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Abstract- The purpose of this paper is to present an improvement of the Needham-Schroder public key protocol. This new 

protocol will use partial quotients issue from the continued fraction expansion of some irrational numbers to secure the 

authentication between two principals. We introduce a new approach in the use of pseudo-random numbers, because besides 

using these numbers to provide uniqueness and timeliness guarantees, we use them to ensure that nobody can guess the identity 

of the sender.  We also keep this new protocol secure against the Lowe attack, without taking the solution suggested by Lowe. 

This protocol remains fast although we compute some partial quotients during the authentication process.  
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1. Introduction 

The alarming increase in victims of 

impersonation and the need to secure emerging 

tools as cloud computing imply the necessity to 

improve existing authentication protocols.  

As defined by Menezes et al [11], entity 

authentication is the process whereby one party is 

assured (through acquisition of corroborative 

evidence) of the identity of a second party 

involved in a protocol, and that the second has 

actually participated (i.e., is active at, or 

immediately prior to, the time the evidence is 

acquired). 

The mutual authentication, also called two-way 

authentication, is a process in which both entities 

authenticate each other. In this paper, it is the 

definition that we will adopt. 

There exits several authentication protocols 

including: Kerberos [16], Needham-Schroeder 

[12], Wide Mouthed Frog [3], Woo-Lam [18]. 

Some protocols are based on others such as 

Kerberos which is based on Needham-Schroeder. 

The Needham-Schroeder protocol has two 

variants, the first one is based on symmetric 

cryptography and the second one is based on 

public key cryptography. In this paper, we will 

focus on the version based on the public key 

cryptography. 

This protocol has been widely studied [5] since 

1978 but the greatest improvement was made in 

1995, when Lowe [10] proved that this protocol 

was sensitive to the impersonate attack. The 

improved version Needham-Schroeder-Lowe 

seems to be strong until now and currently most 

studies, on this protocol are oriented on the 

security proof.  

The improvement of the Needham-Schroeder 

protocol introduced in this paper will be partly 

based on the fact that the continued fraction 

expansion of an irrational number is unique. 

mailto:amadou-moctar.kane.1@ulaval.ca


INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE  
Amadou Moctar Kane, Vol.1, No.3 

 

89 
 

Also, it will be based on the difficulty of 

retrieving an irrational number from the sole 

knowledge of a part of its continued fraction 

expansion. 

Continued Fractions: An expression of the form  

     
  

   
  

   
  

 

 

is called a generalized continued fraction. 

Typically, the numbers           may be real or 

complex and the expansion may be finite or 

infinite. 

    We will avoid the use of the continued fraction 

expansions involving       for most  's. 

However, in order to simplify our explanation we 

will use in some cases the classical continued 

fraction expansion, namely      for any  : 

     
 

   
 

   
 
 

 

            

     In this paper we denote by   the combined sets 

of algebraic irrationals of degree greater than 2 and 

transcendental numbers. Our algorithm, will use 

the irrational numbers which are in  , but we will 

avoid the use of transcendental numbers having a 

predictable continued fraction expansion (some 

examples of irrational numbers with a given 

predictable continued fraction expansion are 

presented in [1]-[8]).  

    To calculate the classical continued fraction 

expansion of a number  , write down the integer 

part of  . Subtract this integer part from  . If the 

difference is equal to 0, stop; otherwise find the 

reciprocal of the difference and repeat. The 

procedure will halt if and only if   is rational. 

We can enumerate some continued fractions 

properties: 

I. The continued fraction expansion of a 

number is finite if and only if the number is 

rational. 

II. The continued fraction expansion of an 

irrational number is unique. 

III. Any positive quadratic irrational number   

has a continued fraction which is periodic 

from some point onward, namely a 

sequence of integers repeat (Lagrange 

Theorem). 

IV. The knowledge of the continued fraction 

expansions of   and   cannot determine 

simply those of     or   . 

