used as an
algorithm. K is initial key for that table, column,
onion, and layer. P is a point on an elliptic curve
which is a public parameter. PRF is a pseudo-
random function mapping values to a pseudo-
random number, such as AESK0(SHA(value)). K0
is the key which is the same for all columns and
derived from Master Key.

The exponentiation is in fact repeated geometric
addition of elliptic curve points, and it is faster than

132

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Z. N. Dayıoğlu et al., Vol.3, No.1

RSA exponentiation. Proxy computes ∆K = K/K ′

and sends it to DBMS Server. DBMS Server uses
a UDF to make them share the same JOIN-ADJ
by computing below with the assumptions that
column c has K, and column c′ has K ′ as keys at
JOIN-ADJ layer.

[JOIN-ADJK′(value)]∆K = [PK′.PRFk0(value)]K/K′

= PK.PRFk0(value)

= JOIN-ADJK(value)

By using the appropriate UDF, the JOIN-ADJ
of two different columns are the same anymore.
Therefore, it is possible to compare the equality
of them by looking at the JOIN-ADJ. Because
the DET layer uses different keys for each column
for correlations between columns. Security of this
scheme is based on the standard Elliptic-Curve
Decisional Diffie Hellman hardness assumption.

ORD onion. The most secure layer of the ORD
onion is exactly the same as the EQ onion, both is
RND layer. The inner layer of the RND for ORD
onion is OPE layer. Order preserving encryption
algorithms have not enough security and efficiency
until now. In the original CryptDB’s paper [1],
the authors do not consider the order-preserving
encryption but they later pointed about this issue in
their article “An Ideal-Security Protocol for Order-
Preserving Encoding” in [2].

The limited information is given about this onion
in CryptDB’s article [1]. If the encryption of x is
smaller than the encryption of y, then the value x

is also smaller than y. If there exists any encrypted
value which is between these two encrypted values,
then the plaintext will also lie between x and y.
Namely, this scheme leaks the order, therefore, it is a
weaker scheme when compared to equality leakage.

For the values at the same column, this layer is

Fig. 2. ORD Onion to check the order of multiple
encrypted data

enough to process the queries, but if two different
columns are compared to check order, then the OPE
layer need to be stripped off, and OPE-JOIN layer
is reached. This layer is lack of functionality than
the EQUI-JOIN layer of the EQ onion. To adjust
two columns are not possible because of the lack of
the Order-Preserving algorithms’ efficiency. There
are two solutions. First one is, the application will
declare the columns which can be joined, and while
arranging the keys, the same key will be used for
these columns. It is not logical in most situations
to declare ahead of time. The second solution is
the same key will be used for all columns at this
layer. This solution is not a good solution also.
Fortunately, range joins are not used too much.

SEARCH & ADD onions. SEARCH onion has
just one layer, so there is no decryption process
for this onion. SEARCH onion has a value, and
the SEARCH layer which covers this value. Search
algorithm used in CryptDB is the Song’s search al-
gorithm which is described in Section 3.4. The aim
of the SEARCH onion is searching an encrypted
value inside an encrypted table.

ADD onion also has the same situation. The HOM
layer is the only one layer of ADD onion. This
onion’s aim is to provide some functionality with
encrypted values without access to the plaintext.
This can achieved with homomorphic encryption.

133

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Z. N. Dayıoğlu et al., Vol.3, No.1

Fig. 3. SEARCH & ADD Onions to search/add
an encrypted data in an encrypted database

The algorithm used for Homomorphic encryption
of CryptDB is the Paillier’s algorithm.

2.2. Adjustable Encryption

If all the layers for each onion are kept in
database, it is not a good way. Because if the
weakest layer is given, other layers are not necessary
to create. However, if one layer is used for each
onion, it is hard to know the most secure layer which
meets our need ahead of time. For this reason, it is
a requirement to adjust current layer dynamically
without leaking the data. This problem is solved
with adjustable functionality. There are different
onions for different aims. All these onions are put
into the table. According to aim, the related onion
is chosen, and used as well. And each value is
encrypted with all outer layers, beginning from the
weakest to the most secure one. With this approach,
if no query requests the weaker layers, then these
layers are not available to use.

For each column in a table, the same key is used
to encrypt the values inside, but for the different
tables, columns, onions, and also layers, different
keys are used. The key generation is done with a
pseudo-random permutation like below:

Key = PRPMK(table t, column c, onion o, layer l)

In the beginning, all onions are the most secure
layer which are RND, HOM, or SEARCH layers.

If equality or order leakage is requested, the outer
layer will be decrypted. This decryption does not
give the plaintext because of the layered encryption.
The remaining layers still cover our data to keep
them secure. Furthermore, the weakest layers which
are OPE-JOIN, Equi-JOIN, SEARCH, and ADD
layer are never stripped off.

2.3. UDF: User-Defined Function

A function contains instructions in order to per-
form a specific task, and provides to repeat this
task easily. User-defined function is also a function,
and it is created by a user. This user needs to
have permissions to perform the processes in the
database, or database owner abbreviated as dbo
can be used. dbo is a user which can perform all
activities in the database.

