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Abstract

In this study, we consider Tzitzeica surfaces (Tz-surface) in Euclidean 3-Space E3. We
have been obtained Tzitzeica surfaces conditions of some surfaces. Finally, examples
are given for these surfaces.
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Oklid-3 uzayindaki tzitzeica yiizeyleri iizerine

Oz

Bu calismada Oklid-3 uzayindaki Tzitzeica yiizeylerini incelendi. Bazi yiizeylerin
Tzitzeica yiizey sartlari incelendi. Son olarak bu yiizeyler icin érnekler verildi.

Anahtar kelimeler: Tzitzeica sarti, Tzitzeica yiizeyi, temel form, Gauss egriligi.

1.Introduction

Gheorgha Tzitzeica, Romanian mathematician (1872-1939) introduced a class of
curves, nowadays called Tzitzeica curves and a class of surfaces of the Euclidean 3-
space called Tzitzeica surfaces. A Tzitzeica curve in E3 is a spatial curve x=x(s) with
the Frenet frame {T,N,,N,} and curvatures {kq,k,} which the ratio of its torsion k,
and the square of the distance d,,. from the origin to the osculating plane at an
arbitrary point x(s) of the curve is constant, i.e.,
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2
dosc

=a (1

where d,.. = (N,, x) and a # 0 is a real constant, N, is the binormal vector field of x.

In [1], the authors gave the connections between Tzitzeica curve and Tzitzeica surface
in Minkowski 3-space and the original ones from the Euclidean 3-space.

A Tzitzeica surface in E3 is a spatial surface M given with the parametrization X(u,v)
for which the ratio of its gaussian curveture K and the distance d;,, from the origin to
the tangent plane at any arbitrary point of the surface is constant, i.e.,

K

=a; (2)
dean”

for a constant a, # 0. The ortogonal distance from the origin to the tangent plane is
defined by

dtan = (X,N) (3)

where X is the position vector of surface and N is unit normal vector field of the
surface.

The asimptotic lines of a tzitzeica surface with negative Gaussian curvature are
Tzitzeica curves [2]. In [3], authors gave the necessary and sufficient condition for
Cobb-Douglass production hypersurface to be a Tzitzeica hypersurface. In addition, a
new Tzitzeica hypersurface was obtained in parametric, implicit and explicit forms in

[4]

In this study, we consider Tzitzeica surface (Tz-surface) in Euclidean 3-space E3. We
have been obtained Tzitzeica surface conditions of some surface.

Let M be a regular surface in E3 given with the parametrization X (u, v): (u,v) € D ©
E%. The tangent space of M at an arbitrary point p = X (u, v) is spanned by the vectors
X, and X,,. The first fundamental form coefficients of M are computed by

(Xu, Xu)
(X, Xy) (4)
(X, Xp)

E
F
G

where (,) is the scalar product of the Euclidean space. We consider the surface patch
X(u,v) is regular, which implies that W2 = EG — F? # 0.

The second fundamental form coefficient of M are computed by

e = (Xyu, N)
f= (Xuer> (5)
g = (Xyp) N)
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where, N is unit normal vector field of the surface. The Gaussian curvature are given by

_eg—f*

K_EG—FZ

(6)

2.Tzitzeica surfaces in E3

Definition 2.1 Let x: 1 c R — [E? be a unit speed plane curve with curvatures k,(s) >
0. If the curvature of x satisfies the condition

ki(s) = a. dOSCZJ (7)

for some real constant a # 0, then x is called planer Tz-curve, where d,s. = (n, x) and
n is the unit normal vector field of x.

Proposition 2.2 Let M be a regular surface in E3 given with parametrization

X(u,v) = (x(u, v),y(u,v),z(u, v)). (8)
Then M is Tz-surface if and only if

(eg — fO(EG — F?) = ay. (det(X, Xy, X,,))* )

Holds, where a; # 0 real constant and x(w,v),y(u,v),z(u,v) is differentiable
functions.

Proof. N = % is unit normal vector field of the surface. By the use of equations
u v

(2), (3), (5) we get (9).

