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Abstract—Provable security is an important issue in modern cryptography because it satisfies the security of the encryption schemes in
a theoretical way via a reduction method. To prove the security of a cryptographic scheme, it is necessarry to define the goals and the
capabilities of the adversary. In this paper, we explain security models in terms of the adversarial goals and the adversarial capabilities.
We define what security actually means to decide whether a scheme is secure. We review the definition of provable security by means
of several games between the challenger and the adversary in some security models, namely the standard model and the random
oracle model. We state the main differences between these two models and observe the advantage of the success probability of the
adversary in breaking the cryptographic schemes. We investigate the security of some public key encryption schemes such as RSA,
Rabin, Goldwasser-Micali, ElGamal, Cramer-Shoup and discuss under which circumstances they satisfy which security notions.
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1. Introduction

Throughout the last century, especially with the
beginning of public key cryptography due to Diffie-
Hellman [7], many cryptographic schemes have
been proposed and it is significant to note that
their security depends on some mathematically hard
problems such as the integer factorization, RSA
problem and knapsack problems. In fact, many peo-
ple think that a cryptographic algorithm is assumed
to be secure if it resists to cryptographic attacks
for a long time. However, some schemes may take
several years before widely studied in details so it is
possible to be broken in the future such as the Chor-
Rivest system based on the knapsack problems.

Later, cryptographic researchers are focused on
trying to provide provable security for public key
cryptographic algorithms in a complexity theory.
The idea of provable security was first introduced by

Goldwasser-Micali [11] and the notion of semantic
security which is also called polynomial indistin-
guishability was defined. Naor and Yung introduced
a more severe security notion called security against
non-adaptive chosen ciphertext attacks which is also
called lunch time attacks denoted by CCA1 [14]. In
this attack model, an adversary is given a decryption
oracle and may access only before getting the chal-
lenge ciphertext. Hence, the ciphertexts queried to
the decryption oracle are uncorrelated with the chal-
lenge one but they may be related with one another.
Rackoff and Simon [16] improved this type of attack
model and introduced the strongest notion of secu-
rity which is called security against adaptive chosen
ciphertext attacks denoted by CCA2. In this attack
model, the attacker may query the decryption oracle
before and after getting the challenge ciphertext.
So, the ciphertexts queried to the decryption oracle
may be related with the challenge ciphertext. They
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presented cryptosystems whose security proofs are
based on noninteractive zero knowledge proof tech-
niques which are horribly inefficient due to the fact
that multiple gigabytes of ciphertext may be needed
to encrypt a single bit of plaintext. Dolev, Dwork
and Naor proposed a notion of non-malleability
cryptography [8] meaning that the adversary who
observes a ciphertext C of plaintext P, cannot mod-
ify it consciously and obtain a valid ciphertext C′

of a plaintext P′ which is related to P where this
relation is known by the adversary. Fujisaki and
Okamoto [10] gave a generic construction from a
one way trapdoor function which is secure against
chosen plaintext attacks to a public key encryption
scheme secure against chosen ciphertext attacks.
Damgard [5] first initiated efficient and simply con-
structed public key encryption schemes which are
secure against nonadaptive chosen ciphertext attacks
based on Diffie-Hellman/ElGamal public key cryp-
tosystems. Zheng and Seberry [18] proposed three
immunizing methods to make public key encryption
schemes secure against adaptive chosen ciphertext
attacks by appending a tag to each ciphertext which
is related to the message. Zheng and Seberry also
introduced sole-samplability security notion which
is especially related to chosen ciphertext attacks.
Informally, it means that there is no other way
to generate ciphertext y than to pick a message x
first and compute y = E(x), i.e., there is no way
to generate valid ciphertexts without knowing the
underlying plaintexts.

They also prove that if a scheme is sole-
samplable, then the cryptosystem is semantically
secure against adaptively chosen ciphertext attacks
if and only if it is semantically secure against chosen
plaintext attacks.

In provable security, the security is proved via
a reduction method. For this, we first consider
a computationally hard underlying mathematical

problem P which is well known to be intractable
by any probabilistic polynomial time algorithm.
Then, we provide a polynomial reduction from this
mathematical problem to the problem P′ of breaking
the cryptosytem. Finally, we decide that if there
exists an algorithm A breaking the cryptosystem in
polynomial time, then we can build a probabilistic
polynomial time algorithm A′ which uses A as a
subroutine, to get a contradiction. Therefore, we
state that the scheme is computationally secure.