If there exists a table called Square which has
two columns as edge length and order number of
the square, then a UDF is written to calculate the
area of the squares inside the database. The sample
Square table can be in Table 1.

TABLE 1
The sample Square table

Square
Number EdgeLength

1 10
2 5
3 7

There is no need to keep the area values causing
extra overhead to the database. A UDF can be cre-
ated, and called whenever the area value is needed.
Here is an example of creating a UDF.

CREATE FUNCTION dbo.area (edge FLOAT) RETURNS

FLOAT

134

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Z. N. Dayıoğlu et al., Vol.3, No.1

RETURN (edge * edge);

An example query to use this UDF can be like as
follows:

SELECT Number, area (EdgeLength) AS Area FROM

Square;

The returning result will be like Table 2.

TABLE 2
The returned result of the SQL

Number Area
1 100
2 25
3 49

Instead of keeping data for each information
which can be required, it is better to create a
UDF, and call it whenever this task is needed. In
CryptDB, UDF is also a requirement. Decryption of
the layered architecture to adjust the current layer
is done by using user-defined functions. And also
updating current state of the onion layers is done
by using the UDFs. Changing all existing database
mechanism is hard to achieve. Therefore, UDFs are
very important to add functionality in the database
systems.

2.4. Server Structure in CryptDB

In the database systems, users request some infor-
mation or functionality from the applications. The
SQL queries are used in order to meet the need of
the users. The Application Servers send the queries
to DBMS Server. DBMS stands for Database Man-
agement System. DBMS Server takes the SQL and
responds the result set. This system is open to
any eavesdropping and attacks of adversaries. Also

DBMS Server may be curious about the queries
and track the queries with their results. The other
possibility is that the physical access to the disc
can cause the data to be stolen. In CryptDB, the
mechanism of the queries are the same, but server
structure somehow changes, and an extra server
called Proxy Server is added to the database system.

It is assumed that all the queries coming from
the Application Server is taken by Proxy Server,
and sent to DBMS Server after some modifications.
The aim is to keep no meaningful information
at DBMS Server’s side in order to prevent the
curious Database Management Administrator to see
the contents of the tables in its database [27]. For
this reason, the whole data needs to be meaningless.

The first thing is to create a table in order to
keep some data inside DBMS Server’s database.
In CryptDB, the table of DBMS Server is totally
different from the real one. Proxy Server changes
the table’s name. Then, according to type of the
column (e.g. int, varchar), there exists some possible
onions. Proxy Server keeps all possible onion’s data
in different columns separately in this table. Table 3
is a basic example.

New created table from Table 3 by Proxy Server
is shown in Table 4.

The second thing is to add instances to the current
tables. The names of the columns are changed, and
each value inside the table are encrypted according
to algorithm of its onion’s layer. For instance, if the
current layer of the EQ onion is RND layer, and
query deals with the equality, then each value in the
corresponding column will be encrypted with AES
(Advanced Encryption Standard) in CBC (Cyclic
Block Chaining) mode. Or the Paillier’s algorithm
will be used to encrypt the values which belongs to
HOM layer of the ADD onion. All these encryption
processes are done by Proxy Server.

135

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Z. N. Dayıoğlu et al., Vol.3, No.1

TABLE 3
The created original table and its columns

Employees
ID Name

TABLE 4
The modified table for DBMS Server

Changed Table Name
ID-IV ID-EqOn ID-OrdOn ID-AddOn Name-IV Name-EqOn Name-OrdOn Name-SearchOn

When a query comes to Proxy Server, it changes
the query. First of all, Proxy Server decides which
onion is used for this query. Proxy Server has extra
tables, one of them is for keeping the current state
of each column’s each onion. After deciding the
onion of the query, Proxy Server looks at this table,
and checks that the current state of the onion is
at the needed layer for this query. If not, Proxy
Server calls the UDF which is responsible for the
stripping off the current layer to the needed layer.
After this process, Proxy Server modifies the query,
and sends it to DBMS Server. The whole data
stored in DBMS Server’s database is encrypted, and
the queries are not meaningful for the Database
Management Administrator.

DBMS Server takes the modified query, and re-
turns an encrypted result to Proxy Server. Proxy
Server takes the encrypted values, and decrypts
them, and sends to the Application Server. The Ap-
plication Server is not concerned about any encryp-
tion processes, it just sends its original plaintext,
and take the results, and gives service to the clients
with these results. The basic server structure of the
CryptDB is described, and overhead which Proxy
Server has to deal with is shown.

3. A Basic Example

In this section, an example is described to explain
the basic structure of CryptDB. There is a single
principal in our example, no modification or restric-
tions are done to the principal. Each table has only
one Master Key abbreviated as MK throughout the
paper. There is an example table called Students.
This table has one Master Key which is abbreviated
as MK. As mentioned in Section 2.2, each table’s
each column’s each onion’s each layer has different
keys from the following equation:

Key = PRPMK(table t, column c, onion o, layer l)

3.1. Queries with security but without function-
ality

After reading the CryptDB’s article [1], even if
it easy to understand the structure, it is still hard
to combine the CryptDB mechanism with SQL
queries. For this reason, a basic example is illus-
trated in order to clarify the steps in more details.