Proposition 2.3 Let M be a regular surface in E3 with the parametrization (8). If M is

Tz-surface then the equation
4

xuu yuu Zuu x‘U‘U yUU ZUU xuv yuv Zuv 2 X y Z
Xu Yu Zy || Xu Yu Zy | — | Xu Yu Zy =aq|*u Yu Zu (10)
xU yv ZU xv yU ZU xv yU ZU xv yv ZU
holds, where a, # 0 real constant.
Proof: Considering together (4), (5), (6) and the unit normal vector field of M
X, xX, 1 il ;2 ;3 an
Ty v -t u ul,
X X X1~ W [ 30
we have,
2
e —
k=91
EG — F?
_ <qu N)<an N) - <Xuv' N)Z
= 7
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_ 1 X Xy X X, Hu XXy oy XuxX,,> X Xy XX, )2}
S WERUTM X, X XTI, X Xl Xy x Xl
1 1
= W‘m [det(quXw Xv) det(va'Xw Xv) - (det(Xuvaw Xv))z]}
u v

xuv yuv Z’LL‘V 2
x‘I.l. y‘l.l. Z‘I.l.
x‘l? y‘U Z‘U

xvv y‘UU Z‘U‘U
xu yu Zu -
x‘U y‘U Z‘U

xuu Yuu Zuu
xu yu Zu
1 xU y‘U Z‘U

~we w2 (12)
On the other hand
dtan = (X; N)
((x,y, 2,2 XXy
= XV, Z), o<
VI Xy X Xy
X Yy z
=— X Yu Zu (13)
xU yU ZU

is obtained. Substituting fourth exponent of (13) and (12) into (2), we get the result.

Proposition 2.4 Let M be a regular surface in E3 given with the parametrization (8).
Then M is Tz-surface if and only if the equation

a? (oyuXpy — xlzw) + bz(yuuyvv - yl%v) + CZ(Zuquv - Z&v)
+ab(xuuyvv + YuuXpy — quvyuv) + ac(xuuzvv + ZyuXyy — quvzuv)
+bc(yuuzvv + Zyulow — Zyuvzuv) = al(ax + by + CZ)4 (14)

holds, where

a(u' U) = YuZy — YvZy
b(u,v) = —x,z, + x,2,,
c(w,v) = XYy — XpYy

are differentiable functions and a, # 0 real constant.

Proof: The first and second derivatives of X are replaced by (4) and (5). By the use of
(2), (3), (6) we obtained (14).

Definition 2.5 The equation given by (14) is called the Tz-surface equations.

3.Tz-Monge surface

Definition 3.1 A Monge patch is a patch X: U c E? — E3 of the form

X(u,v) = (u, v, f(u, v)) (15)

where U is an open set in E? and f: U — R is a differentiable function [5].
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Theorem 3.2 Let M be a regular surface in E3 given with the parametrization (15).

Then M is a Tz-surface if and only if

4. = fuu-ﬁm B fuzv
o (_ufu - va + f)4

holds, where a; # 0 real constant.

(16)

Proof. Differentiating (15) with respect to u and v we obtain X,, = (1,0, f;,) and X, =
(0,1, f,,) respectively. We can find the coefficients of the first fundamentel form as

follows:
E=1+f%, F=f.f,, G =1+ f2.

The unit normal vector field of M is given by the following vector field;

1
N=—=-—(~fu—f,1).
”T?TE??TE?( fw =10 1)

The second partial derivatives of X are expressed as follows:

Xuu = (0'0' fuu) ’ Xuw = (O:O: fuv) ’ Xy = (0,0, fvv)

Using (18) and (19) we can get the coefficients of the second fundamental form

f uu f uv f‘;ﬂ‘lﬂ

e:— = —-— =

Substituing (17) and (20) into (6) we obtain the Gaussian curvature as follows:

— fuu-fvv - fuzv
A+ f2 +£7)?

Substituing (18) into (3) we obtain

_ufu - va +f

Consequently, by the use of (21) and (22) with (2) we get the result.

dtan -

Example 3.3 Let M be a Monge patch in [E3 with given by parametrization

-3
X(u,v) = (u v%)
—-(3
Fan =y
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is a differentiable function substituing by differentiating the equation (23) into (16) we
. 1 . .
obtaina; = — o8 which means that M is a Tz-surface.