Continued fractions were widely studied by 

Olds [13] and Perron [14], but cryptographic views 

are not explored by number theory specialists 

except in some areas like RSA cryptanalysis. In 

addition to the RSA cryptosystem, continued 

fractions are used to build a stream cipher [6] or to 

set up a e-cash scheme [7].  

This paper is organized as follows: In Section 

2 we will propose and demonstrate some results 

concerning continued fractions; in Section 3, we 

will introduce the Needham-Schroeder protocol. In 

Section 4 we present our new protocol, and before 

the conclusion, we will compare to the two 

algorithms.  

Preliminaries  

     The Result 1 and the Result 2 have already been 

presented in [6]-[7].  

     The Result 2 will exhibit an example of 

irrational number which we can use in our 

protocol.  

     The Result 1 shows that the intruder will not 

succeed if he tries to impersonate the principal in 

the last attack of Section 4.5. 
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Notation 

     In this paper we shall use the notation         

to denote the result of encrypting message 

plaintext   with key K.  

     We have three principals namely the first entity 

Alice (A), the second entity Bob (B), and the 

Intruder (I), we also have a server (trusted third 

party) (AS).     will be the public key of Alice, 

    will be the public key of B, and     will be 

I’s public key. In the same manner     will be A’s 

private key,     will be B’s private key and I’s 

private key will be    . The notation I(A) denotes 

the principal I acting in the role of A.  

      A message may have several components and 

message components will be separated by 

commas. Thus                denotes that the 

message encrypted by the key     is composed by 

a nonce    and a principal identifier A.  

      Let       such that                  is 

the continued fraction expansion of  ;   and   are 

two integers such that        . We denote 

by   the vector made with the   partial quotients 

following the   first partials quotients in the 

continued fraction expansion. 

Result 1. It is not possible to find   out of the 

knowledge of   . 

Proof. Let      . We suppose that we know a 

given part             of  's continued fraction 

expansion. Can we find   with the knowledge of 

these   partial quotients? 

The answer is negative, because there exists an 

infinite number of irrationals with these same 

partial quotients. 

For instance we can exhibit infinitely many 

irrational numbers    which are different from   

and which have the property that               

appears as a sequence of   consecutive partial 

quotients. As a matter of fact, when   is an 

irrational number, it suffices to consider any 

sequence of   integers (          ) and to define 

   to be   

      
 

    
  

     
 

        
  

     
 
 

 

 

Result 2. For an integer   such that     and a 

real algebraic number   (   ), the number 

            is transcendental. 

Proof .Assume that   is a real algebraic number 

such that    , then          is transcendental 

number by Corollary 3.6 of [2].  

If we suppose that           
   is an algebraic 

number, then    is a algebraic number, which is 

absurd because            and         is 

transcendental.  

Remark 

The irrational number        
   used in this paper 

is not a standard which we impose. It is an 

example which we choose in order to illustrate our 

scheme. 

Remark 

Due to the rounding errors, the use of continued 

fractions must obey some rules. For example Alice 

and Bob must agree on their multiple precision 

library, on the rounding error, on the software used 

and on the architecture. 

2. The Needham-Schroeder Protocol 

2.1 The Needham-Schroeder Protocol 

As defined in [12], the public key protocol consists 

on the following seven steps: 
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Step 1: A AS 

The exchange opens with A consulting the 

authentication server to find B’s public Key. 

Step 2: AS responds with:                  . 

Where      is the authentication server’s secret 

key,     is B’s public key and B is B’s identity. 

Step 3: A sends to B the following 

              . 

     This step is for the communication with B to be 

initiated. This message, which can only be 

understood by B indicates that someone purporting 

to be A wishes to establish  communication with 

B. B decrypts the message with his private key and 

then finds the nonce    chosen by A. 

Steps 4 & 5: B finds A’s public key (   ) with 

steps similar to 1 & 2. 

Step 6: At this point B return the nonce   , along 

with a new nonce   , to A, encrypted with A’s 

public key (                    

Step 7: At the end, A returns the nonce    to B, 

encrypted with B’s public key.  