Students table has two columns ID and Name.
ID stands for identification number of the student
and Name stands for student’s name. ID column

136

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Z. N. Dayıoğlu et al., Vol.3, No.1

takes an integer value while Name column takes a
string. Students table is created with the following
statement:

CREATE TABLE Students (ID int, Name varchar(255));

After creating table, insertion of some instances
is possible as follows.

INSERT INTO Students VALUES (1, “Alice”);

INSERT INTO Students VALUES (2, “Bob”);

INSERT INTO Students VALUES (3, “Eve”);

When all these queries are run, the Application
Server creates the following table 5. This table has
pure data, so it is not a good way to store this
table inside the database of DBMS Server for the
security reasons. Namely, Proxy Server creates a
new encrypted table for DBMS Server. The created
new encrypted table will be as in Table 6.

TABLE 5
The table after running the above-mentioned

SQL queries

Students
ID Name
1 Alice
2 Bob
3 Eve

Since the type of ID column is an integer,
SEARCH onion will not be available for this col-
umn. Furthermore, since the type of Name column
is string, HOM onion will also not available for this
column. As described earlier in Section 2, all layers
will be at the most secure layer at the beginning.
There are seven layers. The most secure layers of
the onions are the three layers which are RND,

SEARCH and HOM. However, they also have less
functionality. For example, RND layer does not
leak any data, but it has no efficient functionality.
If our example is considered, by using the most
secure layer, the queries such as “SELECT * FROM
Students;”, “SELECT Name FROM Students;” can
be run.

Note that Proxy must modify the queries in or-
der to protect original table contents. If the SQL
“SELECT Name FROM Students;” is used, the
modified SQL will be like below:

SELECT C2-IV, C2-Eq FROM DBMS Table1;

DBMS Server will take this query, and return the
result in Table 7.

TABLE 7
The returned result from Proxy Server to the

Application Server

C2-IV C2-Eq
lpw9 dkfm
suc0 d82w
3mnu snge

The corresponding table which Proxy Server de-
crypts and sends to the Application Server will be
like in Table 8.

TABLE 8
The returned result from Proxy Server’s side

Name
Alice
Bob
Eve

This query returns the result which has no func-
tionality. However, there is no change at the ci-

137

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Z. N. Dayıoğlu et al., Vol.3, No.1

TABLE 6
The encrypted table which is created on Proxy Server

C1-IV C1-Eq C1-Ord C1-Hom C2-IV C2-Eq C2-Ord C2-Search
q39f ge88 hwip dwna lpw9 dkfm fdkw 98wu
c8x3 8n4o s09s 28bd suc0 d82w 8mx0 x9ak
sk7x x7wk x6sh s7w9 3mnu snge xuwn u8sb

phertext inside DBMS Server’s table. You can just
read the returned data, but in general the queries
which are coming from Application Server require
some functionality such as updating current data,
selecting and showing some specific rows of the
table, calculating average of a column.

3.2. Queries with equality leakage

Note that equality in the databases is an important
feature and is most frequently used one. For exam-
ple, IDs of the students which got AA grade from
a lecture at a university, the names of the clients
which buy a specific product in a shopping mall and
the phone numbers of the people who send cargo
with wrong destination address can be solved by
the equality feature in real life. If our example is
considered, following SQL query can be created as
follows:

SELECT name FROM Students WHERE id = 1;

Proxy Server will take this query, and modify it
according to desired functionality. Encryption layer
of the computed column is checked whether the
current layer is at a layer which can respond to
the requested query. If not, Proxy Server sends
UPDATE query. This UPDATE query provides to
adjust the current layer of this column with given
keys from Proxy Server. In our example, a UDF
which strips off the RND layer to the DET layer

needs to be used. The reason why is, if the equality
of the two data at the same column is required, a
deterministic encryption needs to be used. If it is
assumed that STRIP RND is a UDF which takes
the RND layer and decrypts it to the DET layer,
then Proxy Server will send below UPDATE query
at first. This query will send the decryption key to
DBMS Server, and DBMS Server is able to strip off
the RND layer.

UPDATE DBMS Table1 SET C1-Eq = STRIP RND (Key,

C1-IV, C1-Eq);

Recall that the key is coming from the following
equation:

Key = PRPMK(table t, column c, onion o, layer l)

After this UDF, the C1-Eq column is at the DET
layer anymore. And Proxy Server will update this
column’s current onion state to the DET layer.

DecryptKey(C1-IV, C1-Eq) is the structure of the
decryption function. Key is RND layer’s decryption
key for the first column in Students table. Assume
that the decryption of this column is given as
follows:

DecryptKey (q39f, ge88) = djes
DecryptKey (c8x3, 8n4o) = ektd
DecryptKey (sk7x, x7wk) = 3kw7

138

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Z. N. Dayıoğlu et al., Vol.3, No.1

After modifying DBMS Server’s database, the
Application Server will change the query for DBMS
which will be as follows:

SELECT C1-IV, C1-Eq FROM DBMS Table1 WHERE

C1-Eq = djes;

Key1 is JOIN layer’s encryption key for the C1
column of the DBMS Table1. And also Key2 is
DET layer’s encryption key for the C1 column
of the DBMS Table1. Then encryption of a value
will be generated by encrypting all layers until the
current layer. For instance, encryption of the integer
1 will be generated as follows:

EncKey2 (EncKey1 (1)) = djes

In this part, information of the columns which are
requested to check equality is leaked. If the data
in the same column has the same value, the cor-
responding ciphertexts in DBMS Server’s database
will be the same.

