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Abstract—In this work, we propose a new statistical randomness test, the Saturation Point Test, which can be applied to integer

sequences as well as binary sequences and is designed to increase the number of tests for short sequences. The subject of

Saturation Point Test is the index of integer, denoted by SP , where all possible integers occur in the given sequence. We evaluate

the probability Pr(SP = t) using Stirling numbers of the second kind and give a procedure to produce a p-value using this

probability. Moreover, we state a pseudocode for the new test and evaluate the subinterval probabilities to apply χ2 goodness of fit

test.
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1. Introduction

In cryptography, random numbers play an im-
portant role, but generation of random numbers
for cryptographic purposes is a difficult task. Ran-
dom numbers are ideally generated using true ran-
dom sources, called true random number generators
(TRNGs), which use a nondeterministic source to
produce random numbers. On the one hand, genera-
tion of random numbers using TRNGs is inefficient
and, on the other hand, it is difficult to store and
transfer large number of random bits. Therefore,
deterministic algorithms, which are called pseudo-
random number generators (PRNGs), are preferred
to TRNGs. PRNGs take a truly random binary
sequence (seed) of lengthk and produce a periodic
“random looking” binary sequence of lengthl >> k

[1]. The characteristics of PRNGs are different from
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TRNGs. First, PRNGs are efficient compared to
TRNGs, taking shorter time to produce numbers.
They are also deterministic, meaning that a given
sequence of numbers is reproducible. PRNGs are
periodic while TRNGs have no period.

A statistical randomness test is developed to test
a null hypothesis(H0) which states the input se-
quence is random. The test takes a binary sequence
as an input and “accepts” or “rejects” the hypoth-
esis. Randomness tests are probabilistic and there
are two types of errors. If the data is random and
H0 is rejected, typeI error is occurred and if the
data is nonrandom andH0 is accepted, typeII error
is occurred. The probability of a typeI error is
called the level of significance of the test and usually
denoted byα. A statistical test produces a real
number between 0 and 1 which is calledp-value.
If p-value> α thenH0 is accepted, otherwise it is
rejected. The level of significance varies depending
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on applications, and for cryptographic applications
it is usually set to 0,01.

The output sequences of PRNGs should be ran-
dom looking, therefore statistical analysis of PRNGs
are essential. This process is accomplished by pro-
ducing a sample sequence using the PRNG, and
evaluating it by a statistical test suite. There are
many statistical test suites [2], [3], [7], [8], [6] in
the literature that include a collection of statistical
randomness tests. As well as PRNGs the outputs
of cryptographic primitives such as block ciphers
and hash functions should be also random looking
so that when the outputs are analyzed, predicting
the algorithm should not be possible. Therefore,
the evaluation of the outputs of the algorithms by
statistical randomness tests is of great importance.

The test suites in the literature are designed to
evaluate the randomness of PRNGs and sequences.
In order to test block ciphers and hash functions
which produce short sequences, a new evaluation
method is proposed [9]. In that work the authors
chose 7 statistical randomness tests among the tests
in the NIST test suite [2], described an alterna-
tive evaluation method for block ciphers and hash
functions and applied the new method to various
algorithms.

In this work, we propose the Saturation Point Test
to increase the number of tests for short sequences.
We give a procedure to produce ap-value using
combinatorial identities and a pseudocode for the
new test. Moreover, we evaluate the subinterval
probabilities to apply the method described in [9].

2. Preliminaries

Randomness tests are usually designed to mea-
sure the randomness properties of binary sequences
as the tests in the NIST test suite [2]. However,
randomness tests can also be applied to the integer

sequences, and there are several such tests in the
literature like Coupon Collector Test, Maximum of
t Test, Poker Test and the like [3]. In this work, we
define a new randomness test, Saturation Point Test,
which can be applied to integer sequences. In order
to apply the test to binary sequences we convert the
binary sequence into an integer sequence.

Let {t1, t2, . . . , ts} be an integer sequence where
0 ≤ ti ≤ 2k− 1 for i = 1, 2, . . . , s and let Coverage
be the number of different integers amongti’s and
denoted byCov.

Stirling number of the second kind is the number
of different ways to partition a set withn elements

into k non-empty subsets and is denoted by

{

n

k

}

[4].