     The protocol can be described as follows: 

1. A  AS :      ; 

2. AS   A   :                     ; 

3. A     B   :                   ; 

4. B     AS :       ; 

5. AS   B   :                     ; 

6. B   A   :                      ; 

7. A    B   :                     . 

 

2.2 The Needham-Schroeder-Lowe Protocol 

In [10], Lowe shows that an attack on the protocol 

allows an intruder I to impersonate another agent 

A to set up a false session with B. In this attack, 

we can ignore the interaction with the server 

because this does not have a real influence on this 

attack. The attack involves two simultaneous runs 

of the protocol: in run 1, A establishes a valid 

session with I; and in run 2, I impersonates A to 

establish a fake session with B.  

    In Step 1.3, A starts to establish a normal 

session with I, sending him a nonce   .  

    In Step 2.3, the intruder impersonates A to try to 

establish a false session with B, sending it the 

nonce    obtained in the previous message.  

   B responds in the message 2.6 by selecting a new 

nonce   , and trying to return it along with   , to 

A. The intruder therefore forwards the message to 

A in the step 1.6.  A decrypts the message to 

obtain   , and returns this to I in message 1.7.  

   I can then decrypt this message to obtain    

which he returns to B in message 2.7. Hence B 

believes that A has correctly established a session 

with him. 

     This attack can be described as follows: 

1.3  A   I :                ; 

2.3 I(A)  B:               ; 

2.6  B  I(A):                ; 

1.6  I  A:                 ; 

1.7  A  I              ; 

2.7  I(A)  B              . 

In the same paper Lowe showed that it is easy to 

change the protocol so as to prevent the attack; for 

this purpose he included the responder's identity in 

message 6 of the protocol. 

Hence, the step 2.6 of the attack would become 

                   and the intruder cannot 

successfully replay this message in Step 1.6. 

3. Our contribution 

The improvement proposed here is based on the 

work of Lowe, since we have solved the previous 

attack without his solution described above. 

As for the Needham-Schroeder algorithm we 

suppose that communications are carried on an 

insecure channel. 

We denote by          the first ten partial 

quotients issue from the continued fraction 
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expansion of the irrational number   and where   

is a vector of ten    ‘s (we recall that the    ‘s are 

used during the computation of the generalized 

continued fraction). 

We denote by          the nine partial quotients 

following the first one in the continued fraction 

expansion of    (the first partial quotient is ignored 

in the authentication protocol). 

We denote by   ,     or    the vectors used in the 

computation of the generalized continued fraction 

as described in the introductory paragraph.  

   is computed as follows:   

 We apply the hash function SHA1 on A’s 

public key and we obtain SHA1(PKA ). 

 We divide the string obtain in the previous 

step in ten part, and we obtain    
             . 

 

    is computed like    but we apply the hash 

function on B’s public key instead of A 

(SHA1(PKB )). 

    is obtained in the same manner as we apply the 

hash function on I’s public key SHA1(PKI ). 

We denote by      the concatenation of    and   , 

for example, if                and    

           then                      .  

The vector      will be used in the computation of 

the partial quotients if the sender of the nonce is 

  and the receiver is  . For example, if the sender 

of the nonce is A and the receiver is B, then B will 

use the vector      to compute the partial 

quotients. 

3.1 The new protocol 

The new protocol is conducted in accordance with 

the following steps: 

Step 1: 

A chooses randomly a nonce   , encrypt it with 

B's public key (PKB) and sends it to B. 

Step 2: 

B calculates the first 10 partial quotients 

            
       , ignores the first partial 

quotient, composes a message with the 9 

remaining partial quotients 

(           
       ), adds a nonce    (chosen 

randomly) encrypts the message with the public 

key of A and sends it to A. 

Step 3: 

A computes             
        and verifies 

that the nine partial quotients received from B are 

correct. If these partial quotients are correct, A 

computes the first 10 partial quotients 

           
       , ignores the first partial 

quotient and sends the 9 remaining in a message 

encrypted with B’s public key. 