Such security proofs in the standard model suffer
from efficiency and hence up to date very few
practical public key schemes can be proven secure
in the standard model. But, Cramer and Shoup [4]
proposed such a scheme which is quite practical and
is provably secure against adaptive chosen cipher-
text attacks under standard intractability assump-
tions. Because of inefficiency to prove the security
in the standard model, researchers tried to provide
security proofs of public key encryption schemes in
an efficient way. First attempt came from Bellare
and Rogaway [1]. They proposed a model, namely
the random oracle model as a counterpart to the
standard version. In this model, hash functions are
considered behaving like truely random functions.
Hence, it is reasonable to model a secure hash
function as a completely random function in a
security analysis. This mostly reduces the process of
proving security of cryptographic scheme. By doing
so, we know that the output of the hash function
is completely random and independently generated
values on different inputs. Therefore, adversary can
get no advantages about the outputs for any other
inputs although he knows the hash values for several
different inputs. The RO model gives an opportunity
for the designer of the scheme to construct the
responses about the outputs in order to prove the
security of the scheme, i.e, we may control the
attacker’s behavior which is imposibble in the real
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world.

We note that the schemes with security proofs in
the random oracle model may not be necessarily
secure when the hash function is fixed. Canetti et
al. [3] showed that it was possible to construct
an encryption scheme that was provably secure in
the random oracle model but insecure when the
random oracle was instantiated with any hash func-
tion. In the standard model, the attacker knows the
description of the hash function and then submits
it to the decryption oracle as a ciphertext and the
oracle outputs the secret key. So, their scheme is
completely artificial.

In this paper, we review the security notions on
public key encryption schemes and discuss security
models in terms of adversarial goals and adver-
sarial capabilities. Then we give some public key
encryption schemes and show that under which
assumptions they satisfy which security notions in
the standard model.

2. Security Notions and Public Key En-
cryption Schemes

In this section, we review security models in
terms of the adversarial goals and the adversarial
capabilities. We define what security actually means
to decide whether a scheme is secure. In this respect,
we investigate some public key encryption schemes.
Finally, we discuss the Cramer-Shoup encryption
scheme [4] which is the first efficient and practical
scheme proven to be secure against adaptive chosen
ciphertext attacks in the standard model.

2.1. Public Key Encryption Scheme

Definition 2.1: A public key encryption scheme is
a tuple of probabilistic polynomial time algorithms
Π = (Gen, Enc,Dec) such that:

1 The key generation algorithm Gen takes as
input the security parameter and outputs a pair
of public and secret keys (pk, sk).

2 The encryption algorithm Enc takes as input
a public key pk and a message m from some
underlying plaintext message space. It outputs
a ciphertext c, i.e, c = Encpk(m).

3 The decryption algorithm Dec takes as input
(sk, c) and outputs a message m or ⊥. We
denote it by m = Decsk(m).

We note that Enc may be probabilistic but Dec
must be deterministic and it is required for any
encryption scheme to be valid,

Decsk(Encpkm) = m

is satisfied.

2.2. Success Probability of The Adversary

We decide that a cryptographic scheme is secure
if the success probability of an adversary trying to
break the scheme is small. This notion is achieved
by negligible functions.

Definition 2.2: A function ε : N −→ R+ ∪ 0 is
negligible, if for every positive polynomial p, there
exists an integer kp such that

for all n > kp, we have ε(n) <
1

p(n)
.

In other words, a negligible function approaches
zero faster than the inverse of any polynomial.
We denote this function by negl in the following
sections.

2.3. Security Models

In the cryptography literature, there are several
adversarial goals and capabilities. When we talk
about the security of a cryptographic scheme, we
need to define them clearly. As the goal becomes
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more difficult or as the capabilities are more limited,
the security proof becomes easier. First, we review
some adversarial goals and capabilities related to
them, then give proof techniques of some public
key encryption schemes in the standard model.

2.4. Adversarial Goals

One-Wayness

This is a weak kind of adversarial goal where the
purpose of the adversary is to reveal the whole
plaintext m of a particular ciphertext c. However,
this is an extremely weak notion of security because
revealing almost all of the plaintext is considered
to be unsuccessful according to this definition
but actually in almost all systems revealing the
plaintext partially is considered successful. This
goal is defined via a game between the adversary
and the challenger as follows:

Game 1 The One Wayness Game: PubKow
A,Π

1: Gen is run to obtain the keys (pk, sk)
2: m is chosen at random from message space
3: The challenge ciphertext c = Encpk(m)
4: Adversary A is given pk and c to produce m′ =

A(pk, c)
5: The output of the game is defined to be 1 if

m
′

= m and ⊥ otherwise.