Example 1:Let us evaluate

{

n

n− 1

}

. In order to

find this number we need to find the number of
different ways to partition a set withn elements
into n− 1 non-empty subsets, which means that we
need to divide it inton − 2 sets of size 1 and one
set of size 2. For this purpose we need to choose
two elements, and the rest is uniquely determined.

Therefore,

{

n

n− 1

}

=

(

n

2

)

.

Example 2:Let us evaluate

{

n

2

}

. In order to find

this number we need to find the number of different
ways to partition a set withn elements into2 non-
empty subsets, which means that we first need to
choose a subset of sizes with 1 ≤ s ≤ n−1. There
are 2n − 2 different ways to accomplish this, but
as we need unordered pairs we need to divide this

number by 2. As a result

{

n

2

}

= 2n−1 − 1.

Theorem 3: [3] Let {t1, t2, . . . , ts} be a sequence
of integers where0 ≤ ti ≤ 2k−1 for i = 1, 2, . . . , s,
and let Cov be the number of different integers
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amongti’s. Then

Pr(Cov = t) =
2k · (2k − 1) · · · (2k − (t− 1))

2ks

{

s

t

}

,

where

{

s

t

}

denote the Stirling number of the se-

cond kind.

Proof: Let aj be the jth different number
appearing in the sequence{t1, t2, . . . , ts}, and let
Aj be the set of indices that correspond toaj. For
example if the integer sequence is{4, 2, 2, 1, 4, 1, 2}
then a1 = 4, a2 = 2, a3 = 1, A1 = {1, 5},
A2 = {2, 3, 7}, andA3 = {4, 6}. SinceCov = t, we
should considert non-empty sets of{1, 2, . . . , s}.

The number of such arrangements is

{

s

t

}

. More-

over, we can chooseaj in 2k− j+1 different ways
for 1 ≤ j ≤ t. Therefore, the number of all possible
arrangements is

2k · (2k − 1) · · · (2k − (t− 1))

{

s

t

}

.

In order to findPr(Cov = t) we should divide this
number to all possible cases, that is(2k)s, and the
result follows.

3. Saturation Point Test

The subject of Saturation Point Test is the index of
integer, denoted bySP , where all possible integers
occur in the given sequence. We state the following
theorem to determine thep-value and the subinterval
probabilities for the test.

Theorem 4: Let {a1, a2, . . . , as} be a sequence of
integers where0 ≤ ai ≤ 2k − 1 for i = 1, 2, . . . , s,
and letSP be the index of integer where all possible
integers occur in the sequence (if all integer do not
occur thenSP =∞). Then

Pr(SP = t) =
2k!

2kt

{

t− 1

2k − 1

}

,

P r(SP =∞) = 1−
s

∑

i=2k

Pr(SP = i)

Proof: Assume thatSP = t, then the coverage
of the sequence for firstt−1 integers should be2k−
1 and the integer at indext should be the remaining
integer. LetK denote the number of integers in the
sequence, then

Pr(SP = t)

= Pr(Cov = 2k − 1|K = t− 1) ·
1

2k

=
2k · (2k − 1) · · · (2k − (2k − 1− 1))

2k(t−1)

·

{

t− 1

2k − 1

}

·
1

2k

=
2k!

2kt

{

t− 1

2k − 1

}

is obtained.

We should add allPr(SP = i) for 2k ≤ i ≤ s and
subtract this number from 1 to findPr(SP =∞),
thus we have

Pr(SP =∞) = 1−
s

∑

i=2k

Pr(SP = i).

In order to apply the test, ann-bit binary sequence
{a1, a2, . . . , an} is divided intok-bit blocks and the
corresponding integer values of the subsequences
are evaluated (the remaining bits are discarded).
Then, an integer sequence of{t1, t2, . . . , t⌊n/k⌋} with
0 ≤ ti ≤ 2k − 1 is tested for1 ≤ i ≤ ⌊n/k⌋. SP
of the sequence is determined andp-value for the
test is obtained using Table 2. The pseudocode of
the test is stated in Algorithm 3.1.
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Algorithm 3.1: S. POINT TEST({an}, k)

for i← 1 to
⌊

n
k

⌋

do
{

ti =
∑k

j=1 2
k−jaj+(i−1)k;

for i← 1 to 2k

do










index[i] =
⌊

n
k

⌋

+ 1;

comment: initialization of

index array

SP = 1;

for i← 1 to 2k

do


















for j ← 1 to
⌊

n
k

⌋

do
{

if tj = i

then index[i] = j; break

for i← 1 to 2k

do
{

if index[i] > SP

then SP = index[i];

Use table 2 to determine

the p− value;

return (p− value)

In a set oft elements, the expected value ofCov

is Θ(t log(t)) [5]. Therefore, we should have
⌊n

k

⌋

≥ 2k · k.