3.3. Queries with order leakage

Order preserving encryption is a difficult issue
in private search mechanisms including CryptDB.
In the original CryptDB’s paper [1], the authors
do not consider the order-preserving encryption in
details, but later they highlight this issue in another
article[2]. This part can be summarized as, if en-
crypted value of x is less than the encrypted value
of y, then it is known that the value x is less than
y. If any encrypted value which is between these
encrypted values is known, then the decrypted form
is between x and y. This scheme leaks order, it
is the weakest scheme. The queries “bigger than”,
“smaller than”, ORDER BY, SORT, MAX, MIN
can be performed with the encryption scheme. The
implementation of the order-preserving encryption

is not implemented until CryptDB, and also there
is even no measure for the scheme’s practicality.
That is, CryptDB is the first implementation of
order preserving encryption which uses Boldyreva’s
algorithm [3].

3.4. Queries with search functionality

Implementation of the Song’s article is used for
CryptDB [4]. The queries with LIKE are done by
using this scheme, but the search algorithm allows
only to perform the full-word searches. In this
section, the search algorithm of Song [4] will be
explained. Let’s assume that there exist lots of
private documents but limited storage. Therefore,
they can be kept on an untrusted server. This can
also be applied to mail server as well, and our
personal e-mails need to be kept there. For privacy
and security reasons, the data stored on an untrusted
party must be encrypted.

Without loss of generality, the words are treated
as N -bit strings. This is just an assumption that
all words have the same length, smaller word are
padded, and longer word can be divided into the N -
bit blocks. While searching among the documents,
some special words or keywords in specific doc-
uments are the field of interest. If there is a low
bandwidth, then only requested files which contain
our words are required to download instead of
downloading all the files. Song’s search algorithm
is a good candidate for solving this issue.

Note that there two different search algorithms:
index-based algorithm and sequential scan algo-
rithm. Song’s algorithm is based on the sequential
scan algorithm. Using an index for searching big
documents is generally faster than sequential scan.
While reading data from a source, it is better to use
index-based, but here storing and changing words
is a hard issue to consider. Index gives additional
information, and this can lead to the statistical

139

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Z. N. Dayıoğlu et al., Vol.3, No.1

Fig. 4. Basic Scheme of Song et al. [4]

attacks. For these reasons, Song’s algorithm prefers
sequential scan algorithm.

3.4.1. Song’s Search Algorithm on Encrypted
Data

There exist four schemes in the Song’s algorithm.
First one is the basic scheme which is provably
secure. However, there is no controlled searching
and the searches are not hidden. To make the
system more functional, Song presented three more
schemes.

The basic scheme can be roughly described as fol-
lows: Let’s assume that a word needs to be searched
on encrypted documents on the untrusted party, but
at the same time any information about the plaintext
should not leak. The encryption mechanism of the
basic scheme provides the provable secrecy. If you
have a document which contains ` words of N -
bits long, then you create a sequence of ` pseudo-
random values of N −M bits long. For encrypting
an N -bit word at the i-th position, the correspond-
ing sequence value Si and F (Si) are concatenated
where F is a secure pseudo-random function, i.e.,
Si‖F (Si). This F function is secure pseudo-random
function and it uses a key to encrypt. This key can
be the same for all words inside the document, or
it can be different for each location independently.
This scheme is provable secure which means that
the untrusted server cannot learn anything about the
plaintext.

From the point of basic scheme, if a word needs

Fig. 5. Second Scheme of Song et al. [4]

to be searched, the word itself and keys of the
locations which this word may appear are given.
If information about locations is not known, all
keys will be given. The untrusted party will take
them, and XOR the ciphertext with the word. If
the result has Si‖F (Si) for some S, the matching
occurs and the location of the word comes to us. If
untrusted party does not know the key of a location,
nothing will leak about that plaintext. However,
knowing anything about locations causes all keys to
be leaked, and this means all document is decrypted
to the untrusted party.

Second scheme extends the basic scheme by
supporting controlled searching. In this scheme,
key generation is tied to another pseudo-random
function G which takes the words under a random
secret key k′. For each word, it creates the keys
for the F function, shown as ki = fk′(Wi)) where
W is a word inside the document. After encrypting
the document, if a word needs to be searched, the
word and the key which is generated by using the
word itself and our secret key k′ will be given.
This scheme does not reveal any information about
the locations which are not including our searching
word. This provides controlled searching.