Indistinguishability

This goal focuses on keeping the entire plaintext
information secret and it is the most popular ad-
versarial goal. In this goal, the adversary selects
two plaintexts of his choice and sends them to an
hypothetical challenger who has the secret key. The
challenger randomly selects one of the messages,

encrypts it and sends the challenge ciphertext back
to the adversary. Here, the goal of the adversary is
to find out which of the plaintexts has been selected
by the challenger.

Game 2 IND-CPA Game: PubKind−cpa
A,Π

1: Gen is run to obtain public and secret keys
(pk, sk).

2: Adversary A is given pk, outputs a pair of
messages (m0, m1) of equal length.

3: A random bit b ∈ (0, 1) is chosen, the challenge
ciphertext c = Encpk(mb) is computed and given
to A.

4: A outputs a bit b
′

.
5: The output of the game is defined to be 1 if

b
′

= b and 0 otherwise.

Remark 2.3: We note that the encryption algo-
rithm has to be probabilistic although the decryption
algorithm is always deterministic. Because, other-
wise, the adversary can encrypt both plaintexts that
he has chosen and compare the resulting ciphertexts
to the challenged one which would be a trivial
solution.

Remark 2.4: Indistinguishability means that a ci-
phertext gives semantically no information about
the plaintext. In other words, whatever a passive
adversary can compute about m given the challenge
ciphertext c, he can also compute without c. This is
why it is also called semantic security [11].

Definition 2.5: A public key encryption scheme
Π = (Gen, Enc,Dec) is IND-secure against chosen
plaintext attacks if for all probabilistic polynomial
time adversaries A, there exists a negligible function
such that

Pr[PubKcpa
A,Π = 1] ≤

1
2

+ negl.

Malleability
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The notion of malleability is introduced by Naor et
al. [8]. The goal of the adversary A who observes
a ciphertext c of plaintext m, cannot modify it
consciously and obtain a valid ciphertext c′ of a
plaintext m′ which is related to m where this relation
is known by the adversary.

2.5. Adversarial Capabilities and IND-Games

There are several possible capabilities of an at-
tacker in the public key setting depending on the
availability of the decryption oracle which is a hy-
pothetical black box that is presented to the attacker
so that it can make decryption queries of its own
choice and gets the corresponding plaintexts. This
captures the possible real life attacks that consist
of attackers that has gained temporary access to the
decryption oracle. In this respect, there are three
types of decryption oracle access:

• CPA (Chosen Plaintext Attack): if there is no
decryption oracle access at all, we call this a
chosen plaintext attack.

• CCA1 (Non-adaptive Chosen Ciphertext Attack,
or lunchtime attack): Adversary A can access
the decrpytion oracle until it sees the ciphertext
it needs to break.

• CCA2 (Adaptive Chosen Ciphertext Attack):
Adversary A always has access to the decryption
oracle but querying the ciphertext it needs to
break is prohibited.

Remark 2.6: Security against adaptive chosen ci-
phertext attacks is the most widely accepted level
of security notion.

We explain them in Game 3 and Game 4.

2.6. Computational Security and Reductions

Most of the security proofs in the literature are in
the form of a reduction. Typically, a mathematically

Game 3 IND-CCA1 Game: PubKind−cca1
A,Π

1: Gen is run to obtain keys (pk, sk).
2: Adversary A is given pk, as well as oracle

access to Decsk and outputs a pair of messages
(m0, m1) of equal length.

3: A random bit b ∈ (0, 1) is chosen, and the
challenge ciphertext c = Encpk(mb) is computed
and given to A.

4: A continues to interact with Decsk before he
gets the challenge ciphertext c and later it is not
allowed, then this kind of experiment is called
CCA-1 or lunch time attacks.

5: The output is defined to be 1 if b
′

= b and 0
otherwise.

Game 4 IND-CCA2 Game: PubKind−cca2
A,Π

1: Gen is run to obtain keys (pk, sk).
2: Adversary A is given pk, as well as oracle

access to Decsk and outputs a pair of messages
(m0, m1) of equal length.

3: A random bit b ∈ (0, 1) is chosen, and the
challenge ciphertext c = Encpk(mb) is computed
and given to A.

4: A continues to have access to Decsk even after
he sees the challenge ciphertext, but may not
request a decryption of the challenge ciphertext
itself and finally outputs a bit b

′

.
5: The output is defined to be 1 if b

′

= b and 0
otherwise.

hard problem M is reduced to breaking the scheme
S that is assumed to be provable secure. Existence
of such a reduction implies that the problem of
breaking the scheme S is as hard as M. This
implication stems from the following contraction ar-
gument: If there exist a polynomial time algorithm A
that breaks the scheme S , then due to this reduction,
one may construct a polynomial time algorithm B
which uses A as a subroutine to solve M which
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Fig. 1. The reduction idea to prove security of
public key schemes

is assumed to be impossible. This is explained in
Figure 1.