The new protocol can be described as follows: 

B  A   :“ Hi I am B”; 

A   B  :             ; 

B   A :                
                    

A  B  :                
                 

Remark: 

I. We suppose that we are in the case of an 

identity-based cryptosystem in which KC 

issues a private key to a registering user 

and uses the user’s identity as his public 

key. 

II. The status of the key (revoked or not) will 

depend on the security given by identity-

based cryptosystem. 

III. The first partial quotient is ignored because 

it does not change regardless the chosen   . 
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IV. Although we did not find any attack when 

     is the concatenation of    and   ,  we 

believe that the security of continued 

fractions obtained can be strengthened if 

we used                    . 

V. We use the third root of log because it 

corresponds to the example exhibited in 

Result 2. 

VI. The SHA1 used in this protocol is just an 

example and it can be replaced by any hash 

function which has a pre-image resistance 

property. 

VII. We conjecture that the distribution of 

partial quotients in the continued fraction 

expansion is indistinguishable by all 

polynomial-time statistical tests from the 

uniform distribution of integers in the 

interval       .   and   will be determined 

by the value of   ’s (see [6]). 

3.2 Attack using Lowe’s method. 

Alice wants to talk to the intruder I, hence she 

chooses    and sends (    ) encrypted with I’s 

public key. 

Step 2: 

We recall that I(A) is the attacker who tries to 

impersonate A. I(A) decrypts the message received 

from A with its private key and transfers to B    

encrypted with the public key of B. 

Step 3: 

B computes (          
        , chooses a 

nonce    and sends {           
        ,   } 

to A after having encrypted it with A’s public key 

(   ).  

Step 4: 

I(A) cannot decrypt the message encrypted with 

the public key of A, then he transfers the message 

to A. 

 

Step 5: 

To check if           
         is correct, A 

computes            
         since the nonce 

   was sent to I. The            
         will 

not match with            
         since the 

first one was calculated with     and the second one 

was computed with   . 

A can then conclude that an attack is underway. 

Summary:  

A    I     :              

I(A) B   :              

B    I(A):                                   

I      A   :                 
                  

A computes and verifies if  

                                          . 

Remark 

The usefulness of continued fractions is noticeable 

at this level because without continued fractions 

the Lowe attack would be effective on this 

algorithm. 

3.3 Example of the new Authentication 

Protocol 

Before sending any message Alice and Bob will 

calculate the following elements in order to speed 

up the authentication protocol. 

Let’s suppose that Alice’s public key is: PKA 

=12345678910111213, then we apply the hash 

function SHA1 on that string and we obtain 

SHA1(PKA )= A3 BF AE 33 E7 3F 0C A318 0D 

8B FA 5C AB EA 4E F1 39 C3 6D (in 

hexadecimal). 

The vector YA used in the computation of the 

generalized continued fraction will be YA= 

(b1A=A3BF=41919, b2A=AE33=44595, b3A= 

E73F=59199, b4A=0CA3=3235, b5A=180D=6157, 

b6A=8BFA=35834, b7A=5CAB=23723, 
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b8A=EA4E=59982, b9A=F139=61753, 

b10A=C36D= 50029). 

Let’s suppose that Bob’s public key is: PKB = 

9876543210, then we obtain after applying the 

hash function SHA1 on the public key, 

SHA1(PKB) = 9C D6 56 16 96 00 15 7E C1 72 31 

DC F0 61 3C 94 93 2E FC DC. 

The vector    used in the calculation of the 

generalized continued fraction will be   = 

(b1B=9CD6=40150, b2B=5616=22038, b3B= 

9600=38400, b4B= 157E=5502, b5B= C172=49522, 

b6B=31DC=12764, b7B=F061=61537, 

b8B=3C94=15508, b9B= 932E=37678, 

b10B=FCDC=64732). 