4. Tz-Translation surface

Definition 4.1 A surface M defined as the sum of two plane curves a(u) = (u, 0, f(w))
and B(v) = (0,v,g(v)) is called a first type translation surface (is also known
translation surface) in E3. So, a first type translation surface is defined by the
parametrization

Xw,v) = (wv f(W)+ g). (24)
A surface M defined as the sum of two plane curves (which are not lines) a(u) =

(1,0, f(u)) and B(v) = (v,g(v),0) is called a second type translation surface in E3.
So, a second type translation surface is defined by the parametrization

Xwv)=(u+vgw),fwW) (25)
where fand g are smooth functions [6].

Theorem 4.2 Let M be a first type translation surface in E3 with given by
parametrization (24). Then M is a Tz-surface if and only if

_ fllgll
(—uf’ —vg' +f +9)*

a, (26)

holds, where a; # 0 real constant, f and g are smooth functions, « and £ (which are not
lines) are non-regular curves.

Proof. Differentiating (24) with respect to u and v, we obtain X,, = (1,0, f") and X,, =

(0,1, g") respectively. We can find the coefficients of the first fundamental form as
follow:

E=1+f7%, F=f.9, G=1+g" (27)
The unit normal vector field of M is given by the following vector field

_ f=g'D)

N : (28)
1472+ g7

The second partial derivatives of X are expressed as follows:

Xuu = (0,0,f”) ’ Xy = (0,0,0), Xuw = (0,0, g”) . (29)

Using (28) and (29) we can get the coefficients of the second fundamental form
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L S A (30)
1+f,2+g,2 1+f,2+g,2
substituing (27) and (30) into (6) we obtain the Gaussian curvature as follows:
k=—J 9 (31)
(1+f7%+g?%)
substituing (28) into (3) we obtain
—uf'—vg' +f+
_(uf -vg' +f+9) _ 32)

dtan -
[14+f7% 4 g2

Consequently, by the use of (31) and (32) with (2) we get the result.

Theorem 4.3 Let M be a second type translation surface in E3 with given by the
parametrization (25). Then M is a Tz-surface if and only if

_ flglfllgll
(—uf'g' —vf'g"+fg' +gf)H*

(33)

a;

holds, where a; # 0 real constant, f and g are smooth functions, a and g (which are not
lines) are non-regular curves.

Proof. Differentiating (25) with respect to u and v we obtain X,, = (1,0, f') and X,, =
(1,g’,0) respectively. We can find coefficients of the first fundamental form as follow:

E=1+f7% F=1, G=1+g" (34)
The unit normal vector field of M is given by the following vector field

vo_Sf9fe) 35)

\/flzglz _I_flz _l_grz

The second partial derivatives of X are expressed as follow:
Xuu = (0,0, "), Xy = (0,0,0), X, =(0,9",0). (36)
Using (35) and (36) we can get the coefficients of the second fundamental form

. gf  f=o, g= f'g 37)

\/flzglz _I_flz _l_ng \/flzglz +f/2 _l_g/Z

substituing (34) and (37) into (6) we obtain the Gaussian curvature as follows:
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K = f'r'g'g _ (38)
(flzglz _I_flz _l_glz)
Substituing (35) into (3) we obtain
—u+v)f'9g'+f'9g+9g'f
dean = : (39)

\/flzglz _l_flz + glz
Consequently, by the use of (38) and (39) with (2) we get the result.

Corollary 4.4 Let M be a first type Tz-translation surface in E3 with given by the
parametrization (24). If a(u) and B (v) are non-geodesic planar Tz-curves then

fllgll
a1 = % (4‘0)

F JT

T+

Va1 A Ja(1+ gy

holds, where a, # 0 real constant, a, and az are planar Tz-curve constants of o and 3
curves respectively.

Proof. If a(u) and B(v) are non-geodesic planar Tz-curves then by the use of (7) and
d,sc = (Ny, x) equality, we get
ag = / (41)

L+ fr2(-uf' + f)?

and

14

ay = g (42)

149" (-vg' + g)?

substituing (41) and (42) into (26) we get the result.