Until now, the word is given to the untrusted
server as plaintext, in general this is not an accepted
situation. Third scheme extends second scheme, and
supports hidden searches. Before a word needs to
be searched, each word will be encrypted with a
deterministic algorithm like ECB (Electronic Code

140

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Z. N. Dayıoğlu et al., Vol.3, No.1

Fig. 6. Third Scheme of Song et al. [4]

Book) mode encryption . The searching word is en-
crypted and also our key is generated by using the G

function in the second scheme again. However, the
key is dependent to the encrypted word, not to the
original word anymore. The remaining mechanism
is the same as second scheme.

The decryption is not feasible with the second
and third scheme. After trying S||F (S) for some
(S, F (S)) pairs, and xoring them with a “word”” to
encrypt. However, at the decryption part, to generate
F (S) from some S, the key of this specific word
needs to be known. And this key is dependent
to the encrypted word. It is a contradiction that
for decryption of an encrypted word requires the
decrypted word itself. For this reason, some mod-
ifications are done to the key generation function
in the final scheme of Song’s algorithm. Key is
generated with N −M bits of the encrypted word
just as the length of S values. While decrypting the
word, S and first N −M bit of ciphertext are used
to generate the first N − M bit of the plaintext.
With this information, the key can be generated, and
using this key F (S) is found. And finally the last
M bit of the plaintext is found by XORing the last
M bit of the ciphertext and the F (S) values. This
final scheme is also provable secure just like the
first scheme. Also query isolation feature is added,
that is, untrusted party just learns the search result,
not additional information about the positions and

plaintext forms of the words.

3.4.2. CryptDB’s Encrypted Search

CryptDB uses the implementation of the Song’s
search algorithm. This algorithm performs full-word
searches with LIKE queries. In CryptDB, repetition
of the words are removed, and the words are per-
muted to provide more security in searching. How-
ever by comparing the number of RND ciphertext
with SEARCH ciphertext, it is possible to know
the number of the duplicated words. After that,
the words are padded to the fixed N -bit length to
encrypt according to Song’s algorithm. The queries
can be run as follows:

SELECT * FROM Students WHERE Name LIKE “% Alice

%”;

After this query come to Proxy Server, it will
modify the query with the encryption of the string
“Alice”. The encryption is assumed as 98wu in the
example.

SELECT * FROM DBMS Table1 WHERE C2-Search;

LIKE “% 98wu %”;

One of the UDFs makes DBMS Server to check
the matching of the ciphertext in the SEARCH

141

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Z. N. Dayıoğlu et al., Vol.3, No.1

Fig. 7. Final Scheme of Song et al. [4]

column with the encryption of the string “Alice”.
The only leakage to DBMS Server is that there is
any matching with this full-word or not. Regular
expressions and multiple words are not supported,
just the full-word searches can be done with this
algorithm, so this search part of CryptDB is not
enough to meet our need for search queries.

TABLE 9
The updated table with grade values added

StudentsWithGrades
ID Name Grade
1 Alice 86
2 Bob 77
3 Eve 95

3.5. Queries with homomorphic addition func-
tionality

From the point of the SQL queries, summation
of the integer is used, not just for SUM queries,
but also it is a part of counting average. The way
of adding extra functionality to ciphertexts can be
achieved by using homomorphic property. If one
function is homomorphic, then multiplication of two
ciphertexts is the encryption of the multiplication or

addition of plaintexts of these two ciphertexts. For
CryptDB, multiplication of the plaintext is not used
from the point of the SQL queries, so additively ho-
momorphic algorithm is necessary for this structure.
Additively homomorphism can be demonstrated as
follows:

m1 and m2 are the plaintext of the two values.

c1 is the encryption of the m1.

c2 is the encryption of the m2.

c1×c2 = Enc (m1×m2) where Enc is an encryp-
tion function which has additively homomorphic
property.

Paillier homomorphic encryption is used in
CryptDB for addition of encrypted data. Ge &
Zdonik’s algorithm can also be used for addition
which, in general, aims to prevent the compromise
of the database by processing queries on the cipher-
text without decryption. It combines all the values
of a row into one HOM ciphertext for each row.
However, it doubles the space overhead. Therefore,
CryptDB did not prefer this algorithm to be imple-
mented.

142

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Z. N. Dayıoğlu et al., Vol.3, No.1

TABLE 10
The updated table which is created on Proxy Server’s side

DBMS Table2
C1-IV C1-Eq C1-Ord C1-Hom C2-IV C2-Eq C2-Ord C2-Search C3-IV C3-Eq C3-Ord C3-Hom
smsk skwl 9dsi 32k0 cos8 qsaw udb7 6sq8 wj9s wus8 21do qmdl
aksi w8f9 v7sj 3ld0 sk0w kd8s lvmh s99s kcsk dfsi xnsk ahc0
wipd msuw 9s9k 389r kduc 8sjf k9sk cnbs bosm xl9s jwmd h9dj

TABLE 11
An example table and its encrypted form in DET layer of EQ Onion

Original Table Encrypted Table
ID Track-ID Driver-Name Location col-1 col-2 col-3 col-4

1005 1 Bob Marley f.point 29ab74 b3ef12 ed34ef 12ada2
1006 1 Alice g.point 6d5e5a b3ef12 132ad3 27aa3b
1007 3 McDonald g.point b5aeb3 a214ba 3781e2 27aa3b
1008 3 Bob Marley g.point ae22ac a214ba ed34ef 27aa3b
1009 3 Bob Marley a.point 8ebaba a214ba ed34ef 34ba9a

3.5.1. CryptDB’s Homomorphic Property

In CryptDB, the values are kept as encrypted in
the database. For this reason, homomorphic property
is a solution for CryptDB. Queries with SUM and
AVG are included in this part. A query can be
created according to our example. Our table will
be updated to make a meaningful query, and the
summation of the grades of the students will be cal-
culated. Our updated table is illustrated in Table 9.