3. Security Analysis of Some Public Key
Encryption Schemes

Before we review public key encryption schemes,
we recall some definitions which are utilized
throughout this section.

Definition 3.1: The set of integers
{0, 1, 2, ..., N − 1} is defined as the integers
mod N and denoted by ZN .

Definition 3.2: The multiplicative group of ZN is

Z∗N = {a ∈ ZN | gcd(a, N) = 1}

3.1. The RSA Encryption Scheme

Rivest, Shamir, Adleman proposed this scheme
due to the trapdoor one way permutation property
of the RSA function [17]. The key generation algo-
rithm produces a large composite number N = p · q
where p and p are primes, a public key e and private
key d such that e · d = 1 mod φ(N) is satisfied. The
encryption of a message m from Z∗N is an element
of Z∗N , namely c = me mod N. One finds m using
the secret key d by computing m = cd mod N.

We state the RSA problem as follows:

Let N = p · q where p and p are prime numbers.
Let e be an integer relatively prime to φ(N). The
RSA problem states that for a given y ∈ Z∗N ,
compute the e-th root of y, namely x, such that

y = xe mod N.

If the factorization of N is known, then the RSA
problem can be easily solved.

The RSA Assumption:

Given N = p · q, the RSA problem is intractable.

• This encryption scheme is one-way secure due
to the RSA problem.

• Since RSA encryption is deterministic, it does
not satisfy IND-CPA security notion (i.e, se-
mantic secure). It is because, given the chal-
lenge ciphertext c of either m0 or m1, the
adversary A simply computes c0 = me

0 mod N
and c1 = me

1 mod N and checks the resulting
ciphertexts with the challenge one.

• RSA encryption scheme is vulnerable to a cho-
sen ciphertext attack. If an adversary A gets
the challenge ciphertext c = me mod N, he can
choose a random element r from Z∗N and com-
pute the modified ciphertext as c

′

= re ·c mod N.
Since c′ is different from the challenge, A asks it
to the decryption oracle, gives the decryption m

′

of this ciphertext, then recovers m = m
′

·r−1 mod
N.

• The scheme is malleable: Let the adversary A
gets the challenge ciphertext c = me mod N,
then he is able to generate, for example, c′ =

2e · c such that the underlying plaintexts satisfy
a relation m

′

= 2m This holds, because

(c
′

)d = (2e · me)d = 2ed · med = 2 · m mod N.

Remark 3.3: Bellare and Rogaway [2] proposed
a padding scheme named Optimal Asymmetric En-
cryption Padding which is often used with RSA
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encryption. It uses two random oracles and achieves
IND-CCA security with trapdoor one way permuta-
tion under the RSA assumption in the random oracle
model.

3.2. Rabin Encryption Scheme

Breaking a cryptographic scheme is not necessar-
ily equivalent to solving the underlying mathemat-
ically hard problems. Rabin’s scheme is a counter
example of it. If we know the factorization of N,
then we can convert the RSA function and anybody
can not invert it without knowing p and q, i.e, RSA
problem is polynomially reduced to factoring. It is
conjectured that there is no effective way except
factorization to find the e-th roots modulo N. Rabin
[15] proposed an encryption function that could be
proved to be invertible only by someone who could
factor N. This system is similar to RSA, ciptertext
c is produced by squaring plaintext m modulo N,
i.e,

c = m2 mod N

where N = p · q and the squaring map is 4-1. So,
Rabin finds all four square roots of a ciphertext c.

The most important fact about Rabin encryption
scheme is that it is in some sense provably secure
in reductionist argument meaning that if someone
breaks the scheme and finds the plaintext m from
ciphertext c, then he is able to factor N.

• It is the first public key encryption scheme to be
proposed with a reductionist security argument.

• Since it is deterministic encryption, it does not
satisfy IND-CPA security notion.

• As RSA encryption, it is also vulnerable to cho-
sen ciphertext attacks, namely if an adversary
gets m, he is able to factor N.

3.3. Goldwasser-Micali Encryption Scheme

Goldwasser and Micali [11] introduced proba-
bilistic encryption and proposed a scheme which
was proven secure in the sense of semantic security
assuming the intractability of the quadratic resid-
uosity problem which is defined as follows:

Given N = p ·q where p, q are primes and a ∈ Z∗N
with ( a

N

)
= 1

decide whether a is quadratic residue mod N.

We note that a ∈ Z∗N is said to be a quadratic
residue modulo N if there exists an x ∈ Z∗N , such that
x2 ≡ a mod N and x is a square root of a mod N.
We recall that if a ∈ Z∗N is quadratic residue, then
the Jacobi symbol denoted as

(
a
N

)
is 1, otherwise

−1.

