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Abstract—In this work, we propose a new statistical randomness test, the Saturation Point Test, which can be applied to integer
sequences as well as binary sequences and is designed to increase the number of tests for short sequences. The subject of
Saturation Point Test is the index of integer, denoted by S P, where all possible integers occur in the given sequence. We evaluate
the probability Pr(SP = t) using Stirling numbers of the second kind and give a procedure to produce a p-value using this
probability. Moreover, we state a pseudocode for the new test and evaluate the subinterval probabilities to apply x* goodness of fit
test.
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1. Introduction TRNGs. First, PRNGs are efficient compared to
TRNGs, taking shorter time to produce numbers.
In cryptography, random numbers play an imLhey are also deterministic, meaning that a given
portant role, but generation of random number§dueNce O_f numbers is reproduc.lble. PRNGs are
for cryptographic purposes is a difficult task. RarReriodic while TRNGs have no period.
dom numbers are ideally generated using true ran- o _
dom sources, called true random number generator Statistical randomness test is developed to test
(TRNGS), which use a nondeterministic source & "I hypotheS|s(H0) which states the input se-
produce random numbers. On the one hand, genétd€nce is random. The test takes a binary sequence
tion of random numbers using TRNGs is inefficierS @n Input and “accepts” or “rejects” the hypoth-
and. on the other hand. it is difficult to store anfSiS- Randomness tests are probabilistic and there
transfer large number of random bits. Therefor8/€ WO types of errors. If .the data is randgm and
deterministic algorithms, which are called pseuddfo S rejected, typel erroris occurred and if the
random number generators (PRNGSs), are prefert%ﬁfa is nonrandom andd, |§.accepted, typé! error
to TRNGs. PRNGs take a truly random binarlp ©occurred. The probability of a typé error is
sequence (seed) of lengthand produce a periodicca”ed the level of significance of the test and usually
“random looking” binary sequence of length-> & denoted bya. A statistical test produces a real

[1]. The characteristics of PRNGs are different frofiumber between 0 and 1 which is callpevalue.
If p-value > « then H, is accepted, otherwise it is

Manuscript received... rejected. The level of significance varies depending
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on applications, and for cryptographic applicatiorsequences, and there are several such tests in the
it is usually set to 0,01. literature like Coupon Collector Test, Maximum of

The output sequences of PRNGs should be rdnTest, Poker Test and the like [3]. In this work, we
dom looking, therefore statistical analysis of PRNGIEfINE @ new randomness test, Saturation Point Test,
are essential. This process is accomplished by pt§lich can be applied to integer sequences. In order
ducing a sample sequence using the PRNG, d9gapply the test to binary sequences we convert the
evaluating it by a statistical test suite. There afiN@ry sequence into an integer sequence.

many statistical test suites [2], [3], [7], [8], [6] in Let {¢1,ts,...,ts} be an integer sequence where
the literature that include a collection of statistica] _, _ ok 1 fori— 19 «and let Coverage

randomness tests. As well as PRNGs the OUtplﬂ)tgthe number of different integers amonis and
of cryptographic primitives such as block Cipheraenoted byCov
and hash functions should be also random looking '

so that when the outputs are analyzed, predictingStirling number of the second kind is the number

the algorithm should not be possible. Thereforgf different ways to partition a set with elements
the evaluation of the outputs of the algorithms b|¥1to L non-em

e : _ pty subsets and is denoted {)g
statistical randomness tests is of great |mportanc<=21.

The test suites in the literature are designed o
evaluate the randomness of PRNGs and sequencegxample 1:Let us evaluat " U 1n order to