For n = 256 we suggest to choosek = 4. The ex-
pected value ofSP is 51, thus we assignp-value=1
for SP = 51 and determine the otherp-values
according to their probabilities using Theorem 4.
We also calculate the subinterval probabilities using
Theorem 4, and state the results in Table 1. In that
case the sequence consist of 64 integers. All integers
may occur soonest in16th index, therefore Obs Min
value can be minimum 16. It is also possible that

all the integers may not occur in the sequence, in
such a case we represent it by∞ in the table.

TABLE 1
Subinterval Probabilities for Saturation Point

Test

Sat Point
Obs Min Obs Max Prob

16 38 0,193609
39 45 0,179686
46 53 0,196007
54 64 0,195881
∞ 0,234818

Table 1 can be used to test cryptographic primi-
tives like block ciphers and hash functions which
produce 256-bit outputs. For this purpose, first
an output collection of the cryptographic primitive
which is the subject of the test is obtained, then this
set is tested using theχ2 goodness of fit method.

Following the same notation with [9], letm de-
note the number of output sequences of the crypto-
graphic primitive,Fi denote the number ofp-values
in subintervali, andpi denote the probability of a
p-value to be in subintervali for i = 1, 2, . . . , 5 in
Table 1, then

χ2 =
5

∑

i=1

(Fi −m · pi)
2

m · pi
,

p-value = igamc

(

2,
χ2

2

)

,

whereigamc is the incomplete gamma function. If
p-value≥0.01, the cryptographic primitive which is
the subject of the test is considered to be indistin-
guishable from a random mapping.

Poker Test and Coupon Collector Test also take
Cov as subject [3]. Poker Test considers groups of
five integers as in a poker game and observes the
possible patterns; Coupon Collector Test observes
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the length of the sequence to have a complete set.
Saturation Point Test is similar to these two tests
as Cov is the subject, but unlike Poker Test and
Coupon Collector Test, ap-value is produced for a
sequence of 256-bit using Saturation Point Test.

4. Conclusion

In this work, we propose a new statistical test,
Saturation Point Test, which can be applied to
short binary sequences and integer sequences. We
evaluate the probabilityPr(SP = t) using Stirling
numbers of the second kind and give a procedure to
produce ap-value according to this probability. We
also state a pseudocode for the new test. Moreover,
we give the subinterval probabilities to apply the
evaluation method in [9] using theχ2 goodness
of fit method. Therefore, Saturation Point Test can
be used to measure the randomness properties of
cryptographic primitives like block ciphers and hash
functions using the method described in [9].

As a future work, correlations between the other
statistical randomness tests which can be applied to
the short sequences, and Saturation Point Test can
be analyzed.
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Appendix

TABLE 2
P -Value Table for the Saturation Point Test

T -value p-value T -value p-value
16 0,000002 41 0,536917
17 0,000019 42 0,588901
18 0,000089 43 0,641373
19 0,000292 44 0,694029
20 0,000774 45 0,746589
21 0,001752 46 0,798799
22 0,003522 47 0,850431
23 0,006442 48 0,901284
24 0,010921 49 0,951183
25 0,017385 50 0,999979
26 0,026255 51 1,000000
27 0,037918 52 0,952454
28 0,052704 53 0,906218
29 0,070868 54 0,861397
30 0,092580 55 0,818054
31 0,117922 56 0,776233
32 0,146887 57 0,735966
33 0,179384 58 0,697270
34 0,215250 59 0,660150
35 0,254260 60 0,624599
36 0,296138 61 0,590604
37 0,340570 62 0,558141
38 0,387218 63 0,527182
39 0,435729 64 0,497693
40 0,485746 ∞ 0,469636
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