Remark 3.4: The Jacobi symbol is an extension
of the Legendre symbol for a prime N = p.

Remark 3.5: Given a and N (with unknown fac-
torization), it is possible to compute the Jacobi
symbol of a in polynomial time.

The Quadratic Residuosity Assumption:

Given N = p · q with unknown factorization, the
QRP is intractable.

Remark 3.6: If p, q are known and N = p ·q, then
there exists a polynomial time algorithm to decide
whether a is quadratic residue mod N.

Goldwasser-Micali encryption scheme works on
bits. To encrypt m ∈ (0, 1), one first selects a
quadratic nonresidue y ∈ ZN satisfying

(
y
N

)
= 1.

Then choosing a random value r ∈ Z∗N and produces
the challenge ciphertext

c = ymr2 mod N.
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The receiver decides the plaintext m is 0 if c is a
square, otherwise it must be 1 using the factors of
N = p · q.

Remark 3.7: Although, Goldwasser-Micali en-
cryption scheme is the first probabilistic encryption
scheme satisfiying semantic security, efficiency does
not hold because of ciphertext expansion.

3.4. ElGamal Encryption Scheme

Before we give the description of the scheme, we
recall some mathematically hardness assumptions
and relations between them.
We state the discrete logarithm problem as fol-
lows:
Let G be a finite, multiplicative group of order q
with a generator g. The DLP asks x given a group
element h = gx.

The Discrete Logarithm Assumption:

The DLP is intractable in the underlying group G.
We formally show this via adversarial view as the
following: For any polynomial time adversary A, the
probability that

Pr[x = A(G, q, g, h) : gx = h]

is negligible.
Recall that the computational Diffie-Hellman
problem is defined as follows:
Let G be a finite, multiplicative group of order q
with a generator g. Given two elements of G, gx

and gy, it is required to find gxy.

The Computational Diffie-Hellman Assumption:

The CDH problem is intractable in the underlying
group G.

We state the decisional Diffie-Hellman problem
as the following:
Let G be a finite, multiplicative group of order q
with a generator g. Given three elements of G,
(gx, gy, gz), it is asked to find whether xy = z mod q.

The Decisional Diffie-Hellman Assumption:

The DDH problem is computationally hard in the
underlying group G.

This assumption can also be represented in terms
of probabilities as follows: Let D be a polyno-
mial time algorithm which is designed for deciding
whether a three-tuple is a DDH tuple, and let

Pr[D(gx, gy, gxy) = 1] − Pr[D(gx, gy, gz) = 1]

where x, y, and z are selected randomly from Zq

is defined as the advantage of D in distinguishing
a DDH tuple distribution from a random one. The
DDH assumption assumes that this advantage is
negligible.

Remark 3.8: The three assumptions are related
with each other such that if there exists a poly-
nomial time algorithm A solving DLP with non-
negligible probability, then using this algorithm as a
subroutine, one can construct an efficient algorithm
B for CDH problem and moreover, running B as
a subroutine, there exists an algorithm C for DDH
problem which solves it in a polynomial amount of
time. Hence, we decide that DDH assumption is the
strongest one.

We review the ElGamal encryption scheme [9]
whose security is based on the DLP. Let G be a finite
cyclic group of order q with generator g. The secret
and the public keys are x and y = gx, respectively.
To encrypt m ∈ G, the sender chooses a random
r ∈ Zq and produces the challenge ciphertext

c = (c1, c2) = (gr, yr · m).
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The receiver gets m by calculating c2/c1
x.

We note that it is hard to find x, given y = gx under
the discrete logarithm assumption but this does not
guarantee the security of semantic notion sense. If
we work on some groups such as for a prime p, Z∗p,
where DLP holds, then there exists a polynomial
time adversary violating the semantic security as
follows:

• Adversary selects two messages m0 and m1 of
equal length such that one of them is quadratic
residue and sends them to the challenger.

• Given the challenge ciphertext c = (c1, c2)
where c1 = gr and c2 = yrmb, it is easy to
distinguish which m is chosen. If c1 or y are
quadratic residues, then at least r or x must
be even, hence yr is also quadratic residue. So,
upon receiving c2, one can determine whether
mb is quadratic residue. If yr is a not a residue
but c2 is residue, then mb is also a non residue.
Hence, the semantic security of the scheme fails
under the discrete logarithm assumption.

We state a well known theorem about the semantic
security of the ElGamal encryption scheme [13].

Theorem 3.9: Under the DDH assumption, ElGa-
mal encryption scheme is semantically secure.