Table 9 is not kept inside the database as it is.
Proxy Server encrypts the values for creating an-
other table for DBMS Server. The created database
for DBMS Server will be like in Table 10.

Our example query can be like as follows:

SELECT SUM (grade) AS average FROM Students;

Proxy Server will modify the query, and send

to DBMS Server. According to DBMS’s Server’s
table, the modified query will be as follows:

SELECT SUM (c3-Hom) AS average FROM

DBMS Table2;

After taking this SQL, DBMS Server will call the
UDF which is responsible to calculate the summa-
tion of the values. This summation will be done by
using homomorphic property. That is, the encrypted
values of the C3-Hom column will be multiplied,
and the result will be the encrypted format of the
plaintexts.

Here, the values are qmdl, ahc0, and h9dj. Let’s
assume that the result of the multiplication is a83g.

(qmdl × ahc0× h9dj) = a83g

143

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Z. N. Dayıoğlu et al., Vol.3, No.1

Note that DBMS Server will not be able to know
the values and the result because of encryption.
The ciphertexts are multiplied which will result in
a new fresh ciphertext. Proxy Server will take this
encrypted result and will decrypt it. This decrypted
value will be the the summation of the values inside
the Grade column due to the underlying additively
homomorphic property.

a83g = Enc (86 + 77 + 95)

If Dec is the decryption function of the Enc
which has additively homomorphic property, then
the following equality will also be valid.

Dec (a83g) = 86 + 77 + 95

Finally, the summation is done accurately on
DBMS Server’s side without revealing any infor-
mation on the data itself. Namely, DBMS Server
will not be able see the plaintexts, but it can still do
the summation by only computing the multiplication
over the ciphertexts.

4. Security & Efficiency of CryptDB

In this section, it is analyzed the security and
efficiency of CryptDB.

First of all, CryptDB is open to frequency attack
where the adversary knows the frequency of the
plaintext. Namely, if the RND layer is decrypted
to the DET layer in EQ onion, then the frequency
attack is possible to apply because of deterministic
encryption in the DET layer. In this attack, the
adversary that observes the queries can determine
the ciphertext simply by looking at the results’ row
count. This attack can only be fixed by the RND
layer, which has no usable functionality in practice.
For example, assume that we have left part of

Table 11, and its encrypted form is the right part in
Table 11. By using the knowledge of the frequency,
one can learn the corresponding plaintexts from the
right encrypted part in Table 11. This issue can be
solved easily by using random IV based symmetric
encryption, however, this will prevent executing all
queries. The queries are always open in CryptDB
which may leak information, too. By using the
queries and their outcomes, one can start to group
the ciphertexts which is then possible to apply the
frequency attack. We note that Private Information
Retrieval (PIR) is required to eliminate this threat.
In short, RND layer has no usable functionality,
but prevents the frequency attack. However, the
DET layer duplicates to check the equality which
causes to the frequency attack. OPE layer leaks the
most information. Order Preserving Encryption of
CryptDB leaks order and also partial plaintext[3].

CryptDB is designed to move the database to
cloud securely. The cloud is considered cheap for
maintenance and administrative reasons. To evaluate
the performance of CryptDB, a machine with two
2.4 GHz Intel Xeon E5620 4-core processors and
12 GB of RAM to run the MySQL 5.1.54 server,
and a machine with eight 2.4 GHz AMD Opteron
8431 6-core processors and 64 GB of RAM to run
the CryptDB proxy and the clients are used. [1]
We believe that CryptDB may increase the cost
significantly, i.e, one need an additional six core
Proxy Server. On the other hand, the security of
Proxy Servers must be ensured. This rises another
administrative and security cost to the system.

To evaluate the performance, the assumptions are
that CryptDB is trained on query set, i.e., onion ad-
justment is not happened during the test. The TPC-
C Throughput is shown in following figure 8. The
hardest hit is at the SUM and incremented UPDATE,
the reason is they are using HOM onion. The overall
throughput reduction is 26%. As average time, 0.60

144

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Z. N. Dayıoğlu et al., Vol.3, No.1

ms is added to a query by Proxy Server [1].

There are 22 TPC-H queries, and CryptDB can
handle just four out of 22 with median slowdown
of 3.5 times. Monomi is built on the CryptDB’s
design to process analytical queries over encrypted
data. It somehow tolerates the overload by splitting
query execution between client and server. For
increasing performance, designer and planner are
used. It may be discussed that designer of Monomi
can choose the optimal design, and that planner
can calculate cost and choose the best way of
splitting the query execution between trusted client
and untrusted server. It is said in Monomi’s article
that exploring physical design more efficiently for
encrypted database is an area for future work [28].

