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Abstract- Game theory is one of the most powerful mathematical tools to model information security decision-making. 

However, in game theory it is assumed that all the players have complete knowledge about each player’s strategies, 

preferences, and decision rules used. This assumption is very strong, in reality there is often significant information asymmetry 

between players. In many real world situations, decision-makers do not always have all the information about each player’s 

true intentions, strategies or preferences. Consequently, they have to perceive the situation from their own points of view, and 

may err in their perceptions. Since the early developments of game theory attempts have been made to incorporate 

misperceptions in game models of either incomplete or imperfect information. However, most of these attempts are based on 

quantities (as probabilities, risk factors, etc.) that are very difficult to compute in real world applications. In this paper, we 

consider a special family of games of incomplete information called hypergames. Hypergame theory extends classical game 

theory with the ability to deal with differences in players' misperceptions. In the context of hypergames, few works have 

addressed the study of information security decision making. The proposed two level hypergame models defender’s and 

attacker’s perception of the information security situation can be considered as a series of games.  
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1. Introduction 

 

In the modern highly networked world the cost 

of decisions on information security is very high as 

it concerns interests of many stakeholders. 

Therefore, such a decision must be well founded 

and based on a well-studied theoretical models and 

best practices. Game theory is a mathematical 

method of studying the best strategies in games 

and can provide valuable insights into strategic 

information security decisions [1].  

Game theory is a convenient tool to analyze the 

interactions of economic agents. It was firstly 

applied to economy, now it is applied to military 

strategies, international relations, political science, 

and evolutionary biology and etc.  

In information security area, the interactive 

process of the attackers and defenders is a game 

process. Thus, game theory can be used to predict 

the behavior of attacks and to support decision 

making. 

Information security, when viewed from a 

game theoretic perspective, can be seen as a game 

comprising multiple players; the attackers 

(malicious users) and the defenders 

(network/system administrators). The benefits of 

quantifying information security using game-

theoretic approach are enormous. Most 

importantly, it may help network administrator to 

find the optimal defense strategies of a system and 

to calculate the expected loss associated with 

different defense strategies [2].  

Hypergame theory extends classical game 

theory with the ability to deal with differences in 

players' misperceptions [3]. In the context of 

hypergames, few works have addressed the study 

of information security decision making. This 

paper presents a hypergame approach as an 

analysis tool in the context of information security. 
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The proposed two level hypergame models 

defender’s and attacker’s perception of the 

information security situation can be considered  

as a series of games. 

The rest of this paper is organized as follows. 

In the next section, we shall discuss limitations of 

game theory in application to information security. 

Section 3 presents a brief introduction to 

hypergames. Finally, section 4 presents a 

hypergame model between attacker and defender. 

 

2. Game Theory in Information Security: 

Limitations 

 

Game theory is a branch of applied 

mathematics, exploring models of decision making 

under different interests of the parties (players), 

where each party seeks to influence the 

development of the situation in their own interests. 

Each side has its own purpose and uses some 

strategy that can lead to gain or losing - depending 

on the behavior of other players. Game theory 

helps to choose the best strategy in the light of the 

views of other participants, their resources and 

their possible actions.   

During the game players can choose and 

implement a strategy from a set of different 

behavioral options (strategy space), in order to 

maximize the payoff they are receiving as an 

outcome of the game. In game-theoretic analysis 

the principle of the Nash equilibrium plays a 

critical role. Game in normal form is characterized 

by multiple participants or players, each of whom 

is given a set of possible strategies of behavior and 

the payoff function. Under the principle of Nash 

equilibrium rational players have strategies that 

form equilibrium (Nash), i.e. there is a set of 

strategies in which the individual player cannot 

increase his/her gains by changing strategy when 

strategies of the other players are fixed. 

There are lots of papers on the application of 

the game theory to information security issues. 

Game theory has been used to model several areas 

of information security like network security, 

intrusion detection, information warfare and 

security investment. Roy et al. provide an excellent 

review of different approaches to game theory as it 

can be applied to network security [4]. Also a good 

overview of applications of game theory in 

information security can be found in [5, 6, 7]. 

Many of the current game-theoretic security 

approaches are based on static games with perfect 

information or games with complete information 

[4]. However, in reality a defender often faces a 

dynamic game with incomplete and imperfect 

information about the attacker. Some of the current 

models involving dynamic game with incomplete 

and imperfect information are specific to mobile 

ad hoc networks [8] while others do not consider a 

realistic attack scenario [4].  