Proof: The proof is done by using the reduc-
tionist argument such that assuming there exists a
polynomial time adversary A breaking the scheme,
then we can construct a polynomial time algorithm
B using A as a subroutine and solve the DDH
problem which is a contradiction under the DDH
assumption, hence we conclude that this scheme is
semantically secure.

The inputs to B is (G, q, g1, g2, g3, g4), where
(g1, g2) is the public key. B gives the public key
to A and asks to get messages (m0, m1) of equal
length. B selects a bit b ∈ (0, 1) randomly, produces
the challenge ciphertext c = (g3, g4 · mb) and runs
A(pk, c) to obtain b′ of a guess for b. Finally, B

outputs 1 if and only if b = b′. Since the DDH
assumption holds in G and B is a PPT algorithm,
we have∣∣∣Pr[B = 1 | DDH tuple] − Pr[B = 1 | Random tuple ]

∣∣∣ ≤ 1
2

+negl.

If the input to B is a DDH tuple, then we have

Pr[B = 1 | DDH tuple] = Pr[Success of A].

When DDH tuple occurs, we have g2 = gx
1, g3 =

gr
1 and g4 = gxr

1 = gr
2 for some x, r ∈ Zq. But this is

exactly ElGamal encryption scheme in real life so
B outputs 1 if and only if A succeeds in breaking
the scheme. To complete the proof, we show that

Pr[B = 1 | Random tuple] =
1
2

is satisfied. In this case, g4 is uniformly distributed
in G and it is independent of g1, g2 or g3. So
the second component given to A is uniformly
distributed in G and independent of m. Thus, A has
no information about b, therefore, there is no way
other than predicting with probability 1

2 .

Remark 3.10: Like RSA and Rabin encryption
schemes, ElGamal encryption scheme is also vulner-
able to adaptive chosen ciphertext attacks. When ad-
versary A gets the challenge ciphertext c = (c1, c2),
he can modify it by randomly selecting m′ and
getting c′ = (c1, c2 ·m′). Since this is different from
the challenge, he can ask it to the decryption oracle
and by dividing the returned answer by m′, he can
get the plaintext m.

Remark 3.11: Damgard proposed [5] a slight
modification of ElGgamal encryption scheme by
just adding an exponentiation to ciphertexts to pro-
vide security against nonadaptive chosen ciphertext
attacks. But it is vulnurable to an IND-CCA2 at-
tacker. In 2008, Desmedt and Duong [6] showed that
by employing a data encapsulation mechanism to
Damgard’s ElGamal scheme resulting in hybrid
Damgard’s ElGamal encryption and is secure
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against adaptive chosen ciphertext attacks in the
standard model.

3.5. Cramer-Shoup Encryption Scheme

We discuss about the Cramer-Shoup public
key encryption scheme which is the first efficient
scheme proven to be secure against adaptive chosen
ciphertext attacks under the DDH assumption in
the standard model. It is an extension of the
ElGamal encryption scheme. We summarize the
proof techniques below, and inform that all the
details and reductions can be found in [4], [12].

The Modified ElGamal Encryption

In this section, we review the modified ElGamal
scheme and show that it is semantically secure under
the DDH assumption.
Let G be a finite, cyclic group of prime order q
meaning that every element of G except the identity
is a generator. Let (g1, g2) be two generators and
(x, y) be the secret keys randomly chosen from Zq.
The public key is h = gx

1 · g
y
2. To encrypt m ∈ G,

one randomly chooses r ∈ Zq and performs the
challenge ciphertext:

c = (u, v, e) = (gr
1, gr

2, hr · m).

The receiver with secret key (x, y) decrypts c as
follows:

e/ux · vy = hr · m/(gr
1)x · (gr

2)y = hr · m/(gx
1 · g

y
2)r = m.

Theorem 3.12: If the DDH assumption is hard in
G, then the modified ElGamal scheme is secure
against a CPA attacker.

Proof: We use the reductionist argument such
that if there exists a polynomial time attacker A
breaking the semantic security of the modified
scheme in non-negligible probability, then we can

construct a polynomial time algorithm B which is
able to break the DDH assumption by distinguish-
ing a DDH tuple from a random one. B is given
(g1, g2, g3, g4) as input.

x, y ∈ Zq are chosen randomly, h = gx
1 · g

y
2 is set

as the public key and (g1, g2, h) is given to A. A
chooses (m0, m1) of equal length and sends them to
B. B selects one of them, namely mb and produces
the challenge ciphertext (u, v, e) = (g3, g4, gx

3 · g
y
4 ·

mb) and send back to A. A guesses a bit b′ for b.
If b′ = b, then we decide that (g1, g2, g3, g4) is a
DDH tuple, otherwise, random one.