Deployment is another problem in CryptDB.
Namely, if there is a bug at the production stage,
debugging will be hard because of the encrypted
values in the database. Therefore, in the real sce-
nario, the companies will not be interested in using
CryptDB.

Reducing the cost of Proxy Server is important
in order to use CryptDB. Otherwise, CryptDB will
only be useful for government agencies. Eliminating
the frequency attack and hiding the queries must
be taken into consideration in order to make the
CryptDB more secure.

5. Conclusion

In this paper, we first explained CryptDB in a
detailed way. CryptDB is the first practical Database
Management System for running most standard
queries on encrypted data. It does not make any
changes to the DBMS. We revisited the server
structure of CryptDB and pointed out the large
overhead of the Proxy Server. We next explained
the search algorithm of CryptDB which is based on
Song’s algorithm with the inabilities. We showed

that the current search algorithm is not enough to
meet all the search queries. We give a detailed anal-
ysis about the efficiency and security aspects. With
some modification to the current form, the system
can be more secure and can provide all necessary
functionality in order to execute all possible queries.

References

[1] R.A. Popa, C.M.S. Redfield, N. Zeldovich, and H. Balakrish-
nan, ”CryptDB: protecting confidentiality with encrypted query
processing”, In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP ’11), Cascais, Portu-
gal, pp.85-100, ACM New York, USA; October 23-26, 2011,
DOI=10.1145/2043556.2043566

[2] R.A. Popa, F.H. Li, and N. Zeldovich, ”An Ideal-Security
Protocol for Order-Preserving Encoding”, In Proceedings of
the 2013 IEEE Symposium on Security and Privacy (SP ’13),
pp.463-477, IEEE Computer Society, Washington, USA; 2013.
DOI=10.1109/SP.2013.38

[3] A. Boldyreva, N. Chenette, Y. Lee and A. O’Neill, ”Order-
preserving symmetric encryption”, In Eurocrypt ’09, Proceed-
ings of the 28th Annual International Conference on Advances
in Cryptology: the Theory and Applications of Cryptographic
Techniques, 224-241, Springer, 2009. ISBN: 978-3-642-01000-2
DOI=10.1007/978-3-642-01001-9 13

[4] D.X. Song, D. Wagner, and A. Perrig, ”Practical Techniques
for Searches on Encrypted Data”, In Proceedings of the 2000
IEEE Symposium on Security and Privacy (SP ’00), 44-, IEEE
Computer Society, Washington, DC, USA, 2000.

[5] C. Gentry, ”Fully homomorphic encryption using ideal lattices”,
In Proceedings of the forty-first annual ACM symposium on
Theory of computing (STOC ’09), 169-178, ACM, New York,
USA, 2009. DOI=10.1145/1536414.1536440

[6] www.csrc.nist.gov/publications/nistpubs/800-145/SP800-
145.pdf, ”The NIST Definition of Cloud Computing, National
Institute of Standards and Technology”, NIST SP 800-145.
Latest access March 7, 2014.

[7] www.jackofallclouds.com, G. Rosen, ”Amazon usage estimates
and updates”. Latest access March 7, 2014.

[8] Y. Zhang, A. Juels, M.K. Reiter, and T. Ristenpart, ”Cross-
VM side channels and their use to extract private keys”, In
Proceedings of the 2012 ACM conference on Computer and
communications security (CCS ’12), ACM, New York, NY, USA,
305-316, 2012.

[9] www.cloudsecurityalliance.org, ”Cloud Security Alliance”. Lat-
est access March 7, 2014.

[10] M.D. Assuncao, A. Costanzo, and R. Buyya, ”Evaluating
the cost-benefit of using cloud computing to extend the ca-
pacity of clusters”, In Proceedings of the 18th ACM Inter-

145

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Z. N. Dayıoğlu et al., Vol.3, No.1

Fig. 8. TPC-C Throughput when CryptDB is trained on query set[1]

national Symposium on High Performance Distributed Com-
puting (HPDC ’09), ACM, New York, USA, 141-150, 2009.
DOI=10.1145/1551609.1551635

[11] J. Brodkin, ”Gartner: Seven cloud-computing security risks”,
Infoworld, 2008, www.infoworld.com/d/security-central/gartner-
seven-cloud-computing-security-risks-853, latest access March 7,
2014.

[12] ”Cloud Computing Security Considerations”, A
Microsoft Perspective, Microsoft Whitepaper, 2010,
www.microsoft.com/malaysia/ea/whitepapers.aspx, latest access
March 7, 2014.

[13] ”Cloud Computing: Benefits, Risks and Recommendations
for Information Security”, ENISA Report, 2009,
www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-
riskassessment, latest access March 7, 2014.

[14] P. Mell and T. Grance, ”Security Guidance for Critical Ar-
eas of Focus in Cloud Computing” V2.1, Cloud Security Al-
liance (CSA) Report, The NIST definition of cloud computing.
National Institute of Standards and Technology, 53(6), 2009,
www.cloudsecurityalliance.org/csaguide.pdf, latest access March
7, 2014.