In particular, Roy et al. [4] point out that some 

of the limitations of the present research are: (a) 

Current stochastic game models only consider 

perfect information and assume that the defender is 

always able to detect attacks; (b) Current 

stochastic game models assume that the state 

transition probabilities are fixed before the game 

starts and these probabilities can be computed 

from the domain knowledge and past statistics; (c) 

Current game models assume that the players’ 

actions are synchronous, which is not always 

realistic. 

In usual game models it is assumed that each 

player knows payoff functions and set of strategies 

of other players. In fact, this condition is often not 

fulfilled. If a player does not know the payoff 

functions of other players, then talking about the 

Nash equilibrium becomes meaningless. 

All the complete-knowledge games rely on 

accurate knowledge of the payoff functions. In 

real-life any player must observe and make as 

realistic assumptions about these payoffs (costs) as 

possible. If the observations about an opponent’s 

costs are unrealistic, a player can end up with 

choosing a non-optimal strategy. 

Since the early developments of game theory, 

attempts have been made to incorporate 

misperceptions in game models of either 

incomplete or imperfect information. However, 

most of these attempts are based on quantities (as 

probabilities, risk factors, etc.) which are very 

difficult to compute with acceptable accuracy in 

practice. In this paper, we consider a special family 

of games of incomplete information called 

hypergames. In the hypergames misperception or 
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misunderstanding by players are explicitly 

assumed.  

Sasaki and Kijima [9] discuss the relationships 

between two models of games with incomplete 

information, hypergames [3] and Bayesian games 

[10]. The authors show that any hypergame can 

naturally be reformulated in terms of Bayesian 

games in an unified way and prove that some 

equilibrium concepts defined for hypergames are 

in a sense equivalent to those for Bayesian games. 

Many hypergame analyses have been 

published, showing its use in modeling conflicts 

and their resolutions. Hypergame analysis methods 

but can be applied to military conflicts, 

international disputes [12], economic treaties and 

agreements [13], social issues [14] and etc. 

Hypergame approach also was applied to 

information warfare [15] and cybersecurity [16]. 

 

3. A Brief Introduction to Hypergames 

 

Before introducing the proposed method, we 

need to explain the hypergame framework. 

An n-person non-cooperative game is defined 

by G = (S1, S2,...,Sn; v1, v2, ..., vn), with player set 

N = (1, 2, 3,..., n). Si is player i’s strategy set and vi 

is player i’s preference function for each i∈N. For 

the given set of players and the individual strategy 

sets, an outcome is defined by s = (s1, s2, s3,..., sn), 

with si∈Si being the strategy chosen by player i. 

The set of all outcomes are then defined by 

S = S1×S2×S3×...×Sn.  

If all the outcomes are ranked in order 

according to a player’s payoffs by writing the most 

preferred outcome on the left and least preferred 

on the right, then a preference vector (PV) is 

formed for the player and denoted by Vi. 

Consequently, a game can be represented by a set 

of PVs: G = {V1, V2, …, Vn}.  

In a zero-level hypergame, there are no 

misperceptions, each player is represented by only 

one PV, and all the players are playing the same 

game: }.,...,,{ 21
0

nVVVGH   

In a first-level hypergame, at least one of the 

players has misperception about PVs of other 

players. Suppose Vi is the true PV for player i, and 

Vij is player j’s interpretation of player i's PV. 

Misperception occurs if ,iij VV   that is, player j 

incorrectly interprets i’s PV. As a result of 

misperception the game played by player j will be 

different from the one played by player i. The first-

level hypergame model is formulated as 
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The definition of a 1-level hypergame can be 

extended to high-level hypergames, where some of 

the players have access to some additional 

information that allow them to form perceptions 

about other players’ beliefs, other players’ 

perceptions about themselves, and so on.  

In a second-level hypergame, at least one of 

the players is aware that they are playing different 

games and would therefore perceive what the other 

players’ game is. This can be interpreted as the 

players playing different first-level hypergames, 

resulting in a second-level hypergame: 
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where 
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Vkji describes what player i believes with 

regard to how player j interprets k’s intentions, 

,kji   and .,, Nkji 
 

An Lth-level hypergame consists of n 

individual games, where at least one of the 

individual games is different from the others, and 

the highest order of expectation involved in the 
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individual games is L. A formal definition of an 

Lth-level hypergame model is given below [17]: 
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4.  A Hypergame Model for Information 

Security 

 

In this section we are going to introduce a 

hypergame model to represent attacker-defender 

strategic interaction that apply to most information 

security problems in general. Let us consider two 

levels of hypergame formally. 