Claim 3.13: If the input to B is a DDH tuple, then
A’s view is the same as in the real attack game, i.e,

There exist α, r ∈ Zq such that:

(g1, g2, g3, g4) = (g1, gα1 , gr
1, gαr

1 = gr
2)

holds. Hence, the success probability of A in break-
ing the scheme is directly related to the DDH
assumption which is supposed to be intractable.

Claim 3.14: If the input to B is a random tuple,
then b is theoretically hidden from the view of A
and the scheme becomes a one time pad encryption,
hence the success probability is nothing but 1/2 plus
negligible probability.

Assume B gets a random tuple. Then there exists
α, β, r which are randomly chosen from ∈ Zq

such that the input (g1, g2, g3, g4) to B becomes
(g1, g2 = gα1 , g3 = gr

1, g4 = gβ1). Another saying
of this, there exist r, r′ ∈ Zq with r , r′, g3 = gr

1

and g4 = gr′
2 . Given the public key, (g1, g2, h), it

is easily seen that there are exactly q possible pairs
(x, y) that could be chosen by A. Then we have

logg1h = x + αy.

We observe that for every x ∈ Zq, there is a unique
y ∈ Zq satisfying this equation. So, there are exactly
q solutions due to the group order. Let us consider
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µ = gx
3 · g

y
4 where µ is an arbitrary group element.

By similar argument, we have

logg1µ = r · x + r′ · α · y.

We see that these form a system of linear equations
and has a unique solution in (x, y). But µ is an
arbitrary group element so each possible value for µ
is possible meaning that A can not guess gx

3 ·g
y
4 with

non negligible probability. It seems like a one-time
pad encryption.

The Reduced Cramer-Shoup Encryption

In this section, we review the reduced Cramer-
Shoup encryption scheme and show that it is prov-
ably secure against non-adaptive chosen ciphertext
attacks under the DDH assumption, however, it is
insecure against CCA2 attackers.

Let (g1, g2) be two generators of the group G and
(x, y, a, b) be the secret key randomly chosen from
Zq. The public key is (h, c) = (gx

1 · g
y
2, ga

1 · g
b
2). To

encrypt m ∈ G, one randomly chooses r ∈ Zq and
performs the challenge ciphertext:

c = (u, v, e, w) = (gr
1, gr

2, hr · m, cr)

On receiving the challenge ciphertext (u, v, e, w),
there is a checking mechanism and the receiver
checks whether w = ua · vb. If so, output is e/ux · vy,
else ⊥.

Correctness is satisfied, since

w = cr = (ga
1 · g

b
2)

r
= ua · vb

and

e/ux · vy = hr · m/(gr
1)x · (gr

2)y = hr · m/(gx
1 · g

y
2)r = m.

Theorem 3.15: Under the DDH assumption, the
scheme is IND-CCA1 secure.

Proof: To prove this, as in the previous section,
we use reductionist argument such that if there

exists a polynomial time attacker A breaking the
semantic security of the reduced Cramer-Shoup
scheme with a nonnegligible success probability,
then we can construct a polynomial time algorithm
B which is able to break the DDH assumption by
distinguishing a DDH tuple from a random one. The
important difference is that A has access decryption
oracle and is allowed to have polynomially many
queries until getting the challenge ciphertext. B is
given (g1, g2, g3, g4) as input which is either a
DDH tuple or a random tuple. A chooses (m0, m1)
of equal length and sends them to B. B selects one of
them, namely mb, produces the challenge ciphertext
(g3, g4, gx

3 · g
y
4 ·mb, ga

3 · g
b
4) and sends it to A. Then,

A guesses a bit b′ for b. Finally, if b′ = b, then
(g1, g2, g3, g4) is a DDH tuple, otherwise random
one.

Claim 3.16: If the input to B is a DDH tuple,
then A’s view is the same as in the real encryption
scheme.

If (g1, g2, g3, g4) is a DDH tuple, we can write
g3 = gr

1 and g4 = gr
2 for a randomly selected r ∈

Zq. Hence, the success probability of A in breaking
the scheme is directly related to the DDH problem
which is supposed to be intractable.

Claim 3.17: If the input to B is a random tuple,
then b is theoretically hidden from the view of A
and the scheme becomes a one time pad encryption,
hence the success probability of A guessing the true
b is about 1/2 plus some negligible probability.

The proof is similar with the modified ElGamal
scheme so we omit it and refer [4], [12] for details,
however we discuss below why this scheme is not
secure against adaptive chosen ciphertext attacks.