The intruder public key will be:      = 

76543210123, hence SHA1(PKI )= E0 68 09 F6 

BB 62 9F 10 F8 48 A0 9A A5 3F E1 5C 0E D3 A5 

2D. 

 

Table 1. Example of the new authentication protocol 

Alice  Intruder Bob 

Chooses randomly   ,   =456576890 

and Sends            . 

Sees             Receives           . 

  Decrypts            with SKB 

Computes                       = 

(a1=2, a2=4106694278, 

a3=11096573017,  a4=285849649, 

a5=455761744,      a6=3431553022, 

a7=2199137734,    a8=8018839091, 

a9=4822767116,   a10=4987704341). 

 Computes                       = 

(a1=2, a2=4106694278, 

a3=11096573017, a4=285849649, 

a5=455761744, a6=3431553022, 

a7=2199137734, a8=8018839091, 

a9=4822767116, a10=4987704341). 

Receives E(a2,a3,a4,a5,a6,a7,a8,a9,a10, 

Nb: PKA). 

Sees 

E(a2,a3,a4,a5,a6,a7,

a8,a9,a10, Nb: PKA) 

Chooses randomly  Nb, Nb=4567387 

and sends E(a2,a3,a4,a5,a6,a7,a8,a9,a10, 

Nb:PKA). 

Decrypts with SKA 

E(a2,a3,a4,a5,a6,a7,a8,a9,a10, Nb: PKA). 

Verifies that a2,..,a10 are correctly 

calculated. 

              
        = (c1=2, 

c2=2981639062, c3=9232230473, 

c4=578035971, c5=9394835548, 

c6=6724620718, c7=15782459451, 

c8=2048625312, c9=3728834053, 

c10=7375783858).   

Computes              
        = 

(c1=2, c2=2981639062, 

c3=9232230473, c4=578035971, 

c5=9394835548, c6=6724620718, 

c7=15782459451, c8=2048625312, 

c9=3728834053, c10=7375783858) and 

sends E(c2,c3,c4,c5,c6,c7,c8,c9,c10; PKB). 

Sees 

E(c2,c3,c4,c5,c6,c7,

c8,c9,c10; PKB). 

Receives E(c2,c3,c4,c5,c6,c7,c8,c9,c10; 

PKB). 

  Decrypts E(c2,c3,c4,c5,c6,c7,c8,c9,c10: 

PKB) with SKB. Verifies that c2,..,c10 are 

correctly calculated. 
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The vector YI used in calculation of the 

generalized continued fraction will be   = 

(b1I=E068=57448, b2I=09F6=2550, 

b3I=BB62=47970, b4I=9F10=40720, 

b5I=F848=63560, b6I=A09A=41114, b7I= 

A53F=42303, b8I=E15C=57692, b9I= 0ED3=3795, 

b10I=A52D=42285). 

The choice of the vector   ,    or    used in the 

computation of the generalized continued fraction 

will depend on the origin of the challenge. For 

example, if Bob has to respond to a challenge sent 

by Alice, then the vector used will be     , if 

Alice sends a challenge to the intruder, then the 

vector used will be     , and if the intruder sends a 

challenge to Bob the vector used by Bob will be 

    . In Table I, we present the example of the 

new protocol. 

 

3.4 Example of the Lowe’s attack in the new 

protocol 

This attack is detailed, in Table II. 

 

3.5 Example of attack (using the lack of 

identity) 

This attack is detailed below, in Table III. 

 

Table 2. Example of the Lowe’s attack in the new protocol 

 

Alice Intruder Bob 

Chooses randomly   ,   =456576890 

and Sends             

Receives 

            

 

 Decrypts 

          with 

SKI and sends 

          to Bob 

Decrypts             with SKB 

Computes                      = 

( ’ =2,  ’ =4106666894, 

 ’ =5059764476,  ’ =309131866, 

 ’ =481976420,  ’ =3404891394, 

 ’ =3070712358,  ’ =4494633197, 

 ’ =30367444710,  ’  =3998170756). 