As noted above, a game G can be briefly 

defined as a set of preference vectors of all players. 

Let VA be the preference vector of the Attacker, 

and VD – the preference vector of the Defender. 

Then, a game in which the Attacker and the 

Defender are the only players can be defined as 

G = {VA, VD}. In games with complete information 

players evaluate preference vectors of each other 

fully and adequately, therefore, they all play in the 

same game. 

If in the two-person game, both players are 

playing the same game G, i.e. correctly estimate 

preference vectors of each other, then we have 

zero-level hypergame. If at least one of the players 

mistakenly interprets the preference vector of 

another player, then there is the first-level 

hypergame. If a player is aware of misperception 

of the second player, there is the second-level 

hypergame. 

Let H
1
 denotes the first-level hypergame. In 

this game the players are playing different games. 

Let Vij be the preference vector of player i 

perceived by player j. Then for two players – the 

Attacker and the Defender – we have the following 

types of reflexive preference vectors: 

 VAA – preference vector of the Attacker 

perceived by the Attacker; 

 VDA – preference vector of the Defender 

perceived by the Attacker; 

 VAD– preference vector of the Attacker 

perceived by the Defender; 

 VDD – preference vector of the Defender 

perceived by the Defender. 

The game, played by the Attacker in the first-

level hypergame H
1
, is denoted as 

GA = {VAA, VDA}, and the game is played by the 

Defender in the same hypergame – as 

GD = {VAD, VDD}. Accordingly, first-level 

hypergame itself is defined as H
1
 = {GA, GD}. 

In matrix notation the first-level hypergame is 

shown in Table 1. 

Table 1. The first-level hypergame H
1
 in a matrix form 

Players Game 

Attacker Defender 

Attacker VAA VAD 

Defender VDA VDD 

 GA GD 

 

According to the conditions of the first-level 

hypergame H
1
, the Defender wrongly interprets 

preference vector of the Attacker, that is, ADAA VV   

is true, but the Attacker correctly estimates the 

preference vector of the Defender, VDA = VDD. 

Even more realistic model of the analyzed 

situation is represented by the second-level 

hypergame, which, as noted, occurs when one of 

the players knows about the misinterpretation of 

his position by another player. 

Let 1

AH  denotes the first-level hypergame of 

the Attacker and 1

DH  denotes the first-level 

hypergame of the Defender. 

Here },{1

DAAAA GGH  , and },{1

DDADD GGH  . 

The second-level hypergame },{ 112

DA HHH   

consists of the following four games: 

 Game GAA: The Attacker’s perception of 

the Attacker’s game; 

 Game GDA: The Attacker’s perception of 

the Defender’s game; 

 Game GAD: The Defender’s perception of 

the Attacker’s game; 

 Game GDD: The Defender’s perception of 

the Defender’s game. 

Table 2 shows the second-level hypergame H
2
 

in a matrix form. 
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Table 2. The second-level hypergame H
2
 in a matrix form  

Players Game 

Attacker Defender 

Attacker GAA GAD 

Defender GDA GDD 

 1

AH  1

DH  

 

Analyzing a hypergame involves analyzing 

each of the games for stability and then comparing 

the results to find stable equilibriums for the 

hypergame. Algorithm for calculation of stable 

outcomes and equilibrium points in the second-

level hypergame H
2
 is the following. 

1. Sequentially analyze the games GAA, GAD, 

GDA, and GDD, by comparing corresponding 

preference vectors for each of them. 

2. Analyze the first-level hypergame 1

AH , 

taking into account information about the stability 

of outcomes only in the preference vectors VAA in 

the game GAA and VDD in the game GDA. Compute 

the set of equilibrium points of the hypergame 
1

AH : EA for the attacker DAAAA EEE   (with 

respect to games GAA and GDA). 

3. Analyze the first-level 1

DH , taking into 

account information about the stability of 

outcomes only in the preference vectors VAA in the 

game GAD and VDD  in the game GDD. Compute the 

set of equilibrium points of the hypergame 1

DH : 

ED for the defender DDADD EEE   (with respect 

to games GAD and GDD). 

4. Analyze the second-level hypergame H
2
 as a 

whole, we compute the set of points of equilibrium 

solutions of the game, ie compute the result of the 

intersection of the sets of stable outcomes of the 

preference vector VAA in the game GAA and the 

preference vector VDD in the game GDD: 

DDAA EEE   (with respect to games GAA and 

GDD). 