In order to test block ciphers and hash functior}%d this number we need tonfi_nd the number of

which pr.oduce short sequences, a new evaluat'(?i[ﬂferent ways to partition a set with elements
method is proposed [9]. In that work the authori?‘nto n — 1 non-empty subsets, which means that we
chose 7 statistical randomness tests among the teS{s , 1 Jivide it inton — 2 sets of size 1 and one
in the NIST test suite [2], described an altern%’et of size 2. For this purpose we need to choose

tive gvaluatlon method for block ciphers and h,a%m/o elements, and the rest is uniquely determined.
functions and applied the new method to various { n } (n>
n—1

algorithms. Therefore, 2

In this work, we propose the Saturation Point Test n
to increase the number of tests for short sequenced&xample 2:Let us evaluate[2}. In order to find
We give a procedure to produce pavalue using this number we need to find the number of different
combinatorial identities and a pseudocode for theays to partition a set with elements int® non-
new test. Moreover, we evaluate the subintervampty subsets, which means that we first need to
probabilities to apply the method described in [9]choose a subset of sizewith 1 < s < n—1. There
are 2" — 2 different ways to accomplish this, but
2. Preiminaries as we need unordered pairs we need to divide this

number by 2. As a resul{g} =2t 1,
Randomness tests are usually designed to mea-

sure the randomness properties of binary sequencebheorem 3: [3] Let {¢1,1,...,ts} be a sequence
as the tests in the NIST test suite [2]. Howeveof integers wher® < ¢; < 2F—-1fori=1,2,...,s,
randomness tests can also be applied to the integed let Cov be the number of different integers
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amongt;’s. Then Proof: Assume thatSP = t, then the coverage
ok . (28 —1)..- (2" — (t — 1)) [s) of the sequence for firgt-1 integers should bg"—

ks {t}’ 1 and the integer at indexshould be the remaining
integer. LetK denote the number of integers in the
sequence, then

Pr(Cov=t)=

where ';} denote the Stirling number of the se

cond kind.

Proof: Let a; be the j"* different number
appearing in the sequende,t,,...,t,}, and let Pr(SP = 1)

A; be the set of indices that correspondato For . 1
example if the integer sequencefis 2,2, 1,4, 1,2} = Pr(Cov=2"-1|K =t 1) 5
thena, = 4, as = 2, a3 = 1, Ay = {1,5}, B ok (28 —1).. (2" — (2" —1—1))
Ay ={2,3,7},andA; = {4,6}. SinceCov = t, we - 2k (t—1)
should considet non-empty sets of1,2,...,s}. { t—1 } 1

. k_ k
The number of such arrangements |§ . More- k2 1) 2

281 (t—1

over, we can choose; in 2F — j + 1 different ways = %{Qk B 1}

for 1 < j <t. Therefore, the number of all possible
arrangements is

ok (2F — 1) (2" — (¢t — 1)){‘;}. is obtained.

In order to findPr(Cov = t) we should divide this  We should add alPr(SP = i) for 2* < i < s and

number to all possible cases, that(®)?, and the subtract this number from 1 to finBr(SP = c0),
result follows. ) thus we have

3. Saturation Point Test

The subject of Saturation Point Test is the index of Pr(SP=00)=1— Z Pr(SP =1).
integer, denoted by P, where all possible integers =2k
occur in the given sequence. We state the following
theorem to determine thevalue and the subinterval
probabilities for the test. m

Theorem 4: Let{ay,as,...,as} be a sequence of

i < qq, < 9k _ — LT . .
integers wherd) < ¢; < 2" —1fori=1,2,....s, fa1.2,.....a,} is divided intok-bit blocks and the

and letS P be the index of integer where all possibl L
corresponding integer values of the subsequences

integers occur in the sequence (if all integer do ngFe evaluated (the remaining bits are discarded).
occur thenSP = o). Then

In order to apply the test, anbit binary sequence

ok . Then, an integer sequence{af, t, . .., |k } With
Pr(SP=t) = W{ tk_ }, 0<t <2F—-1istested forl <i < |n/k]. SP
2 23 -1 of the sequence is determined amdalue for the
Pr(SP=cc) = 1-— ZPr(SP = 4) test is obtained using Table 2. The pseudocode of
i—ok the test is stated in Algorithm 3.1.
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Algorithm 3.1: S. POINT TEST({a, }, k) all the integers may not occur in the sequence, in

such a case we represent it By in the table.