 Computes              
       

(  =2,   =4106694278, 

  =11096573017,   =285849649, 

  =455761744,   =3431553022, 

  =2199137734,   =8018839091, 

  =4822767116,    =4987704341). 

Receives 

E(   ,  ,  ,  ,  ,  ,  ,  ,   ,   : 

   ). 

 

Receives 

E(  ,  ,  ,  ,  ,

  ,  ,  ,   ,   : 

   ) and transfers 

it to Alice 

Chooses randomly    ,   =4567387 

and sends 

E(  ,  ,  ,  ,  ,  ,  ,  ,   ,    

:   ) 

Decrypts with SKA 

E(  ,  ,  ,  ,  ,  ,  ,  ,   ,   : 

   ). 

Verifies if   = ’ ,..,   =  ’   and then 

concludes that someone is trying to 

impersonate her. 
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Remark:  

In the last exchange of this attack, the intruder is 

not able to find the correct  ’      ’   because he 

cannot find    (by Result 1) and he is not able to 

guess  ’      ’   in the sole knowledge of 

         .  

3.6 Others attacks 

Replay, Interleaving, and Reflection attack 

The nonces play an essential role in this algorithm, 

they are chosen randomly (  ), and they change 

with each message since the principal chooses a 

new nonce at each exchange. Thus, it is impossible 

to have a replay, an interleaving or a reflection 

Table 3. Example of attack (using the lack of identity) 

Alice Intruder Bob 

 Sends to Alice (Hi I 

am Bob). 

 

Chooses randomly   ,   = 

456576890 and Sends             

Receives      

    . 

 

 Transfers      

       to Bob saying 

(I am Intruder). 

Decrypts             with SKB. 

Computes                     = 

( ’ =2,  ’ =4106694278, 

 ’ =11096573017,  ’ =285849649, 

 ’ =455761744,  ’ =3431553022, 

 ’ =2199137734,  ’ =8018839091, 

 ’ =4822767116,  ’  =4987704341). 

 Computes                     = 

(  =2,   =234855306, 

  =4078278518,   =3802145145, 

  =4630995005,   =24219050134, 

  =20475451123,   =3813152404, 

  =286637470,    =6468778119). 

Receives E(  ,   ,   ,   ,   ,   ,   , 

  ,   ,   :    ). 

Decrypts 

E(  ,  ,  ,  ,  ,  ,

  ,  ,   ,   :    ) 

and transfers to Alice 

E(  ,  ,  ,  ,  ,  ,

  ,  ,   ,   :    ) 

Chooses randomly    ,   =4567387 

and sends E(  ,   ,   ,   ,   ,   , 

  ,   ,    ,   :    ) 

Decrypts with SKA E(  ,  ,  ,  ,   , 

  ,   ,   ,    ,   :    ) 

Verifies if   = ’ ,..,   =  ’   then 

concludes that someone is trying to 

impersonate her. 
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attacks. We can add that the calculations of the 

partial quotients are based on the sender and the 

receiver of the challenge, which is a kind of a 

signature. 

The forced delay attack  

This attack does not have a real influence on our 

algorithm because there is no timestamp. Hence, 

the behaviour of the principals will be the same 

even if someone intercepts the message and relays 

it later. 

Remark 

We recommend the use of the generalized 

continued fraction instead of the classical 

continued fraction; because the classical continued 

fraction produces a several partial quotients with 

only one digit [9], while the partial quotients 

obtained from some generalized continued fraction 

seems to be indistinguishable by all polynomial-

time statistical tests from the uniform distribution 

of integers [6].  

4. Comparison with Needham-Schroeder-

Lowe 

4.1 Comparison 

The Needham-Schroeder-Lowe protocol used 

nonces where we use continued fraction 

expansions and nonces, so it is clear that our 

algorithm is more expensive in terms of 

computation time, however we strongly believe 

that our scheme is more secure than the algorithm 

of Needham-Schroeder-Lowe. Our protocol 

increases the level of security with the introduction 

of continued fraction and if we consider that the 

calculations are done in two phases, the 

preparation phase can reduce the time needed for 

the authentication itself. 