Corollary 4.5 Let M be a first type Tz-translation surface in E3 with given by
parametrization (24). Let a(u) and B(v) are non-geodesic planar Tz-curves. If

J(l +H)(1+g7%) =4 (4+A)+%(4+%>+6 (43)
then that is
Aq.Ag = Qg (44)
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where

Vi

= 4
—vg'+g (45)

a, and ag are planar Tz-curve constants of a and B curves respectively and a, is Tz-
surface constant of the first type Tz-translation surface.
Proof: By the use of the equation (41) and (42) we get

fII gII

1+ f2(—uf' + )2 |1+ g% (-vg' + g)?

agy- aﬁ = (46)

Substituing (43) and (45) into (46) we get the equation (26). Thus the proof is
completed.
5. Tz-factorable surface

Definition 5.1 A surface M in E2 is called factorable surface if the parametrization of M
can be written as

X(u,v) = (u, v,f(u).g(v)) (47)
or
X(w,v) =(f@w).g)uv) (48)
or
X(wv) =@ fw.g(),v) (49)

where f and g are smooth functions. The Factorable surfaces in the Euclidean Space,
the pseudo Euclidean Space and Heisenberg group have been studied in [7-10].

Theorem 5.2 Let M be a regular surface in E3 given by the parametrization (47), (48)
and (49). Then M is a Tz-surface if and only if

0 = Sf"99" ~ (')
b (-uf'g—vfg' +fo)t

(50)

holds, where a; # 0 real constant, f and g are smooth functions.

Proof. Differentiating (47), (48), (49) with respect to u and v, we can find the
coefficients of the first and the second fundamental forms with (4) and (5). Substituing
(3) and (6) into (2) we get the result.

Example 5.3 Let M be a Monge patch in [E3 with given by the parametrization
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X(u,v) = (u, v, uiv) )

f(uw) =% and g(v) =% are differentiable functions. Substituing by differentiating

equations f and g into (50) we obtain a; = 2—17 which means that M is a Tz-surface .

6. Tz-spherical product surface

Definition 6.1 Let a,B:R — E? be two Euclidean planar curves. Assume a(u) =
(fi(w), f,(w)) and B(v) = (g, (v), g2(v)). Then their spherical product immersions is
given by,

X=a@®pB:E*->E3

X(u,v) = (fl(u),fz(u)gl(v),fz(u)gz(v)) ) (51)

Uy <u < U,V, <v <V, whichis asurface in E> [11,12].

Theorem 6.2 The spherical product surface patch X(u,v) = a(u) ® B(v) of two
planar curves a and B is a Tz-surface if and only if
@ = (A2 — fif2) (g1 92 — 9192)

! Lf = A 2)*(9192 — 9192)°

(52)

holds, where a; # 0 is real constant.
Proof. Differentiating (51) with respect to u and v, we obtain X,, = (f{, f> 91, f>9>) and

X, = (0, f,91, f>92) respectively. We can find the coefficient of the first fundamental
form as follow:

E=f?+£%92+9D).F = f2£5(9:9, + 9295).G = f2(g* + 93%) (53)

The unit normal vector field of spherical product surface path is given by the following
vector field

(f2(9192 — 9192), —f192 f191)

N = . (54)
\/fl’z(g{z +95°) + (9195 — 9192)?

The second partial derivatives of X are expressed as follows:

Xuu = (flur 2”911 2”92) y Xup = (O,legi, legé)'va = (0, fzgil'fZQQ (55)

Using (54) and (55) we can get the coefficient of the second fundamental form

(fi'f2 — fif2)(9192 — 9192)

e =
\/fl’z(g{z +95%) + £32(9195 — 9.92)*
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f=0 (56)
fif2(9192 — 91 92)

\/ 91 2+ 92 102’2(9192 — 9192)*

Substituing (53) and (56) into (6) we obtain the Gaussian curvature as follows

K = 'z — 29192 — 9192)f1 (9197 — g{'gé (57)

L2 (9% + 932 + (9195 — 9,92)%)

Substituing (54) into (3) we obtain

(fif2 — fi2)(9192 — 9192)

dtan .
12 12 ’ ’ 2
\/ 91 L+ 9:°) + £;°(919; — 9192)

(58)

Consequently, by the use of (57) and (58) with (2) we get the result.

Corollary 6.3 Let X(u,v) = a(u) @ B(v) be the spherical product surface patch of
two planar curves given with the parametrization (51). If a and B are unit speed curve
then that is

@ = —fikiakip
! LUAf — A 12)*(9192 — 9192)3

(59)

where ki, = (f{'f; = fify') and ki = (9193 — 9197) are curvatures of o and P
curves, respectively.

Example 6.4 Let a,f:R — E? be two Euclidean planar curves. Assume a(u) =
(fi(w), ,(w)) = (coshu,sinhu) and BW) = (g9,(v), g.(v)) = (coshv, sinhv).