for i< 1to %]

do TABLE 1
{ti = Z?Zl 2’“‘jaj+(i_1)k; Subinterval Probabilities for Saturation Point
for i < 1 to 2 Test
do
index[i] = | 2| +1; Sat Point
comment: initialization of Obs Min | Obs Max Prob
16 38 | 0,193609
mdex array 39 45 | 0,179686
SP=1; 46 53 | 0,196007
for i 1 to 2" sl el odoser
do
for j < 1to %]
do Table 1 can be used to test cryptographic primi-
if tj=1i tives like block ciphers and hash functions which
then index[i] = j; break produce 256-bit outputs. For this purpose, first
for i «+ 1 to 2% an output collection of the cryptographic primitive
do which is the subject of the test is obtained, then this
{if index[i] > SP set is tested using thg? goodness of fit method.
then SP = indexlil; Following the same notation with [9], let. de-
Use table 2 to determine note the number of output sequences of the crypto-
the p — value; graphic primitive,F; denote the number gfvalues
return (p — value) in subintervali, andp; denote the probability of a
p-value to be in subintervalfor i = 1,2,....5in
Table 1, then
In a set oft elements, the expected value @Gbv 5 )
is O(tlog(t)) [5]. Therefore, we should have o= M7
n . im1 m - P;
A

X2
p-value = i gant <2, 7) ,
Forn = 256 we suggest to choose= 4. The ex- _ ' . '
pected value of P is 51, thus we assigp-value=1 wherei gant is the incomplete gamma function. If

for SP = 51 and determine the othep-values p-value>0.01, the cryptographic primitive which is

according to their probabilities using Theorem 4N€ subject of the test is considered to be indistin-

We also calculate the subinterval probabilities usirfj/iShable from a random mapping.

Theorem 4, and state the results in Table 1. In thafPoker Test and Coupon Collector Test also take
case the sequence consist of 64 integers. All integéfsv as subject [3]. Poker Test considers groups of
may occur soonest ib6'" index, therefore Obs Min five integers as in a poker game and observes the
value can be minimum 16. It is also possible thaiossible patterns; Coupon Collector Test observes
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the length of the sequence to have a complete g&t.w. Caelli, E. Dawson, L. Nielsen, H. Gustafso@RYPT-X
Saturation Point Test is similar to these two tests Statistical Package Manual, Measuring the strength of Stream

. . . and Block CiphersQueensland University of Technology, 1992.
as Cov is the SUbJeCt’ but unlike Poker Test an%] G. Marsaglia,The Marsaglia Random Number CDROM includ-

Coupon Collector Test, p-value is produced for a ing the DIEHARD Battery of Tests of Randomnesseprint,
sequence of 256-bit using Saturation Point Test. 199 htp://stat.fsu.edu/publdiehard

[9] F. Sulak, A. D@anaksoy, B. Ege, O. Kogakvaluation of

Randomness Test Results for Short Sequetasde Carlet and

4., Concl USi on Alexander Pott Ed., in Proc. Sixth Conference on Sequences and
Their Applications. SETA 2010, Paris, 2010, vol. LNCS 6338,
. . L. .309-3109.
In this work, we propose a new statistical test, ™"

Saturation Point Test, which can be applied to )
short binary sequences and integer sequences. 'Wéoend'x

evaluate the probability’r(SP = t) using Stirling

numbers of the second kind and give a procedure to TABLE 2

produce agp-value according to this probability. We P-Value Table for the Saturation Point Test
also state a pseudocode for the new test. Moreover,
we give the subinterval probabilities to apply the

T-value p-value | T-value p-value

evaluation method in [9] using the? goodness 16 | 0,000002 41 | 0,536917
of fit method. Therefore, Saturation Point Test can 17| 0,000019 42 | 0,588901
be used to measure the randomness properties of 18 | 0,000089 43 | 0641373
R _ _ 19 | 0,000292 44 | 0,694029
cryptographic primitives like block ciphers and hash 20 | 0,000774 45 | 0746589
functions using the method described in [9]. 21 | 0,001752 46 | 0,798799
. 22 | 0,003522 47 | 0,850431

As a future work, correlations between the other 23 | 0,006442 48 | 0901284
statistical randomness tests which can be applied to 24 | 0,010921 49 | 0,951183
the short sequences, and Saturation Point Test can 25 | 0017385 50 | 0999979
be analvzed 26 | 0,026255 51 | 1,000000
y ’ 27 | 0,037918 52 | 0,952454

28 | 0,052704 53 | 0,906218
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