To show how to calculate the stability of the 

outcomes and the general solution of the game, we 

introduce some new notations and definitions. 

Let q is an outcome. If player A at a fixed 

strategy of his opponent D can make the best 

choice, i.e. find the outcome of a large preference 

weight (utility) than q, then A has a unilateral 

improvement of their position. Let UIA(q) is the set 

of outcomes that represent a unilateral 

improvement of the outcome q for player A. 

If player A can make equal or worst option at a 

fixed strategy of the opponent's D, ie find the 

outcome of the same or smaller weight (utility) 

than q, then A has the unilateral disimprovement of 

its position. Let UDA(q) denotes the set of 

outcomes representing unilateral disimprovement 

of the outcome q for player A (player D). 

Assume that player A has not a unilateral 

improvement of the outcome of q, i.e .AUI  All 

outcomes q, which satisfy this condition will be 

called rationally stable and denoted by the letter r. 

Sanction is a reaction of the player in the 

possible improvement of the position of his 

opponent, which causes the latter to the outcome 

whose utility is less than or equal to the value of its 

original position. 

So if the opponent knows about the possible 

sanctions, it would not make any sense to leave it, 

because if he does, the result is nothing to gain. 

Sanctioned position is stable for him, and he can 

include it in the set of expected rational solutions 

to the game. 

Suppose player A has a non-empty set of 

UIA(q) for some outcome q. We also assume that 

for every element in UIA(q) an opponent of player 

A  – player D – has its UID  or UDD, whose utility 

for A less than or equal to the utility of the 

outcome q. Then A will act rationally if he/she 

refrains from unilateral improvement of its 

position in view of the possible sanctions from 

player D. Outcom q, whose stability for a player 

based on a possible sanction of his opponent will 

be called sequentially sanctioned and denoted by 

the letter s. 

Suppose player A has a non-empty set of 

UIA(q) for the given outcome q. If at one UIA of the 

opponent of player A – player D – there are no 

sanctions, then the outcome q will be called 

unstable and denoted by the letter u. 

All rational, or sequentially sanctioned 

outcomes for A represent for him the possible 

solutions to the game.  

It is noted by Wang, Hipel and Fraser [17] that 

solutions to hypergames may not necessarily be 

created by outcomes that are stable for all players 
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and it is possible that an outcome that is unstable 

individually for players may actually be an 

equilibrium for the hypergame. 

 

5. A Numerical Example 

 

For a numerical illustration of the above 

described approach, we use a sample attacker 

defender game from [18] where defender tries to 

protect assets and attacker targets them. In Alpcan 

and Başar’s model the attacker has two choices, 

i.e. launching an attack or doing nothing, while the 

defender’s choices are to trigger or not its defense 

mechanism. In this study the action spaces of the 

players are limited only for illustrative purpose. 

For this purpose we also assume that actions of 

each player are mutually exclusive, so that it can 

initiate only one action at a time. 

Let the attacker has two actions that he/she 

may take: 

# 1 – Attack scenario 1; 

#2 – Attack scenario 2. 

Let assume that actions for the defender are the 

following: 

# 3 – Defense Mechanism 1; 

# 4 – Defense Mechanism 2; 

# 5 – Defense Mechanism 3. 

As noted above, hypergames are games with 

imperfect information. This means, at least one 

player has misperceptions about the game 

elements. Let`s assume that in this game the 

players have the following misperceptions: 

 Players are misinterpreting the preference 

vectors of each other; 

 The attacker is not aware about the third 

action available to the Defender.  

From the set of actions the set of players' 

strategies is formed. (A strategy is any set of 

actions taken by a player.) The strategies of all the 

players together is called an outcome. The number 

of outcomes equals to 2
n
, where n - the number of 

all actions available to the players. However not all 

of these outcomes may be feasible. Each of these 

actions can be performed or not performed. 

Therefore, in this game formally there are 2
4
 = 16 

outcomes. But, given that the actions of the 

attacker (and defender) are mutually exclusive, all 

outcomes in which both of these actions are 

performed at the same time, should be excluded as 

practically infeasible. Also, assume that players 

have to take one of the actions. Therefore, in the 

game GAA (GDA, GAD) there are 16-12 = 4 

outcomes.   

The next step of the hypergame analysis is to 

identify the preferences of the players. We assume 

that both the Attacker and Defender have different 

utility functions for outcomes and outcomes are 

ordered by each player according to their 

individual preferences from the most preferred to 

least preferred (eg 4 = the most preferred; 3 = the 

next most preferred; 2 = the next least preferred; l 

= the least preferred). 