Then the parametrization of spherical product surface M is given by

X(u,v) = (coshu,sinhu coshv,sinhusinhv) .

Substituing the first and second derivatives of f;(w), f2(w), g1(v), g2(v) into (52), we
obtain a; = —1 which means that spherical product surface M is a Tz-surface .

Example 6.5 Let a and B be two Euclidean planar curves. Assume a(u) =
(cos(c +u),sin(c+u)) and B(v) = (sin(c; + v),cos(c; + v)). Then the
parametrization of spherical product surface M is given by

X(u,v) = (cos(c +u),sin(c + u) sin(c; + v),sin(c + u) cos(c; + v)) .

By using (59) we obtain a; = 1 which means that spherical product surface is a Tz-
surface.
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7. Tz-surface of revolution

Definition 7.1 Let a,5:R — E? be two Euclidean planar curves. Assume a(u) =
(fi(w), f,(w)) and B(v) = (cosv,sinv). Then their spherical product immersion is
given by

X(u,v) = (i), f(w) cosv, f,(u) sinv) . (60)

The spherical product immersion given by the parametrization (60) is called surface of
revolution.

Theorem 7.2 Surface of Revolution given by the parametrization (60) is a Tz-surface if
and only if

A2 = fifz)

= 61
LU = R+ ) oy

a;

holds, where a, # 0 is real constant.
Proof. Differentiating (60) with respect to u and v, we obtain X, =

(f{, f2 cosv, f, sinv) and X,, = (0, —f, sinv, f, cos v) respectively. We can find the
coefficient of the first fundamental form as follow:

E=fi"+f", F=0, G=f (62)

The unit normal vector field of surface of revolution is given by the following vector
field

N = (f;,—f{ cosv,—f{ sinv). (63)
The second partial derivatives of X are expressed as follows

Xuuw = (f{', f2 cosv, f,' sinv)

Xy = (0,—f; sinv, f, cosv) (64)
Xy = (0,—f, cosv, —f, sinv)

Using (63) and (64), we can get the coefficients of the second fundamental form
e=fi'"f —fif2, f=0, g=1fifz (65)

substituing (62) and (65) into (5) we obtain the Gaussian curvature as follows

o FGE — LD

> > 66

RGEYR ©)
Substituing (63) into (3), we obtain

dtan = fifs = fif2- (67)
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Consequently, by the use of (66) and (67) with (2) we get the result.

Example 7.3 Let a(u) = (coshu,sinhu) and 8(v) = (cos v, sin v). Then the surface
of revolution is given by the parametrization

X(u,v) = (coshu,sinhu cosv,sinhusinv).
By the using (61), we obtain a; = 1 which means that X is aTz-surface.
Corollary 7.4 If a(u) = (fi(w), f,(w)) is unit speed curve then that is a; =

—_,f 2 —— Where a; # 0 is real constant.
fZ(flfz_f1f2)

8. Tz-ruled surface

Definition 8.1 A ruled surface is a surface that can be swept out by moving a line in
space. It therefore has a parametrization of the form

X(u,v) = a(u) + vy(w) (66)

where a(u) is called the ruled surfacee directrix (also called the base curve) and y(u) is
the director curve and a'(u) # 0.

Theorem 8.2 If ruled surface given with the parametrization (66) is a Tz-surface, then
that is

B —(det(o:’,y',y))2
1= %
(det(ar Y; Xu))

(67)

where a, # 0 is real constant.

Proof. Let a(u) = (x;(w),y;(w),z;(w)) and y(u) = (x,(w), y,(w), z,(w)). Then, we
obtain

X(w,v) =al) +vy(u)
= (x1 (W) + v (W), y1 (W) + vy, (W), 21 (W) + vz, (W))
= (x(wv), y(w,v),z(w,v)). (68)

By using (10), we get the result.

Example 8.3 Let a(u) = (cosu,sinu,0) and y(u) = a’'(u) + e; where e5 = (0,0,1).
Then the parametrization of the ruled surface X is given by

X(u,v) =al) +vy(u)

= (cosu,sinu,0) + v((— sinu,cosu,0) + (0,0,1))

= (cosu —vsinu,sinu + vcosu,v). By using (67), we obtain a; = —1
which means that X is a Tz-surface.
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