Similarly in the Needham-Schroeder-Lowe 

protocol, if the intruder sees one of the two nonces 

(   or   ), it is risky to use this part of secret in 

the symmetric encryption key while in our 

protocol the properties of continued fractions allow 

to use this nonce without any detrimental effect on 

the security of the symmetric encryption.  We 

recall that the knowledge of the continued fraction 

expansions of   and   cannot determine simply 

those of    , or    which imply that      can 

be used as seed for the symmetric encryption as 

defined in [6]. 

Hence, we can add that this protocol introduced 

some aspects of the zero knowledge system in this 

algorithm, because seeing the partial quotients 

cannot give any idea of the composition of the 

nonce (see Table 3 (Example of attack using the 

lack of identity) & Result 1). 

 We have greatly simplified the Needham-

Schroder-Lowe protocol, because in addition to the 

number of steps which we have reduced, we also 

removed the identities of the principals in 

messages. It is a great progress to remove the 

identity of the principal in the protocol because if 

the secret key of the principal A fell into the wrong 

hands, the attacker could use this key to 

impersonate A, while in the new protocol, the 

intruder will not be able to identify the other 

principal. 

Let’s suppose that the Intruder I has the secret key 

of A and he intercepts these following messages 

          ; 

               
                  ; 

               
               . 

He will not be able to decrypt           and 

              
               . He will be able 

to decrypt                 
                   

with    , however he cannot know who is the 

recipient of the message in order to continue the 

authentication.  

4.2 Efficiency analysis 

Let                                     

                and 

               
            

      we evaluate 
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the cost of calculating a partial quotient to be 

         where                            

and         . Hence, we can conclude that the 

time needed for computing partial quotients is low. 

5. Identity 

The problem of removing identities should be 

more studied in authentication protocols because 

for security reasons, it is not conceivable to let the 

identity of the principal anywhere (web merchant, 

webmail, website, forum ...). 

Although, it will be difficult to remove completely 

the identity, we are sure that we can reduce it to a 

minimum. 

Several solutions such as the anonymous 

credential systems or group signatures have been 

proposed in the past, unfortunately, these systems 

have not yet been deployed on a large scale [19]. 

We add to these existing solutions, two new 

proposals. 

The first one is the complete removal of the 

explicit identity if it can be guessed. 

We note here that identity will always be present 

in the authentication protocol but implicitly. 

The identity may be inferred, for example, when a 

company has only one client at King Street, it 

would be easy to omit the identity of that client. 

Or if a company has five customers on King 

Street, and among them one who connects every 

day at 7 am, we can also omit the identity of this 

customer on the authentication protocol. 

Finally, we can try to find from artificial 

intelligence tools, some solutions which will allow 

us to guess who is the entity who wants to connect 

instead of mentioning explicitly its identity. 

The second solution which we propose is the 

separation between the explicit identity and 

authentication protocol itself. 

We would use two encryption keys, the first key 

would be used to send this message "HI I am B", 

and the second key would be used for the 

following steps (the authentication protocol itself). 

If one key is cryptanalysis, the identity of the 

principal entity would still be preserved.  

6. Conclusions 

 In this paper, we presented a mutual 

authentication protocol which introduces the use of 

continued fractions in authentication schemes. We 

also improve the Needham-Schroeder-Lowe 

protocol by eliminating the identity of the principal 

in the authentication messages. 

The rounding errors presents in the computation 

of the partial quotients could be an advantage, 

since the absence of agreement on the rounding 

errors between the principal and the intruder will 

increase the probability of failure of any attack. 

It could be interesting to see in the future, which 

properties of continued fractions may help to 

reduce the cost of partial quotients calculations.  

Due the computer limitation, the use of irrational 

numbers can be theoretical, but as proved in [6], 

we can use an approximation of irrational 

numbers. 
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