On receiving the challenge ciphertext (g3, g4, gx
3 ·

gy
4 · mb, ga

3 · g
b
4), A computes

logg1w = a · logg1g3 + b · logg1g4 (1)
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and from the public key c, A learns that

logg1c = a + b · logg1g2. (2)

From (1) and (2), A theoratically learns (a, b).
Then, in particular, makes a query of the form
(gr

1, gr′
2 , e, (gr

1)a, (gr′
2 )b) and return m, thus we have;

logg1

e
m

= x · r + y · r′ · logg1g2 (3)

from the public key h, A learns that

logg1h = x + y · logg1g2. (4)

Since (3) and (4) are linearly independent, A can
compute the values of (x, y) and finally decrypt the
challenge ciphertext.

The Full Cramer-Shoup Encryption

In the previous section, we analyse the reduced
Cramer-Shoup version and briefly show that it satis-
fies IND-CCA1 security under the DDH assumption
but vulnerable against an CCA2 attacker. In order to
make the scheme provably secure against adaptive
chosen ciphertext attacks in the standard model,
a public collision-resistant hash function H which
hashes arbitrary length strings to Zq is used. Briefly,
the full Cramer-Shoup encryption scheme is as
follows:

Encryption:

• pk = (g1, g2, h = gx
1 · gy

2, c = ga
1 · gb

2, d =

ga′
1 · g

b′
2 , H)

• sk = (x, y, a, b, a′, b′)
• To encrypt m, we choose random r ∈ Zq and

set the challenge ciphertext

c = (gr
1, gr

2, hr · m, ((c · dα))r)

where α = H(gr
1, gr

2, hr · m).

Decryption:

• To decrypt the challenge ciphertext c =

(u, v, e, w), there is a checking mechanism:
if ua+αa

′

· vb+αb
′

= w where α = H(u, v, e) then
output is valid.

• Output is e/ux · vy, else ⊥.

Theorem 3.18: Under the DDH assumption, the
Full Cramer-Shoup encryption scheme is secure
against adaptive chosen ciphertext attacks in the
standard model.

Proof: Given a PPT algorithm A attacking
the scheme with nonnegligible success probability,
we construct an adversary B violating the DDH
assumption as follows:
B is given (g1, g2, g3, g4) as an input. The algorithm
selects (x, y, a, b, a′, b′) from Zq and sets
(g1, g2, h = gx

1 · g
y
2, c = ga

1 · g
b
2, d = ga′

1 · g
b′
2 , H) as

the public key. Then it runs A to produce (m0, m1)
of equal length. B selects a bit b and gives the
challenge ciphertext (u, v, e, w) = (g3, g4, gx

3 ·

gy
4 · mb, ga+αa

′

3 · gb+αb
′

4 ). Then A guesses a bit b′ for
b. Finally, B outputs 1 if and only if b = b

′

. We see
from the previous sections that if B is given a DDH
tuple, then A’s view is the same as in an execution
of the real full Cramer-Shoup encryption scheme.
Hence, we show that if B is given a random tuple,
then the bit b is theoratically hidden from A’s view,
so A has no information about the bit chosen by B.
From the public key, A learns

logg1c = a + b · logg1g2

and
logg1d = a

′

+ b
′

· logg1g2.

We write g3 = gr
1, g4 = gr

2
′ and when given the

challenge ciphertext, denoted by

(g3, g4, e∗ = gx
3 · g

y
4 · mb, w∗ = ga+αa

′

3 · gb+αb
′

4 ).

A learns

logg1w
∗ = (a + α · a

′

) · r + (b + α · b
′

) · logg1g2 · r
′

.
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Hence, we have three cases to be considered about
the decryption oracle queries. We also note that it
is not allowed to query the challenge ciphertext to
the oracle.

• if (u, v, e) = (u∗, v∗, e∗), and w , w∗ then the
query is always rejected because of the checking
mechanism.

• if (u, v, e) , (u∗, v∗, e∗) but the the hash values
are the same, this happens with negligible prob-
ability because of the collision resistant property
of H.

• if α
′

= H(u, v, e) , H(u∗, v∗, e∗) = α. Then,
with a careful analysis, we have more unknowns
than linear equations in these unknowns.

4. Conclusion

In this paper, we summarize the basic concepts
about provable security of public key encryption
schemes giving security models in terms of adver-
sarial goals and adversarial capabilities. In this re-
spect, we briefly explain several games between the
challenger and the adversary to prove the security
of a cryptographic scheme. Finally we give some
public key encryption schemes to demonstrate the
ideas. We hope that the ideas presented here provide
the readers a better understanding about the security
proofs in modern cryptography.
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