We solve this numerical example using the 

HYPANT hypergame theory analysis tool [19]. 

Note that hypergame models must be written in 

custom HML (Hypergame Modeling Language) 

format by a person in order to analyze them by 

HYPANT.  

The results of calculations of individual 

preference vectors and stability of outcomes for 

the Attacker (A) and Defender (D) in the game GAA 

are given in Table 3. 

In Table 3, a sign Y indicates that the 

corresponding action is performed, N - the 

corresponding action is not performed. Outcomes 

are numbered from 1 to 4. 

The preference vector indicates the players 

ranking of the possible outcomes. Preference 

vectors for the respective outcomes are given on 

the first row of Table 3 (for the Attacker), and on 

the fourth row (for the Defender).  

Table 3. The second-level hypergame GAA 

A’s preference vector 1 2 3 4 

#1 Y N N Y 

#2 N Y Y N 

D’s preference vector 4 2 3 1 

#3 Y N Y N 

#4 N Y N Y 

Outcome 1 2 3 4 

Stability for A r r s u 

Stability for D u r u r 

Equilibriums  E   
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Below we show calculation of stability of 

outcomes for the Attacker: 

q = 1; UIA(1) = .  It means that the outcome 

q = 1 is rational for A and it is marked with r. 

q = 2; UIA(2) = .  It means that the outcome 

q = 2 is rational for A and it is marked with r. 

q = 3; UIA(3) ={1}. UID(1) ={4}. 

.3=(3)1(4) AD ww    It means that the outcome 

q = 3 is sequentially sanctioned for A. 

q = 4; UIA(4) ={2}. UDD(2) ={3}. 

.4=(4)3=(3) AD ww   It means that the outcome 

q = 4 is unstable for A. 

The overall stability shows which outcomes 

are possible solutions to the hypergame. 

Equilibrium for the game GAA is EAA= {{#2 Attack 

scenario 2, #4 Defense mechanism 2}}. 

The results of games GDA, GAD, and GDD are 

given in Table 4, 5, 6, respectively. Note that the 

game GDD has 6 outcomes. 

Table 4. The second-level hypergame GDA 

A’s preference vector 1 2 3 4 

#1 Y N N Y 

#2 N Y Y N 

D’s preference vector 4 2 3 1 

#3 Y N Y N 

#4 N Y N Y 

Outcome 1 2 3 4 

Stability for A r r s u 

Stability for D u r u r 

Equilibriums  E   

 

Equilibrium for the game GDA is 

EDA={#2 Attack scenario 1, #4 Defense 

mechanism 2}. 

The set of equilibrium points of the hypergame 
1

AH  for the attacker is DAAAA EEE  ={{#2 

Attack scenario 2, #4 Defense mechanism 2}}. 

Table 5. The second-level hypergame GAD 

A’s preference vector 1 2 3 4 

#1 Y N N Y 

#2 N Y Y N 

D’s preference vector 4 2 3 1 

#3 Y N Y N 

#4 N Y N Y 

Outcome 1 2 3 4 

Stability for A r r s u 

Stability for D u r u r 

Equilibriums  E   

 

Equilibrium for game GAD is EAD = {#2 Attack 

scenario 2, #4 Defense mechanism 2}. 

Table 6. The second-level hypergame GDD 

A’s preference vector 1 2 3 4 5 6 

#1 Y N N Y N Y 

#2 N Y Y N Y N 

D’s preference vector 6 5 4 3 1 2 

#3 Y Y N N N N 

#4 N N Y N N Y 

#5 N N N Y Y N 

Outcome 1 2 3 4 5 6 

Stability for A r s r r s u 

Stability for D u u u s r r 

Equilibriums    E E  

 

Equilibriums for the game GDD is EDD = {{#1 

Attack scenario 1, #5 Defense mechanism 3}, {#2 

Attack scenario 2, #5 Defense mechanism 3}}. 

The set of equilibrium points of the hypergame 
1
DH  for the Defender is EH ={{#1 Attack scenario 

1, #5 Defense mechanism 3}, {#2 Attack scenario 

2, #5 Defense mechanism 3}}. 

 

6. Conclusion 

 

We have investigated possible usage of 

hypergame theory approach for developing 

decision making framework in information 

security. The proposed two level hypergame 

approach models defender’s and attacker’s 

perception of the information security situation as 

a series of games. We also have given an 

illustrative numerical example on deciding the best 

attack and defense mechanisms in the context of 

network security.  
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