[15] M. Hölbl, ”Cloud Computing Security and Pri-
vacy Issues”, The Council of European Profes-
sional Informatics Societies (CEPIS), 15.03.2011,
www.cepis.org/media/CEPIS Cloud Computing Security

v17.11.pdf, latest access March 7, 2014.
[16] A.Greenberg, ”DARPA will spend 20 million

to search for crypto’s Holy Grail”, Forbes,
www.forbes.com/sites/andygreenberg/2011/04/06/darpa-will-
spend-20-million-to-search-for-cryptos-holy-grail/, latest access
March 7, 2014.

[17] D. Boneh, E. Kushilevitz, R. Ostrovsky, and W.E. Skeith, III.,

”Public key encryption that allows PIR queries”, In Proceedings
of the 27th Annual International Cryptology Conference on
Advances in Cryptology (CRYPTO’07), Alfred Menezes (Ed.),
Springer-Verlag, Berlin, Heidelberg, 50-67, 2007.

[18] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, ”Search-
able symmetric encryption: improved definitions and efficient
constructions”, In Proceedings of the 13th ACM Conference on
Computer and Communications Security (CCS ’06), ACM New
York, NY, USA, 79-88, 2006. DOI=10.1145/1180405.1180417

[19] Andrew C. Yao, ”Protocols for secure computations”, In Pro-
ceedings of the 23rd Annual Symposium on Foundations of Com-
puter Science (SFCS ’82), IEEE Computer Society, Washington,
USA, 160-164, 1982. DOI=10.1109/SFCS.1982.88

[20] A. López-Alt, E. Tromer, and V. Vaikuntanathan, ”On-the-fly
multiparty computation on the cloud via multikey fully homo-
morphic encryption”, In Proceedings of the 44th Annual ACM
Symposium on Theory of Computing (STOC ’12), ACM New
York, USA, 1219-1234, 2012. DOI=10.1145/2213977.2214086

[21] I. Damgård and S. Zakarias, ”Constant-Overhead secure com-
putation of boolean circuits using preprocessing. In Proceedings
of the 10th Theory of Cryptography Conference on Theory
of Cryptography (TCC’13), Amit Sahai (Ed.), Springer-Verlag,
Berlin, Heidelberg, 621-641, 2013. DOI=10.1007/978-3-642-
36594-2 35

[22] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, ”Multiparty
Computation from Somewhat Homomorphic Encryption”, Ad-
vances in Cryptology CRYPTO 2012, vol.7417, 643-662, 2012.
DOI=10.1007/978-3-642-32009-5 38

[23] I. Damgård, S. Faust, and C. Hazay, ”Secure two-party com-
putation with low communication”, In Proceedings of the 9th
International Conference on Theory of Cryptography (TCC’12),
Ronald Cramer (Ed.), Springer-Verlag, Berlin, Heidelberg, 54-74,

146

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Z. N. Dayıoğlu et al., Vol.3, No.1

2012. DOI=10.1007/978-3-642-28914-9 4
[24] H. Chen and R. Cramer, ”Algebraic geometric secret shar-

ing schemes and secure multi-party computations over small
fields”, In Proceedings of the 26th Annual International Con-
ference on Advances in Cryptology (CRYPTO’06), Cynthia
Dwork (Ed.), Springer-Verlag, Berlin, Heidelberg, 521-536,
2006. DOI=10.1007/11818175 31

[25] P. Paillier, ”Public-key cryptosystems based on composite de-
gree residuosity classes”, In Proceedings of the 17th International
Conference on Theory and Application of Cryptographic Tech-
niques (EUROCRYPT’99), Jacques Stern (Ed.), Springer-Verlag,
Berlin, Heidelberg, 223-238, 1999.

[26] T. El Gamal, ”A public key cryptosystem and a signa-
ture scheme based on discrete logarithms”, In Proceedings of
CRYPTO 84 on Advances in Cryptology, G R Blakley and David
Chaum (Eds.), Springer-Verlag New York, New York, USA, 10-
18, 1985.

[27] J.A. Halderman, S.D. Schoen, N. Heninger, W. Clarkson, W.
Paul, J.A. Calandrino, A.J. Feldman, J. Appelbaum, and E.W.
Felten, ”Lest we remember: cold boot attacks on encryption
keys”, In Proceedings of the 17th Conference on Security Sympo-
sium (SS’08), USENIX Association, Berkeley, CA, USA, 45-60,
2008.

[28] S. Tu, M.F. Kaashoek, S. Madden, N. Zeldovich, MIT CSAIL,
”Processing Analytical Queries over Encrypted Data”, 39th Inter-
national Conference on Very Large Data Bases, Riva del Garda,
Trento, Italy, In Proceedings of the VLDB Endowment, Vol.6,
No.5, August 26-30, 2013.

[29] Z.N. Dayioglu, M.S. Kiraz, F. Birinci, I.H. Akin. ”Secure
Database in Cloud Computing: CryptDB Revisited”, In Proceed-
ings of the 6th International Conference on Information Security
and Cryptology, ISCTurkey 2013, Ankara, Turkey, pp. 94-104,
20-21 September 2013. ISBN:978-605-86904-1-7

147

